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Abstract
We study an inhomogeneous sparse random graph, GN , on [N ] = {1, . . . , N } as intro-
duced in a seminal paper by Bollobás et al. (Random Struct Algorithms 31(1):3–122,
2007): vertices have a type (here in a compact metric space S), and edges between
different vertices occur randomly and independently over all vertex pairs, with a prob-
ability depending on the two vertex types. In the limit N → ∞, we consider the sparse
regime, where the average degree is O(1). We prove a large-deviations principle with
explicit rate function for the statistics of the collection of all the connected compo-
nents, registered according to their vertex type sets, and distinguished according to
being microscopic (of finite size) or macroscopic (of size� N ). In doing so, we derive
explicit logarithmic asymptotics for the probability that GN is connected. We present
a full analysis of the rate function including its minimizers. From this analysis we
deduce a number of limit laws, conditional and unconditional, which provide compre-
hensive information about all the microscopic and macroscopic components of GN .
In particular, we recover the criterion for the existence of the phase transition given
in Bollobás et al. (2007).
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1 Introduction

In this paper, we study the inhomogeneous random graph model as introduced in
the seminal paper [7], that is, an Erdős–Rényi graph whose vertices have types. We
consider the limit of a large number of vertices and concentrate on the sparse setting,
where each vertex has a number of edges that is of order one. This setting is famous for
the emergence of a giant cluster. This phase transition was detected and characterized
in [7] with the help of a branching process. We consider the case in which the type set
is a compact metric space, but our analysis builds on the proof for the type set being
any finite set.

In the present paper, we analyze the model from the view point of large deviations
in a detailed way. We go beyond existing results by (1) considering the joint statistics
of all the clusters, both microscopic and macroscopic, (2) registering the types within
the clusters (not only their sizes), and (3) giving a joint large-deviations principle
(LDP) for all this information. In particular, we recover the limiting quantities and the
resulting phase transition in great detail, giving a lot of additional information. Our
main results are Theorems 1.1 and 3.1 (the LDPs for the type set being a compact
metric space and a finite type set, respectively) and Theorems 2.3 and 2.1, where
we deduce consequences for the phase transition. A building block for our study is
Theorem 3.6, which gives explicit logarithmic asymptotics for the probability of a
macroscopic subgraph being connected and which is of independent interest.

The remainder of this section is organized as follows. In Sect. 1.1 we introduce the
inhomogeneous random graph, in Sect. 1.2 we present our first main result, the large-
deviations principle, and in Sect. 1.3we give an interpretation of the result. Asymptotic
results on the connectivity of graphs are highlighted in Sect. 1.4. In Sect. 1.5 we
compare our results with the existing literature.

The structure of the rest of the paper is as follows. Our second main result concerns
consequences of the large-deviations principle for the limiting behaviour of the model,
i.e., conditional and unconditional laws of large numbers. This relies on explicit vari-
ational analysis of the rate function of Theorem 1.1 and it is explained in Sect. 2,
together with the giant-cluster phase transition and a comparison to the results of
[7]. Additionally, we explain the deep connection with an important inhomogeneous
coagulation process and derive a solution to a spatial version of the Flory equation. In
Sect. 3 we present the proof for our main result, the LDP, in the case of a finite type
set. One key ingredient that we use are asymptotics for connection probabilities for
different cluster sizes. They require more extensive proofs and are therefore contained
separately in Sect. 4. In Sect. 3 we introduce the notation and the results in the frame-
work of a finite type set, where many objects of interest have a simpler representation.
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Reading only this section is a gentle, yet complete, introduction to our results and it is
certainly suitable to readers with limited time or only interested in graphs with finite
type sets. In Sect. 5, we derive the LDP in the general setting, i.e., for compact metric
type spaces via a discrete approximation in the spirit of the Dawson–Gärtner theorem.
In Sect. 6 we derive a full characterization of the minimizers of the microscopic part
of the rate function, and in Sect. 7 we analyze all the other parts of the rate function.

1.1 Inhomogeneous random graphs

We are going to define the random graph model that we study in this paper. It is called
an inhomogeneous random graph in [7], while at full length it is sometimes named
inhomogeneous random Erdős–Rényi graph.

Let N ∈ N; we consider a random graph on the vertex set [N ] = {1, . . . , N } and fix
a non-void set S, the type set. We take a type vector x = x(N ) = (x1, . . . , xN ) ∈ SN

and interpret xi as the type of vertex i for any i ∈ [N ]. The edges of this graph
are undirected and randomly drawn; self and multiple edges are excluded. The

(N
2

)

possible edges are sampled independently. The probability to draw an edge between
two vertices with types r and s, is called pr ,s ; this defines a map p : S × S → [0, 1].
The resulting random graph is denoted G(N , x, p) and is called the inhomogeneous
random graph on [N ] with type vector x and function of probabilities p.

In this paper, we are interested in the limit as N → ∞ in the sparse case, i.e., in
the case where the number of edges per vertex is of finite order. This is the case if the
probabilities pr ,s are of order 1/N . Actually, we now impose that they are given by

pr ,s = 1 ∧ 1

N
κN (r , s), r , s ∈ S,

where κN : S × S → [0,∞) is a symmetric non-negative bounded function, called a
kernel. Without loss of generality, we are from now on assuming that 1

N κN ≤ 1, and
hence κN (r , s)/N is a probability for any N ∈ N and any r , s ∈ S. We will study the
graph GN = G(N , x, 1

N κN ) in the limit N → ∞.
We are interested in the structure of all the components1 of GN , depending on the

types, but not the indices of the vertices. Hence it is sufficient to consider the empirical
measureμN = 1

N

∑N
i=1 δxi of the type vector x and NμN (R) is the number of vertices

with type in R ⊂ S. Wewill assume that, as N → ∞,μN converges weakly to a given
probability measureμ on S. One can conceive GN as a graph on S where in each point
x ∈ S there sit precisely NμN ({x}) ∈ N vertices, which are all distinguished and
labelled. Further, we will work under the assumption that κN converges to a limiting
kernel κ : S × S → [0,∞) that is continuous.

We denote by {C j } j the collection of all the vertex sets of the connected components
of GN . This collection is a random decomposition of [N ]. Since we are only interested
in the statistics of these components, the labeling of the vertices in a component is
irrelevant. Actually, we are even only interested in the statistics of the types of all
the vertices, counted with multiplicity. To this end, we introduce the type-registering

1 We use “cluster” and “component” synonymously.
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empirical-measure function

ηx : P([N ]) → MN0(S), ηx(A) =
∑

i∈A

δxi , (1.1)

whereP([N ]) is the set of subsets of [N ], andMN0(S) is the space of finite measures
on S with values in N0. We call every element of MN0(S) a type-configuration and
will denote it by k. In words, ηx(A)(R) is, for any set R ⊂ S, the number of vertices
in A ⊂ [N ] with type in R. In particular, ηx([N ]) = NμN . We write M(X ) for the
set of finite measures on a set X ; the measurable structure on X will be clear from the
context.

We will study the empirical measure of the collection (ηx(C j )) j , i.e., the statistics
of how many times a given type-configuration appears as the type-configuration of
a component of GN . We will pay particular attention to the scale of the size of the
component, more precisely, whether it is finite or it has a size � N . We will call the
first scale microscopic and the second scale macroscopic (macroscopic components
are usually called giant components). Hence, the quantities of interest in our study are
the microscopic and the macroscopic empirical measures of the type-configurations
of the components, which we define as follows:

MiN = MiN (x) = 1

N

∑

j

δηx(C j ) and MaN = MaN (x) =
∑

j

δ 1
N ηx(C j )

.

(1.2)

It is clear that both MiN and MaN only depend on x through its empirical measure
μN . Both MiN and MaN are random measures on M(S), i.e., they are elements of
M(M(S)). More precisely, MiN is a measure on the set MN0(S) of measures on S
with values in N0, and MaN is a measure that takes values in N0 and is defined on the
setM(S)\{0} of non-trivial measures on S. Both MiN andMaN contain precisely the
same information for fixed N , but in the limit N → ∞, MiN asymptotically registers
only the microscopic components and MaN only the macroscopic ones. Indeed, the
non-microscopic components leave the state space MN0(S) via the set of measures
with unbounded total mass, and the non-macroscopic ones (with prefactor 1/N ) leave
M(S) via the measures with vanishing total mass, i.e., via {0}. The topologies that
we will introduce below reflect this effect; it lies at the heart of the phase transition
of the emergence of a giant cluster, which we are also interested in here. On the other
side, they are very natural, as they reduce to the pointwise respectively to the usual
vague topology for a finite set S.

The effect of a diverging or vanishing total mass can also be observed in terms of
integrated versions ofMiN respectivelyMaN . Indeed, observe that for any measurable
R ⊂ S and any N ∈ N

∫

MN0 (S)

k(R)MiN (dk) = 1

N

∑

j

∫

MN0 (S)

k(R) δηx(C j )(dk)
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= 1

N

∑

j

ηx(C j )(R) = μN (R). (1.3)

According to our assumption thatμN weakly converges towardsμ, the right-hand side
of (1.3) converges to μ(R), as N → ∞, if R is a μ-continuity set, i.e., if μ(∂R) = 0.
However, the topology on the state space for MiN will be chosen as the vague one,
and in this topology any accumulation point λ of (MiN )N∈N satisfies a priori only∫
k(R) λ(dk) ≤ μ(R), since the map k 	→ k(R) is unbounded in general. The same

holds for (MaN )N∈N.
To take into account the possibility of a loss of mass we introduce for any λ ∈

M(MN0(S)) and any α ∈ MN0(M(S)\{0}) the following measures on S

cλ(R) =
∫

MN0 (S)

k(R) λ(dk), R ⊂ S measurable, (1.4)

cα(R) =
∫

M(S)\{0}
y(R) α(dy), R ⊂ S measurable. (1.5)

We call cλ and cα the integrated type-configurations of λ, respectively of α. If one sees
λ as a (not normalized) ‘distribution’ of finite pointmeasures onS, then cλ registers the
‘expected’ total mass of particles in a given subset of S that appear in this distribution
λ; an analogous statement holds for α. The total masses of cλ and cα are equal to the
integrals of k 	→ k(S) under λ respectively under α; they are≤ 1 for any accumulation
point of (MiN )N∈N respectively of (MaN )N∈N, according to the above.

The natural state space containing MiN for any N ∈ N, is the set

L = {
λ ∈ M(MN0(S)) : cλ ≤ μ or cλ ≤ μN for some N ∈ N, λ({0}) = 0

}
.

(1.6)

The condition λ({0}) = 0 is clearly satisfied by any empirical measure MiN , we
could have identified it indeed as an element ofM(MN0(S)\{0}). However for later
notational convenience we do not exclude {0} but we add the constraint λ({0}) = 0.
Notice that with this constraint and the conditions on c(λ) any λ ∈ L is a sub-
probability measure. Any k in the support of λ is a finite and non-zero point measure
k = ∑

i δzi with zi ∈ S (with possible repetitions) and stands for the empiricalmeasure
of the types of a vertex set of a component, its type-configuration. Informally, the event
{MiN = λ} is the event that, for every k ∈ MN0(S), GN has Nλ({k}) components
with type-configuration k.

The natural state space containing MaN for any N ∈ N, is the set

A = {
α ∈ MN0(M(S)\{0}) : cα ≤ μ or cα ≤ μN for some N ∈ N

}
. (1.7)

One can write α ∈ A as a finite or at most countable point measure α = ∑
n δyn

on measures yn on S (with possible repetitions). Note that cα = ∑
n yn and since

cα(S) ≤ 1, the total masses yn(S) of the measures yn can accumulate only at zero.
Another consequence is that every α ∈ A is concentrated on the set of sub-probability
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measures. For each yn we interpret Nyn as the type-configuration of a giant component.
Informally, the event {MaN = α} is the event that GN has, for any n, a macroscopic
component with type-configuration Nyn .

