96 research outputs found

    Ribosomal protein L2 in Saccharomyces cerevisiae is homologous to ribosomal protein L1 in Xenopus laevis. Isolation and characterization of the genes.

    Get PDF
    By cross-hybridization with a cDNA probe for the Xenopus laevis ribosomal protein L1 we have been able to isolate the homologous genes from a Saccharomyces cerevisiae genomic library. We have shown that these genes code for a ribosomal protein which was previously named L2. In yeast, like in X. laevis, these genes are present in two copies per haploid genome and, unlike the vertebrate counterpart, they do not contain introns. Amino acid comparison of the X. laevis L1 and S. cerevisiae L2 proteins has shown the presence of a highly conserved protein domain embedded in very divergent sequences. Although these sequences are very poorly homologous, they confer an overall secondary structure and folding highly conserved in the two species

    Cryopreservation of hazelnut (Corylus avellana l.) axillary buds from in vitro shoots using the droplet vitrification method

    Get PDF
    Cryopreservation by droplet vitrification was applied to hazelnut (Corylus avellana L.). axillary buds of the Italian cultivated variety Tonda Gentile Romana, which were collected from in vitro growing shoots, immersed in ice cooled PVS2 or PVS3 for 60 or 90 min, then transferred to a droplet of vitrification solution, placed on a strip of aluminium foil, and plunged into liquid nitrogen (LN). Additionally, the effect on the recovery of the mother plant after cryopreservation was evaluated, following a cold pre-treatment at 4â—¦C for 3 months. The highest regrowth percentage (56.7%) was obtained after applying PVS3 for 60 min, while the application of PVS2 for the same amount of time reduced regrowth to 41.5%. Increasing the exposure to vitrification solutions to 90 min reduced regrowth to 43.3% when PVS3 was applied, and 35.6% if PVS2 was used. The cold pre-treatment on the mother plant did not significantly improve overall regrowth. The cryopreservation process did not decline the rooting ability of the recovered shoot

    Evaluating the contribution of the gene TARDBP in Italian patients with amyotrophic lateral sclerosis

    Get PDF
    Background and objectives: Genetic variants in the gene TARDBP, encoding TDP-43 protein, are associated with amyotrophic lateral sclerosis (ALS) in familial (fALS) and sporadic (sALS) cases. Objectives of this study were to assess the contribution of TARDBP in a large cohort of Italian ALS patients, to determine the TARDBP-associated clinical features and to look for genotype-phenotype correlation and penetrance of the mutations.Methods: A total of 1992 Italian ALS patients (193 fALS and 1799 sALS) were enrolled in this study. Sanger sequencing of TARDBP gene was performed in patients and, when available, in patients' relatives.Results: In total, 13 different rare variants were identified in 43 index cases (10 fALS and 33 sALS) with a cumulative mutational frequency of 2.2% (5.2% of fALS, 1.8% of sALS). The most prevalent variant was the p.A382T followed by the p.G294V. Cognitive impairment was detected in almost 30% of patients. While some variants, including the p.G294V and the p.G376D, were associated with restricted phenotypes, the p.A382T showed a marked clinical heterogeneity regarding age of onset, survival and association with cognitive impairment. Investigations in parents, when possible, showed that the variants were inherited from healthy carriers and never occurred de novo.Conclusions: In our cohort, TARDBP variants have a relevant frequency in Italian ALS patients and they are significantly associated with cognitive impairment. Clinical presentation is heterogeneous. Consistent genotype-phenotype correlations are limited to some mutations. A marked phenotypic variability characterizes the p.A382T variant, suggesting a multifactorial/oligogenic pathogenic mechanism

    Distinct Effects of p19 RNA Silencing Suppressor on Small RNA Mediated Pathways in Plants

    Get PDF
    RNA silencing is one of the main defense mechanisms employed by plants to fight viruses. In change, viruses have evolved silencing suppressor proteins to neutralize antiviral silencing. Since the endogenous and antiviral functions of RNA silencing pathway rely on common components, it was suggested that viral suppressors interfere with endogenous silencing pathway contributing to viral symptom development. In this work, we aimed to understand the effects of the tombusviral p19 suppressor on endogenous and antiviral silencing during genuine virus infection. We showed that ectopically expressed p19 sequesters endogenous small RNAs (sRNAs) in the absence, but not in the presence of virus infection. Our presented data question the generalized model in which the sequestration of endogenous sRNAs by the viral suppressor contributes to the viral symptom development. We further showed that p19 preferentially binds the perfectly paired ds-viral small interfering RNAs (vsiRNAs) but does not select based on their sequence or the type of the 5’ nucleotide. Finally, co-immunoprecipitation of sRNAs with AGO1 or AGO2 from virus-infected plants revealed that p19 specifically impairs vsiRNA loading into AGO1 but not AGO2. Our findings, coupled with the fact that p19-expressing wild type Cymbidium ringspot virus (CymRSV) overcomes the Nicotiana benthamiana silencing based defense killing the host, suggest that AGO1 is the main effector of antiviral silencing in this host-virus combination

    Congenital muscular dystrophy. Part II: a review of pathogenesis and therapeutic perspectives

    Full text link
    • …
    corecore