453 research outputs found

    Octopus maya white body show sex-specific transcriptomic profiles during the reproductive phase, with high differentiation in signaling pathways

    Get PDF
    White bodies (WB), multilobulated soft tissue that wraps the optic tracts and optic lobes, have been considered the hematopoietic organ of the cephalopods. Its glandular appearance and its lobular morphology suggest that different parts of the WB may perform different functions, but a detailed functional analysis of the octopus WB is lacking. The aim of this study is to describe the transcriptomic profile of WB to better understand its functions, with emphasis on the difference between sexes during reproductive events. Then, validation via qPCR was performed using different tissues to find out tissue-specific transcripts. High differentiation in signaling pathways was observed in the comparison of female and male transcriptomic profiles. For instance, the expression of genes involved in the androgen receptor-signaling pathway were detected only in males, whereas estrogen receptor showed higher expression in females. Highly expressed genes in males enriched oxidation-reduction and apoptotic processes, which are related to the immune response. On the other hand, expression of genes involved in replicative senescence and the response to cortisol were only detected in females. Moreover, the transcripts with higher expression in females enriched a wide variety of signaling pathways mediated by molecules like neuropeptides, integrins, MAPKs and receptors like TNF and Toll-like. In addition, these putative neuropeptide transcripts, showed higher expression in females' WB and were not detected in other analyzed tissues. These results suggest that the differentiation in signaling pathways in white bodies of O. maya influences the physiological dimorphism between females and males during the reproductive phase

    Mixing Time Scale Models for Multiple Mapping Conditioning with Two Reference Variables

    Get PDF
    A novel multiple mapping conditioning (MMC) approach has been developed for the modelling of turbulent premixed flames including mixture inhomogeneities due to mixture stratification or mixing with the cold surroundings. MMC requires conditioning of a mixing operator on characteristic quantities (reference variables) to ensure localness of mixing in composition space. Previous MMC used the LES-filtered reaction progress variable as reference field. Here, the reference variable space is extended by adding the LES-filtered mixture fraction effectively leading to a double conditioning of the mixing operator. The model is used to predict a turbulent stratified flame and is validated by comparison with experimental data. The introduction of the second reference variable also requires modification of the mixing time scale. Two different mixing time scale models are compared in this work. A novel anisotropic model for stratified combustion leads to somewhat higher levels of fluctuations for the passive scalar when compared with the original model but differences remain small within the flame front. The results show that both models predict flame position and flame structure with good accuracy

    Evidence for the activity and paleoseismicity of the Padul fault (Betic Cordillera, southern Spain)

    Get PDF
    There is evidence of recent tectonic activity in the proximity of Padul, in the central sector of the Betic Cordillera. The principal active fault in this region is the Padul normal fault, running NW-SE, which displays spectacular geomorphological and structural features owing to its recent activity. However, there is no evidence of earthquakes of moderate-high magnitude occurring in this area during the historical or the instrumental period. In the vicinity of Padul we identified various soft-sediment deformation structures produced by liquefaction which we attributed to seismic shocks of a moderate-high magnitude. These structures are situated in detritic sediments, intercalated with layers of peat, which have enabled dating of these paleoearthquakes to the late Pleistocene (approx. 30,000 to 35,000 yr BP). Moreover, field observations in sediments of alluvial fans in the vicinity of the Padul fault, together with a retrodeformation analysis of an outcrop, enabled various deformation events to be dated to the recent Quaternary period

    Effective removal of anionic and cationic dyes by kaolinite and TiO2/kaolinite composites

    Get PDF
    The present study investigated the removal of methylene blue (MB) and orange II (OII) dyes from synthetic wastewater by means of adsorption and photocatalysis using natural kaolins. For MB adsorption, the raw kaolinite-rich samples showed the greatest adsorption capacity, with rapid uptake (90% after 20 min). The experimental results were fitted better using the Langmuir isotherm model parameters compared to the Freundlich model, suggesting that the adsorption corresponds to monolayer coverage of MB molecules over the kaolinite surface. For OII, neither the Langmuir nor the Freundlich model gave reliable results, because the adsorption of anionic dye molecules by the clayey particles is not favoured. Mixtures of kaolinite/Degussa TiO2 were also prepared, and their photocatalytic properties under UV-light exposure were investigated. Decolourization of MB solutions was observed, even in a mixture with low TiO2 content. This is related to the combined effect of adsorption and photocatalysis and, unlike the pure clay samples, the efficiency of such mixtures against OII was only slightly weaker (80-94%). For TiO2-impregnated clays, with the kaolinite layers separated by sol-gel TiO2 particles, the MB removal was slow and effective only after >24 h due to the complexity of the bonding of MB molecules. On the other hand, the removal performance against OII solutions was very efficient (nearly 100%) within only 2 h. This excellent performance was attributed to morphological changes in clay particles