We will be working only with two particular choices of the type set: S as a finite set
(equipped with the power set as topology and as sigma-field) and S equal to a compact
metric space (equipped with the topology induced by the metric and the corresponding
Borel sigma-field).We equipM(S)with the weak topology that is generated by all the
test integrals against continuous bounded functions S → R. However, on the sets L
andA, the appropriate topologies for our purposes are the vague topologies, the ones
that are induced by all the test integrals against compactly supported continuous test
functions MN0(S) → R, respectively M(S)\{0} → R. If |S| < ∞, then MN0(S)

can be identified with N
S
0 and vague convergence in M(MN0(S)) is the same as

pointwise convergence on M(NS
0 ). On L × A we use the product topology. We will

show in Lemma 5.2 that both L and A are compact, hence also L × A is.
The convergence in this topology is the natural one that reflects the possible loss

of mass that we are interested in in view of the phase transition. The crucial point is
that mass of MiN can leak out only via the unboundedness of k 	→ k(S), i.e., via
having larger and larger connected components, while mass of MaN can leak out due
to the fact that y 	→ y(S) is not bounded away from zero. With other words, mass of
MaN leaks out only via the zero measure, where every non-giant component leaves.
See Sect. 5 for details. By the definitions of L respectively A, the integrated type-
configurations cλ and cα for λ ∈ L and α ∈ A are sub-probability measures, while for
fixed N ∈ N both cMiN and cMaN are even probability measures. The total mass one
of cMiN can partially get lost and cMaN may not lose all its mass in the limit N → ∞.
This is precisely the phase transition that we are after.

1.2 The large-deviations principle for the cluster statistics

In this section we formulate the main result of this paper. We assume that S is a
compact metric space.

We need some notation. For any measure ν on S and any function κ : S × S →
[0,∞), we write κν(r) = ∫

S κ(r , s) ν(ds). The total mass of a measure ν on a
measure space X is denoted by |ν| = ν(X ). The relative entropy of two (possibly
non-normalized) finite measures ν, ν̃ on X is denoted by

H(ν |̃ν) =
{

|̃ν| − |ν| + ∫
X ν(dx) log dν

d̃ν (x), if dν
d̃ν exists,

+∞ otherwise.
(1.8)

We write 〈ν, f 〉 for the integral of a function f with respect to a measure ν, and we
write f ν for the measure that has the density f with respect to a measure ν.

An important reference measure is the distribution Qν of a Poisson point process
X on S with intensity measure ν ∈ M(S), then Qν is a measure on MN0(S). Note
that we do not assume that ν has a density, hence X is not necessarily simple.
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We define a function τ by

τ(k) :=
∑

T∈T (k)

∏

{i, j}∈E(T )

κ
(
xi , x j

)
, k ∈ MN0(S), (1.9)

where (x1, . . . , x|k|) ∈ S |k| is any vector that is compatible with k, i.e., k = ∑|k|
i=1 δxi ,

and T (k) is the set of spanning trees on [|k|]. Notice that τ depends on (x1, . . . , x|k|)
only through k. We use the convention that T (0) = ∅ and hence τ(0) = 0, since the
sum is empty. As we will see in Lemma 3.4, up to a factor of N−|k|+1, τ(k) is equal to
the large-N asymptotics of the probability that the graph G(|k|, (x1, . . . , x|k|), 1

N κ),
which can be seen as a subgraph of G(N , x(N ), 1

N κ), is connected.
We say that κ : S×S → [0,∞) is irreduciblewith respect to ameasureμ ∈ M(S)

if

A ⊂ S and κ = 0 a.e. on A × (S\A) ⇒ μ(A) = 0 or μ(S\A) = 0.

(1.10)

Otherwise κ is called reducible.
Here is the main result of this paper.

Theorem 1.1 (LDP for (MiN ,MaN )). Fix a probabilitymeasureμona compactmetric
space S and a kernel κ on S × S that is nonnegative, continuous and irreducible
with respect to μ. Assume that x = x(N ) ∈ SN is such that its empirical measure
μN converges weakly towards μ as N → ∞. Assume that κN is a nonnegative
and continuous kernel for any N ∈ N such that κN converges uniformly towards κ

as N → ∞. Let MiN and MaN be, respectively, the microscopic and macroscopic
empirical measure of the connected components of GN = G(N , x(N ), 1

N κN ), for any
N ∈ N, as defined in (1.2).

Then (MiN ,MaN ) satisfies a large-deviations principle with speed N and rate
function I defined by

I (λ, α) =
{
IMi(λ) + IMa(α) + IMe(μ − cλ − cα), if cλ + cα ≤ μ,

+∞ otherwise,

where, for λ ∈ L, α ∈ A and ν ∈ M(S),

IMi(λ) = H(λ|Qμ) − 1 − 〈λ, log τ 〉 + |cλ| − |λ| + 1

2
〈cλ, κμ〉, (1.11)

IMa(α) =
∫

M(S)\{0}
α(dy)

[〈
y, log

dy

(1 − e−κ y) dμ

〉
+ 1

2
〈y, κ(μ − y)〉

]
, (1.12)

IMe(ν) =
〈
ν, log

dν

κν dμ

〉
+ 1

2
〈ν, κμ〉. (1.13)

As in the definition of H in (1.8), we define IMa(α) = ∞ if it is not true that α-
almost everywhere dy

(1−e−κ y) dμ exists. Likewise we define IMe(ν) = ∞ if dν
κν dμ does

not exist. We use the convention that log 0 = −∞ and 0 log 0 = 0.
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Let us recall the notion of an LDP: Theorem 1.1 says that I (·) is lower semi-
continuous and, for any open set G ⊂ L × A and any closed set F ⊂ L ×
A,

lim inf
N→∞

1

N
logPN ((MiN ,MaN ) ∈ G) ≥ − inf

G
I (·), (1.14)

lim sup
N→∞

1

N
logPN ((MiN ,MaN ) ∈ F) ≤ − inf

F
I (·), (1.15)

where we wrote PN for the probability measure under the random graph GN . For the
theory of large deviations, see e.g. [19].

An intuitive explanation of Theorem 1.1 is given in Sect. 1.3. The proof of Theorem
1.1 is in Sect. 5. It relies heavily on the special case of Theorem 1.1 for finite sets S,
see Theorem 3.1, whose proof we present first in Sect. 3. Our main strategy there is to
identify the joint distribution of all the clusters in G(N , x(N ), 1

N κN ) in a combinatorial
way and then to explicitly extract the exponential rates. The proof of Theorem 1.1
in Sect. 5 carries out an approximation procedure of S with finite state spaces in the
spirit of the Dawson–Gärtner theorem.

Theorem 1.1 is an extension of [2, Theorem 1.1] from the special case μ = δ0
and constant κ (that is, from the standard Erdős–Rényi graph) to an inhomogeneous
Erdős–Rényi graph. Note that this LDP is also highly non-trivial, interesting, and new
in the case of an arbitrary μ and constant κ , to the best of our knowledge.

Remark 1.2 (Quenched and annealed LDPs) One possible application of Theorem
1.1 is to the situation where the vertex types x1, . . . , xN are themselves random and
independent with distribution μ each. Then Theorem 1.1 can be seen as a conditional
LDP given x, sometimes called a quenched LDP. The rate function turns out to be not
random and depending only onμ. One can then obtain an annealed version of the LDP,
i.e., when the probabilities are also taken with respect to the vertices x1, . . . , xN . The
annealing follows from a standardmixture argument whenS is a finite set of points; for
general S the construction of a discretization suitable for use in our proof is a delicate
matter that we do not explore here. One possible formulation of the annealed result
would be that the triple, consisting of the empirical measures of the vertices, and MiN
and MaN satisfies an LDP with rate function equal to (ν, λ, α) 	→ H(ν|μ)+ Iν(λ, α),
where we now wrote Iν for the rate function I of Theorem 1.1 with ν the limiting
empirical measure of the type vector (instead of μ).

Remark 1.3 (Detailedness) We decided to register any component of the graph GN

only through its type-configuration, neglecting all the information about the internal
connection structure. It is a naturalwish to have also amore detailed analysis, for exam-
ple by distinguishing each component as a subgraph instead of the type-configuration.
From such a refined LDP, one could derive Theorem 1.1 via the contraction principle.

For the microscopic components it is indeed not too difficult to derive a refined
version of the LDP of Theorem 1.1, since for each type-configuration k ∈ MN0(S),
the statistics of the ≈ Nλ(k) components with type-configuration k follow an explicit
multinomial distribution. The form of the term τ(k) gives the hint that only spanning
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trees survive. The macroscopic components are much more involved and it is not clear
which type of structure gives the decisive contribution in the limit.

Here is a standard corollary from the LDP in Theorem 1.1 about separate LDPs for
MiN and MaN .

Corollary 1.4 (Separate LDPs forMiN and MaN ) Under the assumptions of Theorem
1.1, the empirical measures (MiN )N∈N and (MaN )N∈N each satisfy an LDP on L,
respectively on A, with rate functions

IMi(λ) = inf
α∈A

I (λ, α) and IMa(α) = inf
λ∈L

I (λ, α).

The LDP assertion directly follows from the contraction principle (see [19]), since
both projections (λ, α) 	→ λ and (λ, α) 	→ α are continuous. The identification of the
two contracted rate functions is formulated in Theorem 2.3 and discussed in Sect. 2.1.

Remark 1.5 (LDP for the mesoscopic part) Analogously to the corresponding result
in [2], we could formulate and prove also a corollary about the mesoscopic part of
the configuration (C j ) j of the components of GN , i.e., about those components whose
cardinalities satisfy R < |C j | < εN in the limit N → ∞, followed by R → ∞ and
ε ↓ 0. It is clear that we cannot consider the empirical measure of all these components
anymore, but only the empirical measure of the total number of vertices of a given
type in any of the mesoscopic components. Our conjecture is that (similarly to [2,
Corollary 1.4]), this measure on S satisfies an LDP as N → ∞ for fixed R ∈ N and
ε > 0 with a rate that converges towards IMe defined in (1.13) as R → ∞ and ε ↓ 0.
We abstained from writing out the details.

1.3 Interpretation of the LDP

Ourmain result, the LDP of Theorem 1.1, is highly compressed and contains a number
of interesting results as special cases, so let us comment on the impact and draw
some conclusions from it. We will restrict here to the large-deviations issues; the
limiting issues and the consequences for the giant-cluster phase transition are deferred
to Sect. 2.

We are examining the probability of the event {MiN ≈ λ,MaN ≈ α}, asymptoti-
cally for large N , for any λ ∈ L and α = ∑

n δyn ∈ A. Indeed, wewant to heuristically
argue that, as N → ∞, one has

PN (MiN ≈ λ,MaN ≈ α) = e−N I (λ,α)+o(N ). (1.16)

Recall from Sect. 1.1 that this is the event that GN has ∼ Nλ(k) components
with type-configuration k, for any k ∈ MN0(S), and a macroscopic component with
type-configuration ∼ Nyn , for any n. We can clearly restrict to the case that cλ +
cα ≤ μ, since otherwise the number of vertices of some type in all the microscopic
or macroscopic components together would be larger than the number of existing
vertices of that type. However, it might be that the difference ν = μ − cλ − cα is a
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positive measure; this means that there are ∼ Nν(R) of the vertices with type in R
in mesoscopic components for any R ⊂ S, e.g., in components with N -dependent
cardinalities like log N or N 1/3, or any mixture.

