809 research outputs found
Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two- Plus Three-Nucleon Interactions
We formulate the In-Medium Similarity Renormalization Group (IM-SRG) for
open-shell nuclei using a multi-reference formalism based on a generalized Wick
theorem introduced in quantum chemistry. The resulting multi-reference IM-SRG
(MR-IM-SRG) is used to perform the first ab initio study of even oxygen
isotopes with chiral NN and 3N Hamiltonians, from the proton to the neutron
drip lines. We obtain an excellent reproduction of experimental ground-state
energies with quantified uncertainties, which is validated by results from the
Importance-Truncated No-Core Shell Model and the Coupled Cluster method. The
agreement between conceptually different many-body approaches and experiment
highlights the predictive power of current chiral two- and three-nucleon
interactions, and establishes the MR-IM-SRG as a promising new tool for ab
initio calculations of medium-mass nuclei far from shell closures.Comment: 5 pages, 4 figures, v2 corresponding to published versio
Genomic Correlates of Virulence Attenuation in the Deadly Amphibian Chytrid Fungus, Batrachochytrium dendrobatidis.
Emerging infectious diseasespose a significant threat to global health, but predicting disease outcomes for particular species can be complicated when pathogen virulence varies across space, time, or hosts. The pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused worldwide declines in frog populations. Not only do Bd isolates from wild populations vary in virulence, but virulence shifts can occur over short timescales when Bd is maintained in the laboratory. We leveraged changes in Bd virulence over multiple generations of passage to better understand mechanisms of pathogen virulence. We conducted whole-genome resequencing of two samples of the same Bd isolate, differing only in passage history, to identify genomic processes associated with virulence attenuation. The isolate with shorter passage history (and greater virulence) had greater chromosome copy numbers than the isolate maintained in culture for longer, suggesting that virulence attenuation may be associated with loss of chromosome copies. Our results suggest that genomic processes proposed as mechanisms for rapid evolution in Bd are correlated with virulence attenuation in laboratory culture within a single lineage of Bd. Moreover, these genomic processes can occur over extremely short timescales. On a practical level, our results underscore the importance of immediately cryo-archiving new Bd isolates and using fresh isolates, rather than samples cultured in the laboratory for long periods, for laboratory infection experiments. Finally, when attempting to predict disease outcomes for this ecologically important pathogen, it is critical to consider existing variation in virulence among isolates and the potential for shifts in virulence over short timescales
Probing ferroelectricity in highly conducting materials through their elastic response: persistence of ferroelectricity in metallic BaTiO3-d
The question whether ferroelectricity (FE) may coexist with a metallic or
highly conducting state, or rather it must be suppressed by the screening from
the free charges, is the focus of a rapidly increasing number of theoretical
studies and is finally receiving positive experimental responses. The issue is
closely related to the thermoelectric and multiferroic (also magnetic)
applications of FE materials, where the electrical conductivity is required or
spurious. In these circumstances, the traditional methods for probing
ferroelectricity are hampered or made totally ineffective by the free charges,
which screen the polar response to an external electric field. This fact may
explain why more than 40 years passed between the first proposals of FE metals
and the present experimental and theoretical activity. The measurement of the
elastic moduli, Young's modulus in the present case, versus temperature is an
effective method for studying the influence of doping on a FE transition
because the elastic properties are unaffected by electrical conductivity. In
this manner, it is shown that the FE transitions of BaTiO3-d are not suppressed
by electron doping through O vacancies; only the onset temperatures are
depressed, but the magnitudes of the softenings, and hence of the piezoelectric
activity, are initially even increased
Ab Initio study of neutron drops with chiral Hamiltonians
We report ab initio calculations for neutron drops in a 10 MeV external
harmonic-oscillator trap using chiral nucleon-nucleon plus three-nucleon
interactions. We present total binding energies, internal energies, radii and
odd-even energy differences for neutron numbers N = 2 - 18 using the no-core
shell model with and without importance truncation. Furthermore, we present
total binding energies for N = 8, 16, 20, 28, 40, 50 obtained in a
coupled-cluster approach. Comparisons with Green's Function Monte Carlo
results, where available, using Argonne v8' with three-nucleon interactions
reveal important dependences on the chosen Hamiltonian.Comment: 7 pages, 5 figure
Negotiation-based Choreography of Data-intensive Applications in the C3Grid Project
We present a negotiation and agreement strategy and protocol for the efficient scheduling of data intensive jobs in the Grid. It was developed with the background of the Collaborative Climate Community Data and Processing Grid (C3Grid), which provides a comprehensive infrastructure for solving computational problems in Earth System Science. The presented solution is a subset of the overall C3Grid architecture and especially focuses on the collaboration of Data Management and Workflow Scheduling. We evaluate our approach on a case study representing a complex application typical for climate research. Finally, extensions for future work – especially on standardization efforts – are reviewed
Percutaneous pulmonary valve implantation in a dysfunctional Trifecta® bioprothesis after high‐pressure balloon fracturing
A percutaneous pulmonary valve‐in‐valve (PPVIV) implantation in small surgical tissue valves may be limited due to the valve's initial diameter. Fracturing of the valve's integrity by high‐pressure balloons may enhance the diameter and facilitate subsequent PPVIV with a large valve. To the best of our knowledge, the Trifecta® valve seemed not to be accessible for fracturing. We report a case of successful 19‐mm Trifecta valve fracturing, followed by PPVIV using a 26‐mm Edwards SAPIEN 3 valve in pulmonary position. By repetitively using a high‐pressure balloon 5 mm larger than the labeled valve size, we were able to fracture the valve's integrity and implant a 26‐mm valve thereafter. Therefore, Trifecta valve appears to be suitable for valve ring fracturing and subsequent PPVIV in certain patients
A large-deviations principle for all the components in a sparse inhomogeneous random graph
We study an inhomogeneous sparse random graph, GN, on [N] = { 1,...,N } as introduced in a seminal paper [BJR07] by Bollobás, Janson and Riordan (2007): vertices have a type (here in a compact metric space S), and edges between different vertices occur randomly and independently over all vertex pairs, with a probability depending on the two vertex types. In the limit N → ∞ , we consider the sparse regime, where the average degree is O(1). We prove a large-deviations principle with explicit rate function for the statistics of the collection of all the connected components, registered according to their vertex type sets, and distinguished according to being microscopic (of finite size) or macroscopic (of size ≈ N). In doing so, we derive explicit logarithmic asymptotics for the probability that GN is connected. We present a full analysis of the rate function including its minimizers. From this analysis we deduce a number of limit laws, conditional and unconditional, which provide comprehensive information about all the microscopic and macroscopic components of GN. In particular, we recover the criterion for the existence of the phase transition given in [BJR07]
- …