86 research outputs found

    Structural and optical behaviors of 2D-layered molybdenum disulfide thin film:Experimental and ab-initio insights

    Get PDF
    The two-dimensional (2D) layered molybdenum disulfide (MoS2) material represents a nominee potent for optoelectronic devices application. In this research work, the experimental characterizations of 2D- MoS2 thin films are reported in terms of various microscopic and spectroscopic techniques. The synthesized MoS2 thin films are grown by employing the pulsed laser deposition (PLD) procedure on SiO2/Si substrates. In order to monitor the deposition rates of ablated films, the buffer argon-gas pressures are varied during the pulsed laser deposition at substrate temperature of 700Ā Ā°C. The field emission scanning electron microscopy and atomic force microscopy analyzes revealed a change in the surface morphology of MoS2 films when the buffer Ar-gas pressure is varied between 0 and 100 mTorr. For all samples, a 2H-phase is revealed from X-ray diffraction patterns, indicating a reflection (2Īø) around 14.85Ā°. By varying the deposition pressure of laser-ablated MoS2 films, the X-ray photoelectron spectroscopy divulged the chemical compositional elements and valence states of Mo and S on the surface of MS2 films with low density of defects. Analysis of the photoluminescence spectroscopy illustrated emission bands spanning from the visible (Vis) to near-infrared (NIR) regimes in the deposition pressures rangeĀ ~Ā 0ā€“100 mTorr. This is mainly owing to the change in the recombination of electronā€“hole pairs and charge transfer between the deposited MoS2 films and SiO2 substrate surface under various buffer gas pressures. Additionally, first-principles electronic structure calculations are performed to qualitatively examine the effect of native point-defect species (sulfur-monovacancy and sulfur-divacancy defects) on the electronic structure and optical properties of 2D- MoS2 sheets. It is unveiled that the variation of compositional sulfur-vacancy defect in MoS2 monolayer creates an inā€“gap defect levels above the valence states, leading to an acceptor character. Importantly, the enhancement in the optical absorption spectra divulged a shift in the optical gap from Vis-NIR window with the increase of sulfur vacancy contents in MoS2 single-layer. The identification of intrinsic point defects may be beneficial for photovoltaic energy conversion at higher wavelengths by designing next generation 2D-semiconductors, which could be of vital significance for growing 2D layers and multilayers into practical technologies

    Electronic structures and magnetic properties of RB4 (R=Yb,Pr,Gd,Tb,Dy)

    Get PDF
    Most rare-earth tetraborides RB4 have antiferromagnetic ground states except for YbB4 and PrB4. We have investigated the electronic structures and magnetic properties of RB4 (R=Yb, Pr, Gd, Tb, Dy) employing the first-principles total energy band method. It is found that YbB4 has the paramagnetic ground state, while the other tetraborides are in the magnetic ground state, which is in agreement with experiments. We have obtained the spin and orbital magnetic moments and discussed the importance of the spin-orbit interaction and the on-site Coulomb repulsion (U) in these systems. (C) 2009 American Institute of Physics. [DOI: 10.1063/1.3058707]ope

    Synthesis of nanocomposite films based on conjugated oligomer-2D layered MoS2 as potential candidate for optoelectronic devices

    Get PDF
    In this investigation, we have analyzed the structural, electrical, and optical behaviors of pure and composite thin films which are obtained from 2D monolayer molybdenum disulfide (MoS2) flakes, conjugated oligomer (CO) 1,4-Bis(9-ethyl-3-carbazo-vinylene)-9,9-dihexyl-fluorene (BECV-DHF), and by combining CO (BECV-DHF) with MoS2 in forms of CO/MoS2 composites. All the samples are coated on SiO2/Si substrates using the spin coating procedure where a spin-coating solution has been obtained by dispersing CO and MoS2 in ethanol or toluene. The structural morphology of MoS2 films and CO/MoS2 films of various thicknesses are analyzed using field emission scanning electron microscope (FE-SEM), transmission electron microscope (TEM), and profilometer. These experimental results confirm the formation of MoS2 layer composite with oligomer nanocrystals. The optical properties of MoS2, CO, and CO/MoS2 films showed that the increased film thickness shifted the spectral peaks towards near infrared (NIR) and ultraviolet?visible (UV) regions of the electromagnetic spectrum. Moreover, devices such as solar cells, flexible memory cell and MOSFET were designed. The I-V characteristics of these devices show that CO/MoS2 composite films could serve as potential candidates for organic-inorganic nano-electronic device applications. ? 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Size-dependent permittivity and intrinsic optical anisotropy of nanometric gold thin films: A density functional theory study