Recall that the types of all the vertices of GN are approximately distributed as
1
N

∑N
i=1 δxi ≈ μ. The key point in our proof is that the probability of {MiN ≈

λ,MaN ≈ α} consists of a number of terms that are more or less independent, i.e.,
lead to a sum of exponential rates. These terms are the following:

– a combinatorial term that expresses the number of decompositions of [N ] into the
collection of subsets as above (respecting all the types),

– the probability that each of these subsets are connected (this depends on the type-
configurations k of the microscopic components and on the type-configuration
Nyn of the n-th macroscopic component, respectively),

– the probability that any two of all these vertex sets are not connected.

The above decomposition is the starting point of our combinatorial analysis in
Lemma 3.3. Now, the crucial point in our LDP proof consists in the fact that we can
get precise asymptotics for most of the terms in the decomposition of PN (MiN ≈
λ,MaN ≈ α). In particular, we rearrange the terms to isolate the contribution given
by the microscopic components, respectively macroscopic, and collect in a remaining
term all the rest, identifying this as the contribution of the mesoscopic part. In this
rearrangement, we see that the probability that each subset is connected is the hardest
term to handle. However, it turns out that it is enough to prove sharp asymptotics only
in the case of finite size and order N size components, for the remaining terms upper
bounds are sufficient. Let us mention, in particular, that asymptotics of the probability
of connectedness are not trivial at all for macroscopic components and obtaining such
asymptotics is not only a crucial step in our LDP proof but also an interesting result
on its own. We comment more on this in Sect. 1.4. Given this rearrangement, the
large-deviations rate terms that we finally obtained are organized and interpreted in a
slightly different fashion as follows.

Let us first consider themicroscopic part. Thefirst two terms in IMi(λ),H(λ|Qμ)−1,
describe the number of labellings of N |cλ| vertices intomicroscopic subsets, according
toλ and respecting the type configurations.Apriori, it is only notationally convenient to
write this as an entropy, but this interpretation allowed us tomake the step fromdiscrete
to continuous setting. The next three terms, −〈λ, log τ 〉 + |cλ| − |λ|, describe the
probability that all the considered subsets are connected, see the comment below (1.9).
The last term, 1

2 〈cλ, κμ〉, collects the costs of isolating each microscopic component
from the rest of the system.

For the macroscopic part, given a macroscopic measure α = ∑
n δyn , the

term
∑

n〈yn, log dyn
dμ 〉 comes from the number of labellings of N |cα| vertices into

macroscopic subsets, according to α and to the type configurations. The term
− ∑

n〈yn, log(1− e−κ yn )〉 summarizes the connection probabilities of all the macro-
scopic components, see Theorem 3.6. Finally, for each n, the term 1

2 〈yn, κ(μ − yn)〉
is the cost of isolating the macroscopic component from the rest of the system.

In the mesoscopic part of the rate function, we see only the dependence on the
measure ν of all the vertices ofmesoscopic components,without any information about
the components themselves. Again, the term 〈ν, log dν

dμ 〉 is a result of the relabelling of
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the N |ν| vertices according to the type configuration, and the integral of− log(κν)with
respect to ν describes in a summarizing way that each of the vertex sets is connected.
The term 1

2 〈ν, κμ〉 represents the cost of isolating such vertices from the rest of the
graph.

1.4 Connectivity of inhomogeneous graphs

On our way to a proof of Theorem 1.1, we derive some interesting formulas for
quantities that are of general interest in the theory of multi-type Erdős–Rényi graphs.
Indeed, in Lemma 3.3 we give a closed formula for the joint distribution of the entire
collection of the vertex sets of all the components of GN . One important ingredient
there is the probability for a given subset of vertices ⊂ [N ] to be connected. If the size
of the subset is kept fixed, then it is straight-forward to get sharp estimates for the limit
of this probability, as N → ∞ (see Lemma 4.8). However, if the size of the subset is
of order N , then it is much harder to derive sharp asymptotics for this probability. Our
LDP relies precisely on this kind of asymptotics, which we derive in Theorem 3.6 in
the case of a finite type space. We want to stress that finding Theorem 3.6 was crucial
for proving the LDP and that we could not find any similar result in the literature that
holds for inhomogeneous graphs. It requires a rather extensive proof, which is given
in Sect. 4. Having established the LDP in its full generality one gets the same result
about the connection probability in the more general setting of a compact type space.

Corollary 1.6 (Connectivity probability ofGN ) In the situation of Theorem 1.1we have
that

lim
N→∞

1

N
logPN

(
G(N , x(N ), 1

N κN ) is connected
) = 〈

μ, log
(
1 − e−κμ

)〉
. (1.17)

The question about the connection probability of a random graph has attracted quite
some interest. Let usmention [20],which studies for the inhomogeneous randomgraph
the regime where the edge probability is of order log N

N and proves a phase transition:
the probability of the graph to be connected either converges to 1 or to 0, depending
on the parameters μ and κ (in our notation). In our case, where the edge probability is
of order 1

N , we are in the case in which the probability of the graph being connected
is always going to 0. Corollary 1.6 above identifies the exponential rate of its decay,
which we think is of independent interest.

1.5 Related literature

This paper is a natural generalization to the inhomogeneous setting of [2], where we
derived an LDP for all the cluster sizes of the Erdős–Rényi random graph in the sparse
setting. Indeed, the classical sparse Erdős–Rényi graph corresponds to the case where
S has only one element and κ takes only one value, meaning that the result in [2]
is a special case of the results in this paper. As mentioned in [2], the literature on
the Erdős–Rényi graph is rich, but very few results on large deviations in the sparse
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regime are present. To the best of our knowledge, our paper is the first proving a large-
deviations statement in the framework of the inhomogeneous graphs. Inhomogeneous
random graphs have been introduced in [34] and the first mathematical treatment of
the model has been presented in the seminal paper [7]. In [7] events that happen with
high probability are studied, while the focus of the present paper is on rare events. In
this section we list some earlier results concerning large deviations for random graphs
and comment on their relation to our work.

In [2, Section 1.4], we gave a broad survey on known results on LDPs for sparse
random graphs; summarizing, there are indeed some results on particular statistics of
the graph GN , many of which are a posteriori contained in [2, Theorem 1.1] as special
cases. For example in [32] two LDPs for the size of the largest component and for
the number of isolated vertices have been derived. These quantities are continuous
functionals of our measures MaN , respectively of MiN , and the contraction principle
gives these results as consequences of ours.

It is important to mention the paper [8], where the authors proved an LDP for the
empirical measure of the components rooted at each vertex in the sparse Erdős–Rényi
graph. This object is a detailed size-biased version of ourMiN and contains information
about the edges that establish the connectedness of the components. However, in
[8, Theorem 1.8], the authors show that their rate function is concentrated on trees,
therefore any feasible microscopic component of size k ∈ N is indeed a spanning tree
on k vertices. This is also implicitly proven in our Lemma 3.4: the element τ , defined
in (1.9), ensures precisely that, when computing the probability that a microscopic
component is formed on a certain finite set of vertices, the only important contribution
is given by realizing a spanning tree on those vertices. This implies that a refinement
of our proofs would give an LDP for a microscopic empirical measure on finite size
components, as we mention in Remark 1.3. A size-biased version of such an empirical
measure would correspond to a generalization to the inhomogeneous setting of the
empirical neighborhood distribution in [8]. In this direction, in the very recent preprint
[3], the authors deal with such an object in the case where the vertices of the graph have
a type but the kernel κ is constant. They prove an LDP using the techniques coming
from [8] and relying on the notion of entropy for stochastic processes on marked
rooted graphs introduced in [17]. Further investigation is needed (and desirable) to
understand connections between this entropy, which comes out as the large-deviations
rate function, and the rate function from our LDP.

In the framework of the sparse Erdős–Rényi graph, i.e., when the connection prob-
ability of G(N , p) satisfies p � N−1, recent progress has been made on the tails of
triangle counts [12, 21], while we are not aware of the study of other rare events for
the inhomogeneous graphs in such regime.

The case of large deviations in the dense Erdős–Rényi graph, i.e., for G(N , p) with
fixed p ∈ (0, 1), has been completely covered thanks to Chatterjee and Varadhan [14],
see [13] for an overview. In [9, 28] extensions of the LDP to the framework of the dense
inhomogeneous graphs are given. This regime is rather different from the sparse one
and the LDP relies on the fact that each graph can be associatedwith a two dimensional
symmetric function, called graphon. The limit of any sequence of sparse graphs is the
graphon which is identically zero, showing that the space of graphons is not the right
space in the sparse setting. Recently extensions to the sparse setting of the concept of
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graphons have been introduced, see [10], but connections to the sparse Erdős–Rényi
graph to our knowledge are not known yet. Let us mention that the literature on LDPs
for various statistics of different types of random graphs outside the sparse regime has
seen a growth since the seminal work [14], see for example [15, 18]. However these
graphs are by their nature so different from the setting of the present paper that we do
not go into further details here.

For inhomogeneous graphs in the sparse regime, there are only a few results in
the literature, starting with the seminal paper [7], which introduced the model and
investigated the giant-cluster phase transition in detail. Furthermore, clusters of critical
sizes of order Nα with some α ∈ (0, 1) around the phase transition have been studied
for some types of inhomogeneous random graphs in [5], [6] and [36] under certain
moment assumptions on the (scalar) types. Let us finally mention some results just
outside the sparse setting: [11] analyzes the eigenvalues of the adjacency matrix of
an inhomogeneous Erdős–Rényi random graph with vanishing edge probabilities of
order� 1

N . In [20] the authors study the probability of the graph to be connected when

the edge probabilities are of order log N
N . This compares to our result in Corollary 1.6,

where we obtain precise asymptotics for such a probability in the sparse regime.
Finally, we have recently become aware of the preprint [27], where the authors

study the fixed point equation (2.4) using combinatorial identities that we also rely
on in Sect. 4. The focus of the paper is indeed to prove that a multi-type version of
the Marcus–Lushnikov coagulation model with multiplicative kernel converges to the
solution of the multi-type Flory equation (2.14). The particle masses of such a coagu-
lation system are in one-to-one correspondence with the connected components of the
inhomogeneous random graph, linking their convergence result to our Lemma 2.7.

2 Limiting consequences

In this section we present and discuss the second part of our main results, some
consequences of the LDP of Theorem 1.1 that imply detailed and comprehensive
limiting assertions about the inhomogeneous random graph. These results rely on
involved variational analysis, using recursive formulas and elements of combinatorial
power series analysis as methods to explicitly construct minimizers.

Like many large-deviations principles, also Theorem 1.1 implies a law of large
numbers. This is particularly interesting here, since it implies and illustrates the well-
known phase transition about the emergence of a giant cluster that was established in
[7], andwhichwe record anddiscuss inSect. 2.1. Therewealso reveal our identification
and interpretation of that phase transition in terms of the minimizer(s) of the rate
function of our LDP in Theorem 1.1. In Sect. 2.2, we compare to the description of this
phase transition thatwas given in [7] in terms of a strongly relatedmulti-type branching
process. Furthermore, in Sect. 2.3 we comment on the irreducibility of κ and explain
what the LDP looks like if this assumption is dropped. One of our mainmotivations for
the present work is explained in Sect. 2.4 where we map the inhomogeneous Erdős–
Rényi graph on a particular particle process with a random coagulating mechanism
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and discuss the consequences of our results for this process, in particular the phase
transition of gelation type, i.e., the emergence of a gel, a macroscopic particle.

2.1 The phase transition

We give now comprehensive information about the well-known phase transition of
the emergence of a giant component for the inhomogeneous Erdős–Rényi graph using
the LDP of Theorem 1.1. Indeed, we derive a detailed picture of all the limiting
microscopic and macroscopic clusters, according to their type-configurations. In this
way, we go substantially beyond the work [7], to which we compare in Sect. 2.2
below. Unlike [7], our point of departure is not a multitype branching process, but the
variational analysis of the rate function. This leads us in a natural way to deal with
a transformed Poisson point process, which indeed shows deep connections with the
multitype branching process.