    Cardiac troponin I release after a basketball match in elite, amateur and junior players

    Get PDF
    BACKGROUND: Available scientific data related to cardiac troponin I (cTnI) release after intermittent exercise is limited. It is also of interest to determine what personal or environmental factors mediate the exercise-induced release of cTnI. This study had two objectives: 1) to examine the individual release of cTnI to a basketball match; and 2) to establish the influence of athlete status as well as biological age on cTnI release. METHODS: Thirty-six basketball players (12 adult elite [PBA]: 27.3±4.1 years, 12 adult amateur [ABA]: 29.6±2.9 years, and 12 junior elite [JBA]: 16.6±0.9 years) participated in a simulated basketball match with serial assessment of cTnI at rest, immediately post- and at 1, 3, 6, 12, and 24 h post-exercise. RESULTS: The basketball match increased cTnI levels (pre: median [range]; 0.006 [0.001-0.026]; peak post: 0.024 [0.004-0.244] μg/L; p=0.000), with substantial individual variability in peak values. PBA and JBA players showed higher baseline and post-exercise cTnI values than ABA (all p<0.05). Peak cTnI exceeded the upper reference limit (URL) in the 26% of players (3 PBA; 6 JBA). CONCLUSIONS: The current results suggest that intermittent exercise can promote the appearance of cTnI and that this is potentially mediated by athlete status

    Magneto-resistive coefficient enhancement observed around Verwey-like transition on spinel ferrites XFe₂O₄ (X = Mn, Zn)

    Get PDF
    Manganese and Zinc ferrites were prepared by solid state reaction. The resulting powders were pressed into pellets and heat treated at 1100 ⁰C. The samples were characterized by using X-ray diffraction, pure phases of zinc ferrite (ZnFe²O₄) and manganese ferrite (MnFe₂O₄) were obtained. Scanning electron microscopy images showed a good contact between particles. A drop of electrical resistance was found in both samples, MnFe₂O₄ and ZnFe₂O₄, with values going from 2750 to 130 Ω and from 1100 to 55 Ω, respectively. Transition temperatures were determined to be Tv = 225 K for MnFe₂O₄ and Tv = 130 K for ZnFe₂O₄. Magnetoresistance measurements were carried out in the temperature range where R showed the transition, defined as the Verwey-like transition temperature range, ∆Tv. No magnetoresistive effect was observed out of it. The magnetoresistive coefficient (MRC) observed at ∆Tv reached its maximum values of 1.1% for MnFe₂O₄ and 6.68% for ZnFe₂O₄. The differences between MRC values are related to the divalent metal element used. Finally, the magnetoresistive response indicates that the electrical transition observed is strongly influencing the magnetoresistance; where the underlying responsible for this behavior could be a charge reordering occurring at the Verwey-like transition temperature

    Some features of the statistical complexity, Fisher-Shannon information, and Bohr-like orbits in the Quantum Isotropic Harmonic Oscillator

    Full text link
    The Fisher-Shannon information and a statistical measure of complexity are calculated in the position and momentum spaces for the wave functions of the quantum isotropic harmonic oscillator. We show that these magnitudes are independent of the strength of the harmonic potential. Moreover, for each level of energy, it is found that these two indicators take their minimum values on the orbitals that correspond to the classical (circular) orbits in the Bohr-like quantum image, just those with the highest orbital angular momentum.Comment: 9 pages, 2 figure

    Magnetic susceptibility studies of the spin-glass and Verwey transitions in magnetite nanoparticles

    Get PDF
    Magnetite nanostructured powder samples were synthesized by aging chemical method. Phase, structural, and magnetic properties were characterized. X-ray diffraction patterns showed cubic magnetite pure phase, with average crystallite size, , equal to 40 nm. Susceptibility measurements showed the well-known Verwey transition at a temperature of 90 K. The decrease of Verwey transition temperature, with respect to the one reported in literature (125 K) was attributed to the low average crystallite size. Moreover, the spin-glass like transition was observed at 35 K. Activation energy calculated from susceptibility curves, with values ranging from 6.26 to 6.93 meV, showed a dependence of spin-glass transition on frequency. Finally, hysteresis loops showed that there is not an effect of Verwey transition on magnetic properties. On the other hand, a large increase of coercivity and remanent magnetization at a temperature between 5 and 50 K confirmed the presence of a magnetic transition at low temperatures
    corecore