639 research outputs found
Large Scale Structures a Gradient Lines: the case of the Trkal Flow
A specific asymptotic expansion at large Reynolds numbers (R)for the long
wavelength perturbation of a non stationary anisotropic helical solution of the
force less Navier-Stokes equations (Trkal solutions) is effectively constructed
of the Beltrami type terms through multi scaling analysis. The asymptotic
procedure is proved to be valid for one specific value of the scaling
parameter,namely for the square root of the Reynolds number (R).As a result
large scale structures arise as gradient lines of the energy determined by the
initial conditions for two anisotropic Beltrami flows of the same helicity.The
same intitial conditions determine the boundaries of the vortex-velocity tubes,
containing both streamlines and vortex linesComment: 27 pages, 2 figure
Topological current of point defects and its bifurcation
From the topological properties of a three dimensional vector order
parameter, the topological current of point defects is obtained. One shows that
the charge of point defects is determined by Hopf indices and Brouwer degrees.
The evolution of point defects is also studied. One concludes that there exist
crucial cases of branch processes in the evolution of point defects when the
Jacobian .Comment: revtex,14 pages,no figur
Geometric observation for the Bures fidelity between two states of a qubit
In this Brief Report, we present a geometric observation for the Bures
fidelity between two states of a qubit.Comment: 4 pages, 1 figure, RevTex, Accepted by Phys. Rev.
Influence of solar activity on hydrological processes
International audienceThe relationship between solar activity and the water volumes of lakes is searched here by means of correlational and spectral analysis methods. The level of two lakes, Pátzcuaro in México and Tchudskoye in Russia, together with solar activity indexes are used for the analysis. It is found that the source of the oscillation mechanism of the level of those lakes is the solar activity cycle through its influence on the magnetosphere and the terrestrial atmosphere. The present study allows for the development of long-period prognostic of water volumes of big lakes
Increased growing temperature reduces content of polyunsaturated fatty acids in four oilseed crops
Environmental temperature directly influences the lipid profile produced by oilseeds. If growing temperatures increase, as is predicted by current models, the precise profile of lipids produced are likely to change. This paper develops models to predict lipid profiles as a function of growing temperature. Data relating to lipid profiles of soybean (Glycine max), spring canola (Brassica napus), spring camelina (Camelina sativa), and sunflower (Helianthus annuus) were gathered from the literature and evaluated to examine the influence of temperature on relative production of oleic, linoleic, and linolenic acid. For each crop, a set of linear regressions was used to correlate temperature during the grain fill, defined as 30 days before harvest, with the molar percentages of oleic, linoleic, and linolenic acid present. An increase in temperature from 10 to 40°C resulted in an increase in the production of oleic acid and a decrease in the production of linoleic and linolenic acid in soybeans, canola, and sunflowers. Over the range of data available, the lipid profile of camelina was temperature insensitive. To test the validity of the correlations, the four crops were grown in a field study in Manhattan, Kansas simultaneously, in the same environment, in 2011. The correlations accurately predicted the field data for soybean, canola, and camelina but not for sunflower. The correlation for sunflower under-predicted the molar amount of oleic acid and over-predicted the molar amount of linoleic acid. This study indicates increasing growing temperatures from 10 to 40°C will result in more monounsaturated oils and less polyunsaturated oils in soybean, canola, and sunflower
The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts
K
Direct mass measurements of 19B, 22C, 29F, 31Ne, 34Na and other light exotic nuclei
We report on direct time-of-flight based mass measurements of 16 light
neutron-rich nuclei. These include the first determination of the masses of the
Borromean drip-line nuclei B, C and F as well as that of
Na. In addition, the most precise determinations to date for N
and Ne are reported. Coupled with recent interaction cross-section
measurements, the present results support the occurrence of a two-neutron halo
in C, with a dominant configuration, and a
single-neutron halo in Ne with the valence neutron occupying
predominantly the 2 orbital. Despite a very low two-neutron separation
energy the development of a halo in B is hindered by the 1
character of the valence neutrons.Comment: 5 page
Theory of nonlinear Landau-Zener tunneling
A nonlinear Landau-Zener model was proposed recently to describe, among a
number of applications, the nonadiabatic transition of a Bose-Einstein
condensate between Bloch bands. Numerical analysis revealed a striking
phenomenon that tunneling occurs even in the adiabatic limit as the nonlinear
parameter is above a critical value equal to the gap of avoided
crossing of the two levels. In this paper, we present analytical results that
give quantitative account of the breakdown of adiabaticity by mapping this
quantum nonlinear model into a classical Josephson Hamiltonian. In the critical
region, we find a power-law scaling of the nonadiabatic transition probability
as a function of and , the crossing rate of the energy levels.
In the subcritical regime, the transition probability still follows an
exponential law but with the exponent changed by the nonlinear effect. For
, we find a near unit probability for the transition between the
adiabatic levels for all values of the crossing rate.Comment: 9 figure
Degree of entanglement for two qubits
In this paper, we present a measure to quantify the degree of entanglement
for two qubits in a pure state.Comment: 5 page
Quantum Step Heights in Hysteresis Loops of Molecular Magnets
We present an analytical theory on the heights of the quantum steps observed
in the hysteresis loops of molecular magnets. By considering the dipolar
interaction between molecular spins, our theory successfully yields the step
heights measured in experiments, and reveals a scaling law for the dependence
of the heights on the sweeping rates hidden in the experiment data on Fe
and Mn. With this theory, we show how to accurately determine the tunnel
splitting of a single molecular spin from the step heights.Comment: 4 pages, 5 figure
- …