We introduce first the minimizing microcluster distribution. Let us fix a kernel κ as
in Theorem 1.1. Recall that, for any measure ν on S, we denote by Qν the distribution
of a Poisson point process on S with intensity measure ν. For c ∈ M(S), we introduce
the measure λc on MN0(S) by

λc(dk) = eθc(S)τ (k)Qθc (dk), where θc(dr) = e−κc(r) c(dr). (2.1)

In words, λc is obtained by transforming the Poisson point process with intensity
measure e−κc(r) c(dr) with the function τ . It will turn out in the subcritical case (and
is implicit in the following theorem) that this measure possesses the integrated type
configuration c, that is, the choice of the measure θc implies the crucial property that
cλc = c, where we recall the notation cλ(dr) = ∫

λ(dk) k(dr).
We now introduce an important quantity (which was shown to be crucial in [7])

that we use for separating the sub- and supercritical regimes. For any measure ν on
S, we denote by L2(ν) the usual L2-space of functions S → R with respect to the
measure ν. We introduce the operator

Tκ,ν : L2(ν) → L2(ν), Tκ,ν f (x) =
∫

S
κ(x, y) f (y) ν(dy), (2.2)

and its operator norm

Σ(κ, ν) = ‖Tκ,ν‖L2(ν) = sup
f ∈L2(ν) : ‖ f ‖L2(ν)

=1
‖Tκ,ν f ‖L2(ν). (2.3)

Informally (an argument will follow in Sect. 4.1), in the special case that the support
of ν is finite (i.e., the case of a finite set S), then Tκ,ν can be identified with the matrix
(κ(r , s)ν(s))r ,s∈S , and Σ(κ, ν) is its spectral radius.

Recall the rate function I and the reference measure μ from Theorem 1.1, now we
describe its minimizer.
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Theorem 2.1 (Minimizers of the rate function) Suppose that κ andμ are as in Theorem
1.1, then the following hold.

(i) If Σ(κ,μ) ≤ 1, then the unique minimizer of I is equal to (λμ, 0).
(ii) If Σ(κ,μ) > 1, then the unique minimizer of I is equal to (λc∗ , δμ−c∗), where the

subprobability measure c∗ is the only solution to the characteristic equation

e−κc(r) c(dr) = e−κμ(r) μ(dr) on S, (2.4)

that satisfies both c∗ ≤ μ and c∗ �= μ. It further holds that Σ(κ, c∗) < 1.

In particular,

(
MiN ,MaN

) N→∞⇒
{

(λμ, 0) if Σ(κ,μ) ≤ 1,

(λc∗ , δμ−c∗) if Σ(κ,μ) > 1.
(2.5)

The proof of Theorem 2.1 is in Sect. 7. Most of it is original research, but take from
[7] the discussion of the solutions of the fixed point equation (2.4), see Lemma 4.1
where we summarize it.

The law of large numbers in (2.5) is a standard consequence of an LDP with a
unique minimizer for the rate function. This is a very precise and detailed formulation
of the famous giant-cluster phase transition in the graph GN . Indeed, the following
happens with probability tending to one exponentially fast:

(i) In the subcritical phase Σ(κ,μ) < 1, all vertices (meaning all up to o(N )) are
in microscopic components, more precisely in the unique optimal configuration
encoded by λμ. That is, for any k ∈ MN0(S), the number of components with
vertex set given by k is asymptotically Neθμ(S)τ (k) Qθμ(dk), with θμ(dr) =
e−κμ(r) μ(dr). We have cλμ = μ, no giant component appears, and the number of
vertices in mesoscopic components is o(N ).

(ii) In the case Σ(κ,μ) > 1, a unique giant cluster appears with ∼ N (1 − c∗(S))

vertices and type-configuration asymptotically equal to N (μ − c∗) with c∗ char-
acterized by (2.4), since θμ = θc∗ . The microscopic components are distributed
according to the optimal distribution λc∗ , and the number of vertices inmesoscopic
components is o(N ). Note that this microscopic distribution is not saturated, that
is Σ(κ, c∗) < 1, as in the one-type setting [2]. That is, we encounter a phase
transition of explosion type, rather than of saturation type, see Remark 2.2 and [2,
Section 1.6].

Remark 2.2 (Phase transition: saturation versus explosion) Here is an explanation of
the phase transition in terms of a dynamical process. Consider a process of Erdős–
Rényi graphs in increasing connection probability, i.e., by adding more and more
bonds between the vertices, such that components grow. A suitable growth parameter
is Σ(κ, c), where c stands for the rescaled type-configuration of all the vertices; how-
ever,we considerΣ(κ, c) as a growing function of κ , the bond density.Aswe explained
in [2, Section 1.6], the well-known giant-cluster phase transition (see also the discus-
sion below Theorem 1.1 below) is an explosion phase transition in the sense that, when
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crossing the threshold one, a positive fraction of finite-size clusters merges rapidly into
one giant cluster and, at any time, every cluster keeps participating in merge events.
In particular, the total microscopic mass starts decreasing at the phase transition. In
contrast, in condensation phase transitions like the famous Bose–Einstein condensa-
tion first all microscopic components reach their maximal size (the saturated state),
before a macroscopic component, the condensate, appears, and then the microsocopic
ones do not change anymore, but all of the additional mass goes exclusively into the
condensate.

Now we give the description of the two rate functions for the contracted LDPs of
(MiN )N∈N and (MaN )N∈N, respectively, from Corollary 1.4.

Theorem 2.3 (Minimizers of the contracted rate function) Suppose that κ and μ are
as in Theorem 1.1. Then the following hold for λ ∈ L and for α ∈ A, respectively.

IMi(λ) = inf
α∈A

I (λ, α) =
{
IMi(λ) + IMa(δμ−cλ) if cλ ≤ μ,

∞ otherwise,
(2.6)

and

IMa(α) = inf
λ∈L

I (λ, α) =
{
IMa(α) + J (μ − cα) if cα ≤ μ,

∞ otherwise,
(2.7)

where for c ∈ M(S)

J (c) =
{
IMi(λc) = 〈c, log dc

dμ 〉 + 1
2 〈c, κ(μ − c)〉 if Σ(κ, c) ≤ 1,

IMi(λb∗) + IMe(c − b∗) if Σ(κ, c) > 1,
(2.8)

where b∗ = b∗(c) ∈ M(S) is the minimal non-trivial (i.e., not equal to c) solution to

κ(c − b∗)(r) b∗(dr) = (c − b∗)(dr), b∗ ≤ c, (2.9)

and it holds that Σ(κ, b∗) = 1.

The proof of Theorem 2.3 is in Sect. 6 for IMi and in Sect. 7 for IMa. The above
theorem suggests us a conditional lawof large numbers. Informally, ifwefixα ∈ A and
a sequence of αN ∈ A such that αN → α. Then, under the probability PN (·|MaN =
αN ) we have

MiN
N→∞⇒

{
λμ−cα if Σ(κ,μ − cα) ≤ 1,

λb∗ if Σ(κ,μ − cα) > 1.
(2.10)

Notice thatwhenΣ(κ,μ−cα) > 1, thenb∗ is not equal toμ−cα , thereforeb∗+cα �= μ

and the missing mass is interpreted as being mesoscopic.
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Remark 2.4 (Conditional limit with saturation phase transition) In formula (2.8) we
encounter a phase transition of saturation type in a conditional limit, in contrast to a
transition of explosion type of the unconditional one, see Remark 2.2. We refer back
to Sect. 1.3 for the interpretation. Recall that IMa(α) is the negative exponential rate
of the probability of the event {MaN ≈ α}. When Σ(κ,μ − cα) ≤ 1, (2.8) shows
that IMa(α) = IMa(α) + IMi(λμ−cα ), implying that PN (MaN ≈ α) = PN (MiN ≈
λμ−cα , MaN ≈ α)eo(N ). The interpretation of this is that, conditionally on the event
{MaN ≈ α}, the non-macroscopic mass optimally organizes according to the micro-
scopic measure λμ−cα . In contrast, in the case Σ(κ,μ − cα) > 1, from (2.8) we see
that IMa(α) = IMa(α) + IMi(λb∗) + IMe(μ − cα − b∗). This means that, condition-
ally on the event {MaN ≈ α}, the non-macroscopic mass cannot be organized fully
in microscopic clusters, but it is organized microscopically according to λb∗ and the
remaining vertices, with type-configuration N (μ − cα − b∗), are put in mesoscopic
components. The particular rescaled type-configuration b∗ is saturated in the sense
that Σ(κ, b∗) = 1. This means, given a fixed macroscopic type-configuration, if more
bonds are thrown into the graph, then first all microscopic clusters grow until they
reach the saturated state λb∗ , and then this is frozen and only mesoscopic clusters
grow. The latter effect is present in literature under the name of frozen percolation,
see for example [16, 29, 33, 37] and the difference between the two phase transitions
is reflected in substantial differences of the hydrodynamic limit, as we summarize in
Sect. 2.4.

2.2 Comparison to [7]: branching-process interpretation

Our description of the limiting quantities that we presented in Sect. 2.1 is based on
and derived from our analysis of the minimizer of I . Therefore we found it most
suitable to present them in terms of transformed Poisson point processes. However, in
the analysis of finite-size components of random graphs, it is common and was often
successful to employ well-adapted branching processes for the description. The main
idea is that a component can be efficiently (sampled and) analyzed by exploring it via
such a branching algorithm. This idea was also a cornerstone in the seminal paper [7],
and it produced a description of the limiting macroscopic component in terms of the
extinction probability of a crucial branching process. In this section, we recall this
description and compare it to our Poisson point process description, also including the
microscopic components.

The main tool that is utilized in [7] is a multitype branching process with type
space S, in which each particle of type r ∈ S has offspring with distribution that is a
Poisson process with intensity measure κ(r , s) μ(ds). We define ρ(r) ∈ [0, 1] as the
probability of non-extinction of the branching process, if it starts with precisely one
particle that has type r ∈ S. We summarize the most important facts from [7] that have
relevance for our comparison as follows (see [7, Th. 3.1, Th. 3.12, Th. 6.1, Th. 9.10]).

Theorem 2.5 (Existence of a giant component, [7]) Suppose the situation of Theorem
1.1 is given. Abbreviate GN = G(N , x, 1

N κN ), then the following hold.
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(i) ρ : S → [0,∞) is the maximal solution of

ρ = 1 − e−Tκ,μρ. (2.11)

(ii) If Σ(κ,μ) ≤ 1, then the largest component of GN has size O(log N ) as N → ∞
with high probability.

(iii) IfΣ(κ,μ) > 1, then the largest component C1 ofGN has size� N.More precisely,
its normalized empiricalmeasure 1

N ηx(C1) (recall (1.1)) convergesweakly towards
the measure ρ(r) μ(dr), and ρ is positive μ-almost everywhere in S.

Part (iii) identifies the limiting type-configuration of the giant component as N
times the measure with density ρ with respect to μ, and part (i) characterizes ρ via the
functional identity (2.11). It is easily seen to be equivalent to the characteristic equation
(2.4) that we use via the substitution ρ(r) μ(dr) = μ(dr) − c∗(dr) or c∗(dr) =
(1 − ρ(r)) μ(dr). In our analysis of the minimizer of I , (2.4) arose via the Euler–
Lagrange equations, while (2.11) emerged in [7, Lemma 5.4] via a standard formula
formixedmoments of the offspring of the branching process (which itself uses standard
Poisson point process theory).

