154 research outputs found

    Anharmonicity changes the solid solubility of an alloy at high temperatures

    Get PDF
    We have developed a method to accurately and efficiently determine the vibrational free energy as a function of temperature and volume for substitutional alloys from first principles. Taking Ti1x_{1-x}Alx_xN alloy as a model system, we calculate the isostructural phase diagram by finding the global minimum of the free energy, corresponding to the true equilibrium state of the system. We demonstrate that the anharmonic contribution and temperature dependence of the mixing enthalpy have a decisive impact on the calculated phase diagram of a Ti1x_{1-x}Alx_xN alloy, lowering the maximum temperature for the miscibility gap from 6560 K to 2860 K. Our local chemical composition measurements on thermally aged Ti0.5_{0.5}Al0.5_{0.5}N alloys agree with the calculated phase diagram.Comment: 4 pages, 5 figures, supplementary materia

    Ion irradiation-induced decomposition of Al + 4 wt. % Cu supersaturated solid solution

    Full text link
    The decomposition process of the model precipitation-hardening Al + 4 wt. % Cu supersaturated solid solution induced by Ar+ ions irradiation. Using X-ray diffraction, high- resolution electron microscopy methods and microhardness measurements, it was established, that, already at low temperatures (T < 60 °C), ion irradiation causes accelerated decomposition of solid solution, with precipitation of 9' and 9-phase particles at a depth greatly exceeding the Ar+ ions projected range.This work was performed in the framework of the State Task, no. 0389-2414-0002, supported in part by RFBR (project No. 15-08-06744-A). We thank E. Wieser for the idea and participation in discussing the results

    Magnetic Mn5Ge3 nanocrystals embedded in crystalline Ge: a magnet/semiconductor hybrid synthesized by ion implantation

    Get PDF
    The integration of ferromagnetic Mn5Ge3 with the Ge matrix is promising for spin injection in a silicon-compatible geometry. In this paper, we report the preparation of magnetic Mn5Ge3 nanocrystals embedded inside the Ge matrix by Mn ions implantation at elevated temperature. By X-ray diffraction and transmission electron microscopy, we observe crystalline Mn5Ge3 with variable size depending on the Mn ion fluence. The electronic structure of Mn in Mn5Ge3 nanocrystals is 3d6 configuration, the same as in bulk Mn5Ge3. A large positive magnetoresistance has been observed at low temperatures. It can be explained by the conductivity inhomogeneity in the magnetic/semiconductor hybrid system.Comment: 16 pages, 5 figure

    Investigation of grain orientations of melt-textured HTSC with addition of uranium oxide, Y2O3 and Y2BaCuO5

    Get PDF
    Local grain orientations were studied in melt-textured YBCO samples processed with various amounts of depleted uranuim oxide (DU) and Y 2O3 by means of electron backscatter diffraction (EBSD) analysis. The addition of DU leads to the formation of Ucontaining nanoparticles (Y2Ba4CuUOx) with sizes of around 200 nm, embedded in the superconducting Y-123 matrix. The orientation of the Y 2BaCuO5 (Y-211) particles, which are also present in the YBCO bulk microstructure, is generally random as is the case in other melttextured Y-123 samples. The presence of Y-211 particles, however, also affects the orientation of the Y-123 matrix in these samples

    EBSD characterisation of Y2Ba4CuUOx phase in melttextured YBCO with addition of depleted uranium oxide

    Get PDF
    Melt-textured YBCO samples processed with added Y2O3 and depleted uranium oxide (DU) contain nano-particles, which have been identified previously as Y2Ba4CuUOx (U-411). This phase has a cubic unit cell, which is clearly distinct from the orthorhombic Y-123 and Y-211 phases within the YBCO system. In samples with a high amount of DU addition (0.8 wt-% DU), U-2411 particles have sizes between 200 nm and several νm, so identification of the Kikuchi patterns of this phase becomes possible. Together with a parallel EDX analysis, the particles embedded in the Y-123 matrix can be identified unambiguously. In this way, a three-phase EBSD scan becomes possible, allowing also the identification of nanometre-sized particles in the sample microstructure

    Deposition rate controls nucleation and growth during amorphous/nanocrystalline competition in sputtered Zr-Cr thin films

    Full text link
    Dual-phase Zr-based thin films synthesized by magnetron co-sputtering and showing competitive growth between amorphous and crystalline phases have been reported recently. In such films, the amorphous phase grows as columns, while the crystalline phase grows as separated cone-shaped crystalline regions made of smaller crystallites. In this paper, we investigate this phenomenon and propose a model for the development of the crystalline regions during thin film growth. We evidence using X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), that this competitive selfseparation also exists in co-sputtered Zr-Cr thin films with Cr contents of ~84-86 at.%, corresponding to the transition between the amorphous and crystalline compositions, and in the Zr-V system. Then, to assess the sturdiness of this phenomenon, its existence and geometrical characteristics are evaluated when varying the film composition and the deposition rate. The variation of geometrical features, such as the crystalline cone angle, the size and density of crystallites, is discussed. Is it shown that a variation in the deposition rate changes the nucleation and growth kinetics of the crystallites. The surface coverage by the crystalline phase at a given thickness is also calculated for each deposition rate. Moreover, comparison is made between Zr-Cr, Zr-V, Zr-Mo and Zr-W dual-phase thin films to compare their nucleation and growth kinetics

    Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic and magneto-transport properties

    Full text link
    In this paper we show that spinel ferrite nanocrystals (NiFe2O4, and CoFe2O4) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.Comment: 12 pages, 14 figs. accepted for publication at PR

    A deep learning approach for complex microstructure inference

    Get PDF
    Automated, reliable, and objective microstructure inference from micrographs is essential for a comprehensive understanding of process-microstructure-property relations and tailored materials development. However, such inference, with the increasing complexity of microstructures, requires advanced segmentation methodologies. While deep learning offers new opportunities, an intuition about the required data quality/quantity and a methodological guideline for microstructure quantification is still missing. This, along with deep learning’s seemingly intransparent decision-making process, hampers its breakthrough in this field. We apply a multidisciplinary deep learning approach, devoting equal attention to specimen preparation and imaging, and train distinct U-Net architectures with 30–50 micrographs of different imaging modalities and electron backscatter diffraction-informed annotations. On the challenging task of lath-bainite segmentation in complex-phase steel, we achieve accuracies of 90% rivaling expert segmentations. Further, we discuss the impact of image context, pre-training with domain-extrinsic data, and data augmentation. Network visualization techniques demonstrate plausible model decisions based on grain boundary morphology
    corecore