    Full text link
    Physical properties of materials are known to be different from the bulk at the nanometer scale. In this context, the dependence of optical properties of nanometric gold thin films with respect to film thickness is studied using density functional theory (DFT). We find that the in-plane plasma frequency of the gold thin film decreases with decreasing thickness and that the optical permittivity tensor is highly anisotropic as well as thickness dependent. Quantitative knowledge of planar metal film permittivity's thickness dependence can improve the accuracy and reliability of the designs of plasmonic devices and electromagnetic metamaterials. The strong anisotropy observed may become an alternative method of realizing indefinite media. Ā© 2013 Optical Society of America

    Exploring thermoelectric materials for renewable energy applications: The case of highly mismatched alloys based on AlBi1-xSbx and InBi1-xSbx

    Get PDF
    The high throughput thermoelectric devices are considered promising futuristic energy source to control global warming and realize the dream of green energy and sustainable environment. The ability of the highly mismatched alloys (HMAs), to show the intriguing impact on the physical properties with controlled modifications, has extended their promise to thermoelectric applications. Here, we examine comprehensively the potential of the two prototypical HMAs such as AlBi1-xSbx and InBi1-xSbx for thermoelectric applications within density functional theory together with the Boltzmann transport theory. For comprehensive understanding, alloying of these materials has been performed over the entire composition range. From our calculations, we found, the replacement of Sb with Bi leads to a significant evolution in the energy band-gap and effective masses of the charge carriers that consequently deliver enhancement in thermoelectric response. Improvement of magnitude 1.25 eV and 0.986 eV has been respectively recorded in band-gaps of AlBi1-xSbx and InBi1-xSbx for the across composition alloying. Similarly, by the electronic-structure engineering of HMAs, thermoelectric properties such as, the Seebeck coefficients over Fermi-level were found to be improved from 82.90 ĀµV/K to 107.52 ĀµV/K for AlBi1-xSbx and 60.32 ĀµV/K to 92.73 ĀµV/K for InBi1-xSbx. As a result, the thermoelectric figure of merit (ZT) and power factor show considerable enhancement as a function of alloying composition for both alloys at room temperature. However, at a higher temperature, the thermal conductivity of these materials experience an exponential increase, results in lower ZT values. Overall, the observed evolution in the electronic structure and thermoelectric response for replacing Sb over Bi is significant in AlBi1-xSbx as compared to InBi1-xSbx. Hence, with the capability of significant and controlled evolution in electronic-structure and subsequent thermoelectric properties, HMAs particularly AlBi1-xSbx are believed potential candidates for thermoelectric applications

    Selectivity control in Pt-catalyzed cinnamaldehyde hydrogenation

    Get PDF
    Chemoselectivity is a cornerstone of catalysis, permitting the targeted modification of specific functional groups within complex starting materials. Here we elucidate key structural and electronic factors controlling the liquid phase hydrogenation of cinnamaldehyde and related benzylic aldehydes over Pt nanoparticles. Mechanistic insight from kinetic mapping reveals cinnamaldehyde hydrogenation is structure-insensitive over metallic platinum, proceeding with a common Turnover Frequency independent of precursor, particle size or support architecture. In contrast, selectivity to the desired cinnamyl alcohol product is highly structure sensitive, with large nanoparticles and high hydrogen pressures favoring C=O over C=C hydrogenation, attributed to molecular surface crowding and suppression of sterically-demanding adsorption modes. In situ vibrational spectroscopies highlight the role of support polarity in enhancing C=O hydrogenation (through cinnamaldehyde reorientation), a general phenomenon extending to alkyl-substituted benzaldehydes. Tuning nanoparticle size and support polarity affords a flexible means to control the chemoselective hydrogenation of aromatic aldehydes
    • ā€¦
    corecore