The statement in part (ii) about the order of the largest component is out of reach of
our large-deviations ansatz, which implies that all but o(N ) vertices are in components
of finite size.

About the distribution of the microscopic clusters of GN , however, there is no
explicit result contained in [7]. However, we can give a description in terms of the
above branching process as well. We derive this description now from our form of
the minimizer λμ defined in (2.1). Let Ξ(dr) be the total progeny of type r of the
branching process; thenΞ is a randommeasure on S. Then, if Pr denotes the measure
if the process starts from one individual of type r at time 0, we have

μ(dr)Pr (Ξ ∈ dk) = λμ(dk) k(dr), k ∈ MN0(S)\{0}, r ∈ S. (2.12)

In Remark 4.6 we explain this relation in the setting where S is a finite set. In words,
the empirical statistics of the microscopic components in GN in the subcritical case
approximate the distribution of the total offspring of the characteristic branching
process.

2.3 The reducible case

Let us briefly comment on the case where the kernel κ is reducible with respect to μ,
i.e., S is composed of at least two irreducible classes (maximal irreducible subsets).
Then the graph GN decomposes into disconnected subgraphs with types in only one
of these classes. Accordingly, the collection of all the connected components can be
decomposed into collections for each subgraph. In principle one can apply the LDP
of Theorem 1.1 to each of the micro/macro empirical measures of the subgraphs.
However, one might have the wish to have a joint LDP for the entire collection.
Here one might expect that the same LDP holds true, and the decomposition into the
subgraphs reappears in the rate function in a natural way.
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It turns out that this expectation is not disappointed, as it concerns the microscopic
part, but is disappointed for themacroscopic part. Actually, the formulation of the LDP
slightly changes. Themain point is that twomacroscopic components can very cheaply
be connected to form a significantly larger macroscopic component, just by throwing
in one connecting edge, which cannot be seen on the exponential scale. Hence, the
macroscopic part is very unstable on the exponential scale under adding edges. This
argument fails for the microscopic part, since here we are talking now about � N
independent copies of a component of a finite size; if one wants to connect them such
that the microscopic statistics change, then one needs to change � N edges, whose
probability is clearly seen on an exponential scale.

As a consequence of this effect, we will see that the rate function is finite only
if the macroscopic measure α = ∑

n δyn is such that for each n the rescaled type-
configuration yn is supported in one of the irreducible classes. To be precise, we say
that a measure y ∈ M(S) is connectable (with respect to κ and μ) if its support is
contained in an irreducible class. Furthermore, a measure α ∈ A is called connectable
if each of its atoms is connectable.

For themicroscopic configurations λ connectability is implicitly ensured by the fact
that themeasure λ has to be absolutely continuouswith respect to τ Qμ in order to have
a finite value of the rate function; notice that τ(k) = 0 if supp(k) is not concentrated on
a irreducible class of S. We also have to restrain to a sequence of random graphs that
are defined with respect to the same kernel κ , rather than an approximating sequence
κN , since each κN might be irreducible.

Theorem 2.6 (LDP in the reducible case) Suppose the setting as in Theorem 1.1, with
the exception that κN = κ for all N ∈ N and the kernel κ on S × S is now assumed
to be reducible, and suppose that S is equal to the support of μ. Then (MiN ,MaN )

satisfies an LDP with rate function Ĩ defined by

Ĩ (λ, α) =
{
I (λ, α), if α is connectable,

+∞ otherwise,

where I is as in Theorem 1.1.

The proof follows in a straightforward way from our results, see Remark 3.11 for
the finite type case. The intuitive reason is that, for α that is not connectable, on the
event {MaN ≈ α}, there is a macroscopic component who has two non-trivial parts
(i.e., each with � N types) in two different irreducible classes, even though there
cannot be any edge between these sets. Hence this event has the probability zero.

We made the choice to state the theorem under the additional assumption that S
corresponds to the support of μ. If this was not the case, one could still approach a
not connectable measure y ∈ M(S) with a finite exponential cost if, for each finite
N , the support of y is contained in an irreducible class of κ with respect to μ(N ). The
proof would anyway be an extension of our finite type case results, but it is out of our
scope to cover this particular framework.
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2.4 Motivation: an inhomogeneous coagulation process

With the present work, we actually continue our study of random particle models with
coagulation in the light of large-deviation arguments initiated in [2]. Indeed, we make
here the first step towards a spatial model.

The model that we are interested in is the following. Fix N atoms 1, . . . , N at the
locations x1, . . . , xN in a compact metric space S. We consider a Markov process
in continuous time on the set of partitions of [N ] = {1, . . . , N }. Starting with the
monodispersed configuration M(0) = ({i})i∈[N ], at any time any two subsets A, B in
the current partition are replaced by their union A∪B after an exponentially distributed
random time with parameter

1

N

∑

i∈A, j∈B
κ(xi , x j ), (2.13)

where a symmetric κ : S × S → [0,∞) is given. All these random times are sup-
posed to be independent. If M(t) denotes the partition at time t , then M(s) is a
refinement of M(t) for any s < t . Hence, the number of elements of M(t) is a
non-increasing (random) process starting at N . The special case of a singleton S
and κ ≡ 1 (the homogeneous case) is the case of the Marcus–Lushnikov model
that we studied in [2]. There we also explained how the Erdős–Rényi model can
be mapped onto the Marcus–Lushnikov model, and this works also in the inhomoge-
neous setting. Indeed, to any unordered pair {i, j} ⊂ [N ] with i �= j we associate an
exponential random time e(i, j) with parameter 1

N κ(xi , x j ). These random times are
independent and we put a bond between i and j as soon as e(i, j) elapses. At a fixed
time t ∈ (0,∞), this graph has the distribution of the inhomogeneous random graph
Gt,N = G([N ], (x1, . . . , xN ), 1

N κt,N ) with type space S and

κt,N (r , s) = N
(
1 − e− 1

N tκ(r ,s)), r , s ∈ S.

Notice that the random partition M(t) of the above coagulation model is equal in
distribution to the collection (C j ) j of the vertex sets of the components of Gt,N . The
two main reasons for this fact are the memorylessness of the exponential distribution
and the property that theminimumof independent exponential times is also exponential
with a parameter that is the sum of all the parameters. The only difference between the
twomodels is that the graph model registers all the bonds that arrive within each of the
components (and do not change anything in the connectedness), while the coagulation
model just registers that a given set is connected.

We are interested in an LDP for the micro and the macro empirical measure of
the partition sets of M(t) in the limit N → ∞, assuming the initial locations of
particles are such that 1

N

∑N
i=1 δxi → μ for some measure μ on S. Since κt,N → tκ ,

Theorem 1.1 applies also to the above inhomogeneous coagulation process under the
appropriate assumptions at a fixed time t . Furthermore, from Theorem 2.1, we obtain
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that the process (M(t))t∈[0,∞) has a phase transition at the time

tc = 1

Σ(κ,μ)
,

and we have a limiting distribution of the empirical micro and macro measures. This
phase transition is of explosion type, as described inRemark 2.2, and in the coagulation
literature is usually called gelation. Further consequences for the limiting distribution
of M(t) as N → ∞ follow in a natural way, but we refrain from writing them down.

Interestingly, we can deduce that the minimizing process of microscopic cluster
sizes satisfies the multitype version of the Flory equation, which is a modification
of the well-known Smoluchowski equation. The classical (single-type) Smoluchowski
and Flory equation are ubiquitous in the literature concerning coagulation processes,
see for example [1]. A multi-type extension to the Flory equation can be formulated as
follows.We think of an inhomogeneous deterministic coagulation process (λt )t∈[0,∞),
conceived as a process inL. Each particle k ∈ MN0(S) consists of k(S) atoms, k({r})
ofwhich have the type r for any r ∈ S. Coagulation is nothing but addition ofmeasures
in this formulation, i.e., two particles k and k̃ coagulate to a particle k + k̃. The kernel
of this process is given as

K (k, k̃) = 〈̃k, κk〉 =
∫

S2
κ(r , s) k(dr )̃k(ds), k, k̃ ∈ MN0(S).

Then the weak formulation of the Flory equation is, for any test function f ∈
Cc(MN0(S)),

d

dt

∫

MN0 (S)

f (k) λt (dk) = 1

2

∫

MN0 (S)2
f (k + k̃)K (k, k̃) λt (dk)λt (dk̃)

−
∫

MN0 (S)2
f (k)K (k, k̃) λt (dk)λt (dk̃)

−
∫

MN0 (S)2
f (k)K (k, k̃) λt (dk)(λ0 − λt )(dk̃), (2.14)

where λ0(dk) = ∫
S μ(dr) δδr (dk) is the initial condition, which expresses that μ is

the atom type distribution. In words, the time-evolution of (λt )t∈[0,∞) is described by
saying that any coagulation of two particles k and k̃ (i.e., replacement of k and k̃ by
k + k̃) happens with rate K (k, k̃). In our model the last term in the right-hand side
can be rewritten as − ∫

MN0 (S)
f (k)〈k, κ(μ − cλt )〉 λt (dk). It captures the interaction

between the microscopic particles and the gel (the macroscopic mass) once it forms.
See [30, Section 3] for a mathematical discussion of the (well-known) homoge-

neous version of the Flory equation and [31, Section 2] for an introduction of the
inhomogeneous version of the equation. We now identify a solution (λt )t∈[0,∞) to
(2.14).
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Lemma 2.7 (Solution to the Flory equation) Assume that S is a finite state space and
κ an irreducible nonnegative symmetric matrix on S. Let λ0(k) = ∑

r∈S μr δδr (k)
and for t ∈ (0,∞), define λt to be the first component of the minimizer appearing in
Theorem 2.1 with κ replaced by tκ .

Then t 	→ λt is a solution to the Flory equation (2.14) on [0,∞).

The proof of Lemma 2.7, as well as an explicit expression for (λt )t≥0, is given
in Sect. 7.4. We are confident that Lemma 2.7 is also true in the general setting of
Theorem 2.1.

The Flory equation is closely related to the Smoluchowski equation, which wewrite
in its multitype version:

d

dt

∫

MN0 (S)

f (k) λt (dk) = 1

2

∫

MN0 (S)2
f (k + k̃)K (k, k̃) λt (dk)λt (dk̃)

−
∫

MN0 (S)2
f (k)K (k, k̃) λt (dk)λt (dk̃). (2.15)

The Smoluchowski equation only considers the microscopic clusters, that is, it
excludes any interaction with a possible gel, which we see in the third line of the
Flory equation (2.14). The solutions of equations (2.14) and (2.15) coincide until the
gelation time tc = 1/Σ(κ, μ), after which differences appear.

At the level of the underlying stochastic microscopic models this difference is seen
in terms of the type of the phase transitions, as cited in Remark 2.2. The microscopic
models of frozen percolation-type, as in [16, 29, 33, 37], correspond to (2.15), while
models like ours correspond to (2.14).

3 Proof of Theorem 1.1 for a finite type set

In this section we assume that S is a finite set and derive the large-deviations principle
(LDP) of Theorem 1.1 for this case, Theorem 3.1. This is not only an important
special case that is worth being formulated and studied on its own, but it will be the
first step in the proof of Theorem 1.1 that is completed in Sect. 5. The formulation in
the discrete case is notationally pretty different from the formulation in the general
setting and many objects simplify because of the finiteness of S. Therefore we are
going to formulate the setting and the LDP from scratch in Sect. 3.1.

The organization of this section is as follows. In Sect. 3.2 we derive a formula for
the distribution ofMiN . Themore involved terms that appear in our formula are certain
connection probabilities whose asymptotics are stated in Sect. 3.3. In Sect. 3.4 we will
decompose the distribution of MiN into a micro–, meso– and macroscopic part and
derive the exponential rates for each part. The proof of the LDP of Theorem 3.1 is
finally finished in Sect. 3.5.
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3.1 Formulation of the LDP

Let us recall the objects that we need to formulate the LDP for a finte type space S.
Fix a probability measure μ on S, which we will denote as a vector μ = (μs)s∈S .
For any N ∈ N let x(N ) = (x (N )

1 , . . . , x (N )
N ) ∈ SN be a type vector such that the

normalized empirical measure, μ(N ) = 1
N

∑N
i=1 δ

x (N )
i

, converges to μ as N → ∞.

Let κ = (κ(r , s))r ,s∈S ∈ [0,∞)S×S be a nonnegative and symmetric matrix. For
any N ∈ N, let κN be another such matrix, and assume that the sequence κN , N ∈ N,
converges pointwise to κ as N → ∞. Throughout the section we will work under the
assumptions that we just stated for κN , N ∈ N, and μ(N ), N ∈ N.

Recall that the random graph GN = G(N , x(N ), 1
N κN ) consists of N vertices and

that the vertex i ∈ [N ] has x (N )
i ∈ S. The undirected edges of the graph are set

independently for each pair of vertices and two vertices of type r and s are connected
via an edge with probability 1 ∧ 1

N κN (r , s).
We denote by {C j } j the collection of the vertex sets of all the connected compo-

nents of GN = G(N , x(N ), 1
N κN ). We want to study empirical measures depending

on the random collection {C j } j . For this we introduce the type-registering mapping
η : P([N ]) → N

S
0 that gives the (type) composition of an arbitrary vertex set A ⊂ [N ],

i.e., η(A) = (ηs(A))s∈S , and ηs(A) = #{i ∈ A : x (N )
i = s} is the number of vertices

in A with type s. Note that the mapping η depends on the entire type vector x(N ), not
only on its normalized empirical measure, μ(N ) = 1

N

∑N
i=1 δ

x (N )
i

.

We identify MN0(S) with N
S
0 and will work in [0, 1]S instead of M(S). Now

we recall the definition of the main objects, the empirical measures of the con-
nected components of GN , in microscopic, respectively macroscopic, registration.
The microscopic empirical measure MiN is defined as a measure on N

S
0 via

MiN (dk) := 1

N

∑

j

δη(C j )(dk). (3.1)

Since N
S
0 is a discrete space, we will abbreviate MiN (k) = MiN ({k}) for any k ∈ N

S
0 .

The macroscopic empirical measure is defined as a measure on [0, 1]S\{0} via

MaN (dy) :=
∑

j

δ 1
N η(C j )

(dy). (3.2)

Therefore our state spaces for MiN and MaN are now

L := {
λ = (λk)k∈NS

0
∈ [0, ∞)N

S
0 : c(λ) ≤ μ or c(λ) ≤ μ(N ) for some N ∈ N, λ0 = 0

}

(3.3)

and

A := {
α ∈ MN0([0, 1]S\{0}) : c(α) ≤ μ or c(α) ≤ μ(N ) for some N ∈ N

}
, (3.4)
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respectively, where

cr (λ) =
∑

k∈NS
0

λkkr and cr (α) =
∫

[0,1]S\{0}
α(dy) yr , r ∈ S.

(3.5)

One can easily verify that for any fixed N we have cr (MiN ) = μ
(N )
r as well as

cr (MaN ) = μ
(N )
r for any r ∈ S, so indeed MiN ∈ L and MaN ∈ A. However, the

idea is that due to the topologies that we choose, some of the (rescaled) vertex mass
specified by c(limMiN ) may get lost when we take the limit for N → ∞.

We equip L andAwith the vague topologies that we introduced in Sect. 1.2. On L,
this is identical with the topology of pointwise convergence (i.e., limN→∞ λ(N ) = λ

if and only if limN→∞ λ
(N )
k = λk for any k ∈ N

S
0 ). The vague topology on A is for-

mulated by saying that limN→∞ α(N ) = α if and only if limN→∞
∫

α(N )(dy) f (y) =∫
α(dy) f (y) for any continuous and compactly supported function f : [0, 1]S\{0} →

R; note that for every such function f there is an ε > 0 such that f = 0 on
{x ∈ [0, 1]S : |x | ≤ ε}.

Recall that we write 〈a, f 〉 = ∑
r ar fr for the integral of a function f with respect

to a measure a on S and also recall the notation |a| = ∑
s∈S as . Further, recall the

combinatorial quantity τ(k) that collects the weight of all spanning trees on a vertex
set with type configuration k ∈ N

S
0 , i.e.,

τ(k) =
∑

T∈T (k)

∏

{i, j}∈E(T )

κ
(
xi , x j

)
, (3.6)

where x ∈ S |k| is a type vector compatible with k, i.e.,
∑|k|

i=1 δxi = k, and T (k) is
the set of spanning trees on [|k|]. We use the convention that T (0) = ∅ and hence
τ(0) = 0.

Here is the main result of Sect. 3:

Theorem 3.1 (LDP for (MiN ,MaN ) with finitely many types) Assume that the empir-
ical measure μ(N ) of the type sequence (x (N )

1 , . . . , x (N )
N ) converges weakly towards a

positive probability vector μ ∈ (0, 1]S as N → ∞ and that the kernel κN converges
on S × S towards a μ-irreducible kernel κ ∈ [0,∞)S×S .

Then (MiN ,MaN ) satisfies a large deviations principle (LDP) with speed N and
rate function (λ, α) 	→ I (λ, α) defined by

I (λ, α) =
{
IMi(λ) + IMa(α) + IMe(μ − c(λ) − c(α)), if c(λ) + c(α) ≤ μ,

+∞ otherwise,

where

IMi(λ) =
∑

k∈NS
0

λk log
λk

τ(k)
∏

s∈S
μ
ks
s
ks !

+
∑

k∈NS
0

λk(|k| − 1) + 1

2
〈c(λ), κμ〉, (3.7)
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IMa(α) =
∫

M(S)\{0}
α(dy)

(〈
y, log

y

(1 − e−κ y)μ

〉
+ 1

2
〈y, κ(μ − y)〉

)
, (3.8)

IMe(ν) =
〈
ν, log

ν

(κν)μ

〉
+ 1

2
〈ν, κμ〉 (3.9)

and where we always use the convention that log 0 = −∞ and 0 log 0 = 0.

Theorem 3.1 is indeed nothing but the special case of Theorem 1.1 for a finite set
S. Indeed, it is clear that the setting and the two rate functions IMa and IMe are the
discrete-space versions, but (3.7) looks a bit different from the formula for IMi in
Theorem 1.1. But from substituting the notation of the entropy in (3.7) and noting
that the distribution of a Poisson point process with intensity measure μ can here be
identified as

Qμ(k) =
∏

r∈S

[
e−μr

μ
kr
r

kr !
]
, k ∈ N

S
0 ,

one sees that (3.7) is indeed a discrete analog of (1.11). Furthermore, one can also
write

IMi(λ) =
∑

k∈NS
0

λk log
λk

λk(μ)
+

∑

k∈NS
0

λk(|k| − 1) − 1

2
〈c(λ), κμ〉 (3.10)

where λ(μ) is defined as the discrete analog of (2.1) with c = μ, i.e.,

λk(μ) = τ(k)
∏

s∈S

(μse−(κμ)s )ks

ks ! , k ∈ N
S
0 . (3.11)

This formula will be helpful in Sect. 6 when we will identify minimizers of IMi.
We will now give an extension of Theorem 3.1 for kernels κ that are not μ-

irreducible. Recall the notion of connectability for α ∈ A that was introduced in
Sect. 2.3.

Theorem 3.2 (Finite-type LDP for (MiN ,MaN ) without irreducibility) For (λ, α) ∈
L × A define

Ĩ (λ, α) =
{
I (λ, α), if α is connectable,

+∞ otherwise.
(3.12)

(i) Given all the assumptions from Theorem 3.1, except the assumption that κ is μ-
irreducible, the pair (MiN ,MaN ) satisfies the lower large-deviations bound (1.14)
with speed N and rate function Ĩ .

(ii) Given all the assumptions from Theorem 3.1, except the assumption that κ is μ-
irreducible andwith the additional assumption that κN = κ for all but finitelymany
N ∈ N, the pair (MiN ,MaN ) satisfies an LDP with speed N and rate function Ĩ .

The proof is given in Remark 3.11.
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We omit to restate the finite-S analogs of Theorems 2.3, 2.1 and all the related
corollaries, as they can be deduced as special cases. For the critical quantity Σ(κ,μ),
we refer to (4.2), and we recall that it is in this setting equal to the spectral radius of
the matrix (κ(r , s)μs)(r ,s)∈S2 .

3.2 The distribution ofMiN

Let us identify the distribution of MiN for any N in explicit terms. Note that as long
as N ∈ N is fixed, the measure MaN contains exactly the same information as MiN ,
hence, we are also deriving its distribution. We start by noting that NMiN takes values
in

LN :=

⎧
⎪⎨

⎪⎩
� = (�k)k∈NS

0
: �k ∈ N0 for all k, �0 = 0 and

∑

k∈NS
0

�kkr = Nμ(N )
r for all r ∈ S

⎫
⎪⎬

⎪⎭
. (3.13)

Let k ∈ N
S
0 and let x = (x1, . . . , x|k|) ∈ S |k| be a type vector which is compatible

with k, meaning that
∑|k|

i=1 δxi = k. We define the connection probability of the graph
G(|k|, x, 1

N κN ) by

pN (k) = P
(
G(|k|, x, 1

N κN ) is connected
)
, for k �= 0, (3.14)

and pN (0) = 0. In the following lemma we write down the distribution of MiN in
terms of the quantities pN (k), k ∈ N

S
0 .

Lemma 3.3 (The distribution of MiN ) Let N ∈ N and assume that κN (r , s) ≤ N for
all r , s ∈ S. Then for any � ∈ LN we have that

P

(
NMiN (k) = �k ∀k ∈ N

S
0

)
=

( ∏

r∈S

(
Nμ(N )

r

)
!
)

×
∏

k∈NS
ζ (N )(�, k), (3.15)

where

ζ (N )(�, k) = pN (k)�k

�k ! ∏r∈S(kr !)�k
( ∏

r ,s∈S

(
1 − κN (r , s)

N

) 1
2 kr [Nμ

(N )
s −ks ])�k

, (3.16)

and pN (k) is defined in (3.14).

Proof This is proved in an analogous way to [2, Corollary 2.2]; we omit the details. ��
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The formula in (3.15) is easy to understand. Indeed, the combinatorial term on
the right (with an additional factor 1/N !) is equal to the inverse of the number of
possible labelings of all the vertices; the event {NMiN (k) = �k ∀k} means that �k is
equal to the number of clusters in [N ] whose vertex set has the type configuration k,
for any multi-index k. The product of pN (k)�k over k is the probability that all these
clusters are connected, the product over the powers of 1 − κN (r , s)/N is equal to
the probability that each two of them are not connected, and the product of the two
remaining combinatorial terms (with an additional factor N !) is equal to the number of
ways to decompose all the types into clusters having the prescribed vertex structure.

3.3 Asymptotics for the connection probabilities

Recall the connection probability pN (k), for k ∈ N
S
0 , that we defined in (3.14). When

going to the limit for N → ∞, it will be crucial to distinguish different cases depending
on the asymptotic behaviour of k. In the first case, we keep k ∈ N

S
0 fixed, whereas

N → ∞ and refer to pN (k) as the connection probability of a microscopic cluster.
In the second case we consider a sequence k(N ) ∈ N

S
0 where |k(N )| is of order N .

More precisely, we assume that for any s ∈ S the limit limN→∞ k(N )
s
N = ys exists and

that the vector y = (ys)s∈S is non-trivial. In that case we refer to pN (k(N )) as the
connection probability of a macroscopic cluster. In between the microscopic and the
macroscopic regime there are the cases, in which the sequence |k(N )| diverges, but is
in o(N ). Those are summarized under the notion of mesoscopic clusters.

In this section the results for the different cases will only be stated. Their proofs
are collected in Sect. 4, since the derivation of the asymptotics for the macroscopic
case is rather cumbersome. Recall the definition (3.6) for τ . By τN we will denote the
same quantity, but defined with respect to the kernel κN . Further, recall that we are
working under the assumption that κN converges pointwise to κ , which will be used
in Lemma 3.4 and Theorem 3.6.

Lemma 3.4 (Asymptotics for the connection probability of microscopic clusters) Fix
k ∈ N

S
0 . Then, as N → ∞,

pN (k) = N−(|k|−1)τN (k)(1 + o(1)). (3.17)

Lemma 3.5 (Estimate for the connection probability of mesoscopic clusters) Fix k ∈
N
S
0 and choose any r ∈ S such that kr > 0. Then

pN (k) ≤ (‖κN‖∞|Sk |)|Sk |−1N−(|k|−1) 1

k2r

( ∏

s∈Sk
(κNk)

ks−1
s ks

)
, (3.18)

where Sk := supp(k).

The following theorem concerns the connection probabilities of macroscopic clus-
ters. This result is to the best of our knowledge, a new one andmight be of independent
interest in the theory of random graphs. Note that it is the multi-type version of a result
from [35], see [2, Lemma 2.4].
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Theorem 3.6 (Asymptotics of the connection probability of macroscopic clusters) Fix

y ∈ [0, 1]S , y �= 0. Let {k(N )}N∈N be a sequence in N
S
0 such that limN→∞ k(N )

r
N = yr

for all r ∈ S.
(i) Then it holds that

lim sup
N→∞

1

N
log pN (k(N )) ≤

∑

r∈S
yr log

(
1 − e−(κ y)r

)
, (3.19)

where the right-hand side takes the value −∞ when y �� κ y.
(ii) Assume that τ(k(N )) > 0 for all but finitely many N ∈ N and that {k(N )

r }N is
bounded in N for all r /∈ supp(y). Then

lim
N→∞

1

N
log pN (k(N )) =

∑

r∈S
yr log

(
1 − e−(κ y)r

) ∈ [−∞, 0], (3.20)

where the right-hand side takes the value −∞ when y �� κ y.

The additional assumption τ(k(N )) > 0 ensures that the connection probability
is indeed strictly positive since otherwise the left-hand side of (3.20) is −∞. The
assumption about the boundedness of {k(N )

r }N for r /∈ supp(y) might be weakened.
However, for our purposes the statement will suffice in this form.

The proof can be found in Sect. 4. The main idea is to construct a sequence of
graphs with the same connection parameter κN , but a different number of vertices in
such a way that it contains with high probability a macroscopic component k(N ).

3.4 Exponential rates for micro-, meso- andmacro parts

The proof of the LDP in Theorem 3.1 is carried out in the sameway as in [2, Section 3].
Themain idea is to split the distribution that we obtained in Lemma 3.3 into three parts,
which we will call micro-, meso- and macroscopic part. These parts roughly give the
terms e−N IMi(λ), e−N IMe(μ−c(λ)−c(α)) and e−N IMa(α), if a properly rescaled version of
� = �(N ) ∈ LN is close to (λ, α). In the next lemma we give the decomposition into
the three parts. Afterwards, we derive the exponential asymptotics of them in Lemmas
3.8–3.10.

Lemma 3.7 (Decomposition into three contributions) Fix � ∈ LN . For k ∈ N
S
0 define

z(N )(�k, k) := pN (k)�k
∏

s∈S(
Nμs
e )ks�k

�k ! ∏s∈S(ks !)�k
∏

r ,s∈S

(
1 − κN (r , s)

N

) 1
2 ks (Nμr−kr )�k

,

(3.21)

and for any two numbers A, B ∈ [0,∞) write

z(N )
A,B(�) :=

∏

k∈NS
0 : A<|k|≤B

z(N )(�k, k).
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Then, for any fixed R ∈ N and ε > 0 we have that, as N → ∞

PN (NMiN = �) = eo(N )z(N )
0,R(�)z(N )

R,εN (�)z(N )
εN ,N (�).

Proof On the right-hand side of (3.15) we apply Stirling’s formula n = eo(n)(n/e)n

to the terms (Nμ
(N )
r )! and use that Nμ

(N )
r = ∑

k �kkr . Note that we also used that

μ
(N )
r → μr . ��

Lemma 3.8 (Asymptotics of the micro part) Fix R ∈ N and let λ ∈ L. Define

I (R)
Mi (λ) :=

∑

k∈NS
0 : |k|≤R

λk log
λke|k|−1

τ(k)
∏

s
μ
ks
s
ks !

+ 1

2
〈c(R)(λ), κμ〉, (3.22)

where

c(R)
r (λ) =

∑

k∈NS
0 : |k|≤R

λkkr , r ∈ S, (3.23)

and where we use the convention that log 0 = −∞ and 0 log 0 = 0. In particular, the
right-hand side of (3.22) is equal to +∞ if there is some k ∈ N

S
0 with |k| ≤ R such

that τ(k) = 0, but λk > 0. Otherwise, the right-hand side is finite.
Then for all �(N ) = (�

(N )
k )k∈NS

0
∈ LN satisfying λk = limN→∞ 1

N �
(N )
k for all k

with |k| ≤ R we have

lim
N→∞

1

N
log z(N )

0,R(�(N )) = −I (R)
Mi (λ). (3.24)

Proof We use Stirling’s formula for the terms �
(N )
k ! as well as the fact that for any

k ∈ N
S
0 with |k| ≤ R we have that pN (k) = eo(1)N 1−|k|τN (k) as N → ∞, by

Lemma 3.4. Therefore, as N → ∞, we have

∏

k : |k|≤R

pN (k)�
(N )
k

∏
s∈S (

Nμs
e )ks�

(N )
k

�
(N )
k ! ∏s∈S (ks !)�

(N )
k

= eo(N )e−
1
2

∑
k : |k|≤R log �

(N )
k

∏

|k|≤R

(
τN (k)

∏
s

μ
ks
s
ks !

(�
(N )
k /N )e|k|−1

)�
(N )
k

= eo(N ) exp

(
N

∑

|k|≤R

λk log
τ(k)

∏
s

μ
ks
s
ks !

λke|k|−1

)
,

(3.25)

where, we have used that 0 ≤ ∑
k : |k|≤R log �

(N )
k ≤ |{k : |k| ≤

R}| log (∑
k : |k|≤R �

(N )
k

|{k : |k|≤R}|
) = o(N ). Further, we use that limN→∞(1 + x

N )N = ex to
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get that, as N → ∞,

∏

|k|≤R

∏

r ,s∈S

(
1 − κN (r ,s)

N

) 1
2 ks (Nμr−kr )�

(N )
k = exp

(
− N

2

〈 ∑

|k|≤R

�
(N )
k
N k, κ(μ − k

N )
〉)

= eo(N )e− N
2 〈c(R)(λ),κμ〉, (3.26)

where in the last step we used that

0 ≤ 1
2

∑

|k|≤R

�
(N )
k
N

∑

r ,s

kr
N κN (r , s)ks ≤ 1

2‖κN‖∞ R
N |c(R)( �(N )

N )|,

together with the fact that the right-hand side converges to 0 as N → ∞. Combining
the asymptotics from (3.25) and (3.26) gives the claim. ��
Lemma 3.9 (Asymptotics of the macro part) Fix α ∈ A, and note that α can be written
as α = ∑

j∈J δy( j) where y( j) ∈ [0, 1]S\{0} for all j ∈ J and J is a countable set.

Fix any ε > 0 with ε /∈ {|y( j)| : j ∈ J }. Define Jε(α) : = { j ∈ J : ∣∣y( j)
∣∣ > ε}, which

is a finite set, and

I (ε)Ma(α) :=
∫

α(dy)1{|y|>ε}
〈
y, log

y

(1 − e−κ y)μ

〉
+ 1

2

∫
α(dy)1{|y|>ε} 〈y, κ(μ − y)〉,

(3.27)

where we use the convention that log 0 = −∞ and 0 log 0 = 0. In particular, the
right-hand side of (3.27) is equal to +∞, if there is some i ∈ Jε(α) such that the
condition y(i) � κ y(i) fails. Then we have the following.

(i) For any sequence �(N ) ∈ LN denote α(N ) = ∑
k �

(N )
k δ k

N
and assume that α(N )

restricted to {y : |y| > ε} converges to α restricted to {y : |y| > ε}, as N → ∞.
Then it holds that

lim sup
N→∞

1

N
log z(N )

εN ,N (�(N )) ≤ −I (ε)
Ma(α). (3.28)

(ii) For all j ∈ Jε(α), let {k( j,N )}N∈N be a sequence in N
S
0 such that τ(k( j,N )) > 0

for all N ∈ N, limN→∞ k( j,N )

N = y( j) and {k( j,N )
s }N∈N is bounded for all s /∈

supp(y( j)). Let �(N ) be an element of LN such that �(N )
k = #{ j ∈ J : k( j,N ) = k}

for |k| > εN. Denote α(N ) = ∑
k �

(N )
k δ k

N
, then α(N ) restricted to {y : |y| > ε}

converges to α restricted to {y : |y| > ε}, and

lim
N→∞

1

N
log z(N )

εN ,N (�(N )) = −I (ε)
Ma(α). (3.29)

Proof We start with the first statement. Let us first turn to the first term on the right
of (3.21). We apply Stirling’s bound n! ≥ nne−n to each of the terms ks ! and the
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simple bound �
(N )
k ! ≥ 1 for all k ∈ N

S
0 . Using the upper bound (3.19) for pN (k) from

Theorem 3.6 we obtain, as N → ∞,

∏

k : |k|>εN

pN (k)�
(N )
k

∏
s∈S(

Nμs
e )ks�

(N )
k

�
(N )
k ! ∏s∈S(ks !)�(N )

k

≤ eo(N ) exp

(
N

∫

{|y|>ε}

〈
y, log

(1 − e−κ y)μ

y

〉
α(N )(dy)

)
, (3.30)

where we used that
∑

|k|>εN �
(N )
k ≤ 1

ε
The second term on the right of (3.21) is

estimated using 1 − x ≤ e−x for x = κN (r , s)/N as follows for N → ∞,

∏

|k|>εN

∏

r ,s∈S

(
1 − κN (r ,s)

N

) 1
2 ks (Nμr−kr )�

(N )
k

≤ eo(N ) exp
(

− N

2

∫

{|y|>ε}
〈y, κ(μ − y)〉α(N )(dy)

)
. (3.31)

Note that the product of the right-hand sides of (3.30) and (3.31) is equal to

eo(N )e−N I (ε)
Ma(α

(N )). Using the convergence assumption on α(N ) and the fact that
ε < inf j∈Jε |y( j)| one can verify that I (ε)

Ma(α
(N )) → I (ε)

Ma(α) as N → ∞. This gives
the result.

To show the second statement, let us first notice that it is clear from the definition that
α(N ) restricted to {y : |y| > ε} converges to α restricted to {y : |y| > ε}. Therefore we
can apply the first assertion andwe have the upper bound (3.28). In order to get also the
lower bound, we lower estimate z(N )

εN ,N (�(N )) against the sum on k(N , j) over the finite
set j ∈ Jε(α) and note that these are the only summands k with |k| > εN such that
�
(N )
k > 0. For each such j we apply the asymptotic (3.20) fromTheorem3.6 and obtain

the corresponding lower bound, also noting that
∏

|k|>εN (�
(N )
k !)−1 ≥ e− 1

ε
log N =

eo(N ) and, by estimating ks ≤ N , we get that (ks)−
�
(N )
k
2 ≥ e− 1

2ε log N for any s ∈ S. To
derive the lower bound equivalent of (3.31) we use that (1 − c

N )N = e−c(1 + o(1)).
This proves the claim. ��

In the second statement of Lemma 3.9 we restrict to sequences �(N ) such that each
type-configuration k with �

(N )
k > 0 is connectable in the sense that τ(k) > 0. We will

see in the proof of Theorem 3.1 that for each α ∈ A such that IMa(α) < ∞ and for
each ε > 0, we will always be able to find such a sequence. Our second restriction
ε /∈ {|y( j)| : j ∈ J } is clearly only technical and gives no problem at all when we later
take the limit as ε ↓ 0; it frees us from unwanted terms.

Lemma 3.10 (Asymptotics of the meso part) Fix R ∈ N, ε > 0 and ν ∈ [0, 1]S . For
a sequence �(N ) ∈ LN , N ∈ N, we write ν

(N )
s := 1

N

∑
R<|k|≤εN �

(N )
k ks , for s ∈ S,
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and assume that limN→∞ ν
(N )
s = νs holds for all s ∈ S. Then

lim sup
N→∞

1

N
log z(N )

R,εN (�(N )) ≤ −IMe(ν) + C(R, ε, ν), (3.32)

where the term C(R, ε, ν) is continuous in ν and converges to 0 as R → ∞ and
ε → 0.

Proof For fixed k ∈ N
S
0 denote Sk := supp(k). For pN (k) and r ∈ Sk we use the

upper bound (3.18) from Lemma 3.5. Also, we apply the Stirling bound n! ≥ nne−n

to the terms �
(N )
k ! as well as the terms ks ! for all s ∈ S. This gives that

∏

R<|k|≤εN

pN (k)�
(N )
k

∏
s∈S(

Nμs
e )ks�

(N )
k

�
(N )
k ! ∏s∈S(ks !)�(N )

k

≤
∏

R<|k|≤εN

( NC
∏

s∈Sk (κNk)
ks−1
s ks

k2r �
(N )
k e−1

∏
s∈Sk

( ks
μs

)ks

)�
(N )
k

≤ eN 〈ν(N ),logμ〉 ×
∏

R<|k|≤εN

∏

s∈Sk

( (κNk)s
ks

)(ks−1)�(N )
k ×

∏

R<|k|≤εN

( NeC

�
(N )
k (kr )2

)�
(N )
k

,

(3.33)

where C = 1∧ ((‖κ‖∞ + 1)|S|)|S|−1 and where we assumed that N is large enough
such that ‖κN‖∞ ≤ ‖κ‖∞ +1. The first term on the right-hand side of (3.33) is clearly
equal to eo(N )eN 〈ν,logμ〉. We now take a look at the second one. For s ∈ S we put

Cs(�
(N )) :=

∑

k : R<|k|≤εN , ks>0

�
(N )
k (ks − 1) = Nν(N )

s −
∑

k : R<|k|≤εN , ks>0

�
(N )
k .

(3.34)

Then 1
N Cs(�

(N )) ∈ [ν(N )
s − 1

R , ν
(N )
s ] since

∑
k : R<|k|≤εN �

(N )
k ≤

1
R

∑
k : R<|k| |k|�(N )

k ≤ N/R. Next, we apply Jensen’s inequality and the fact that
x 	→ log x is concave to get that

∏

R<|k|≤εN

∏

s∈Sk

( (κNk)s
ks

)(ks−1)�(N )
k

= exp

( ∑

s∈S
Cs(�

(N ))
∑

R<|k|≤εN , ks>0

�
(N )
k (ks − 1)

Cs(�(N ))
log

(κNk)s
ks

)

≤ exp

( ∑

s∈S
Cs(�

(N )) log
( ∑

R<|k|≤εN , ks>0

�
(N )
k (ks − 1)

Cs(�(N ))

(κNk)s
ks

))

≤ exp

(
N

∑

s∈S
1
N Cs(�

(N )) log
(κNν(N ))s
1
N Cs(�(N ))

)
≤ eo(N ) exp

(
N

〈
ν, log

κν

ν

〉)
eNδR(ν)
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where

δR(ν) =
∑

s∈S
νs log

νs

νs − 1
R

+ 1

R

∑

s∈S

(
log

νs

(κν)s

)
∧ 0

which is continuous in ν and converges to 0 as R → ∞.
It remains to argue that the large-N exponential scale of the last term on the right-

hand side of (3.33) vanishes when taking R → ∞ afterwards. Recall that the choice
of r may depend on k; we will denote it as rk . We first use that

∏

R<|k|≤εN

( NeC

�
(N )
k (krk )

2

)�
(N )
k = exp

(
N

∑

R<|k|≤εN

�
(N )
k

N
log

NeC

�
(N )
k (krk )

2+|S|

)

× exp

(
N |S|

∑

R<|k|≤εN

�
(N )
k

N
log |k|

)
.

Abbreviating D := ∑
R<|k|<εN �

(N )
k /N and using Jensen’s inequality we get that

exp

(
N

∑

R<|k|≤εN

�
(N )
k
N

log
NeC

�
(N )
k (krk )

2+|S|

)
≤ exp

(
ND log

(
eC
D

∑

R<|k|≤εN

k−2−|S|
rk

))
.

(3.35)

It is easy to see that choosing rk such that krk = maxs∈S ks ensures the convergence

of
∑

k k
−2−|S|
rk and the fact that

∑
|k|≥R k

−2−|S|
rk is polynomial in R. Further, as we

remarkedbelow (3.34), D ≤ 1/R and therefore the right-hand side of (3.35) is bounded
by exp(Nδ′

R) for some δ′
R that vanishes as R → ∞. Next, we use that R/ log R ≤

|k|/ log |k| holds on our summation area of k if R is large enough and therefore

exp

(
N |S|

∑

R<|k|≤εN

�
(N )
k

N
log |k|

)
≤ exp

(
N |S| log R

R

∑

R<|k|≤εN

�
(N )
k

N
|k|

)

= exp

(
N |S| log R

R

)
. (3.36)

Noting that 1
R log R → 0 as R → ∞, we have shown that the last term on the right-

hand side of (3.33) can be bounded by eNδ′′
R for some δ′′

R that vanishes as R → ∞. So

far, we have handled the first term in the definition of z(N )
R,εN (�(N )), and we saw that

its exponential rate is not larger than the first term in −IMe(ν).
Let us now handle the second and last part of z(N )

R,εN (�(N )). We use 1 −
x ≤ e−x for x = κN (r , s)/N as well as 1

2

∑
R<k≤εN �

(N )
k 〈k, κk〉 ≤
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1
2‖κ‖∞ε

∑
R<|k|≤εN �

(N )
k |k| ≤ N

2 ‖κ‖∞ε to get that

∏

R<|k|≤εN

∏

r ,s∈S

(
1 − κN (r ,s)

N

) 1
2 ks (Nμr−kr )�

(N )
k ≤ eo(N )e− N

2 〈ν,κμ〉e
N
2 ‖κ‖∞ε.

Note that the exponential rate of the last factor on the right-hand side vanishes as
ε → 0. Collecting all our estimates we have shown that the estimate (3.32) holds with
C(R, ε, ν) = δR(ν) + δ′

R + δ′′
R + 1

2‖κ‖∞ε. ��

3.5 Proof of Theorem 3.1

Here we finish now the proof of the LDP of Theorem 3.1. Let dL and dA be, respec-
tively, metrics that induce the vague topologies on the state spaces L andA (see (3.3)
and (3.4)). Notice that, thanks to the contraints |c(λ)| ≤ 1 and |c(α)| ≤ 1, the spaces
L andA endowed with the vague topologies are compact by the Bolzano–Weierstrass
theorem and Fatou’s lemma. Moreover the rate function I is lower semicontinuous on
L×A, which makes it a good rate function. Hence, a weak LDP implies the claim of
Theorem 3.1 and it suffices to prove that

lim
δ,ρ→0

lim
N→∞

1

N
logPN

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

) = −I (λ, α), λ ∈ L, α ∈ A.

(3.37)

where Bδ(λ) and Bρ(α) are closed balls centered at λ and α with radii δ and ρ,
respectively.

Fix λ ∈ L and α ∈ A.
Step 1: Cardinality of LN . Recall the definition of LN that was given in (3.13).

Each � ∈ LN has a unique representation as a product measure � = ⊗
r∈S �(r), where

�(r) = (�
(r)
j ) j∈N0 and

∑
j �

(r)
j j = Nμ

(N )
r for all r ∈ S. By the same argument as in [2,

Lemma 3.2] there are atmost eo(Nμ
(N )
r ) ways to choose themarginal �(r). Consequently

we have

|LN | = eo(N ).

Fix R ∈ N and ε > 0. We denote by dR
L and dε

A the distance of the projections
of measures on {k : |k| ≤ R} and {y : |y| > ε}, respectively. Then dL ≥ dR

L and

dA ≥ dR
A. For δ > 0 and ρ > 0 denote by L(R,ε)

N (δ, ρ) the set of all � ∈ LN with
dR
L( 1

N �, λ) < δ and dε
A(��N ·�, α) < ρ. Note that

P
(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

) ≤
∑

�∈L(R,ε)
N (δ,ρ)

P (NMiN = �) .
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According to the preceding, also

|L(R,ε)
N (δ, ρ)| ≤ |LN | = eo(N ).

Step 2: Case c(λ) + c(α) � μ. Assume that there is some r ∈ S such that cr (λ) +
cr (α) > μr . Then it is easy to see that LN (δ, ρ) = ∅ for sufficiently large N and
hence

lim
N→∞

1

N
logP

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

) = −∞ = −I (λ, α),

which is proved with the same argument as in [2, Lemma 3.7].
Step 3: Proof of the upper bound in (3.37) for c(λ) + c(α) ≤ μ. For any R ∈ N

and any ε ∈ (0, 1] we have by Step 1 and Lemma 3.7 that

P
(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

) ≤ eo(N ) sup
�∈L(R,ε)

N (δ,ρ)

P (NMiN = �)

≤ eo(N ) sup
�∈L(R,ε)

N (δ,ρ)

z(N )
0,R(�)z(N )

R,εN (�)z(N )
εN ,N (�).

(3.38)

For λ̃ ∈ L and α̃ ∈ A we define

c(R)
s (λ̃) :=

∑

k : |k|≤R

λ̃kks and c(ε)
s (α̃) :=

∫

{|y|>ε}
ys α̃(dy), s ∈ S. (3.39)

We require that ε ∈ (0, 1]\{|y| : y ∈ supp(α)} (recall that supp(α) is countable). This
is a prerequisite to apply Lemma 3.9 to α̃. Now, applying Lemmas 3.8, 3.9(1) and 3.10
to the right-hand side of (3.38) we get

lim sup
N→∞

1

N
logP

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)

≤ sup
λ̃ : dR

L(λ̃,λ)<δ

α̃ : dε
A(α̃,α)<ρ

(
− I (R)

Mi (λ̃) − I (ε)
Ma(α̃) − IMe

(
ν̃(R,ε)

) + C(R, ε, ν̃(R,ε))
)
,

where we used the cut-off versions of the rate functions defined in Lemmas 3.8,
3.9 and 3.10. Also, we abbreviated ν̃(R,ε) := μ − c(R)(λ̃) − c(ε)(α̃) and recall that
C(R, ε, ν̃(R,ε)) is the term given in Lemma 3.10. Note that the functions I (R)

Mi and c(R)

are continuous (in any point) and the functions I (ε)
Ma and c

(ε) are continuous in α due to
our requirement that ε /∈ {|y| : y ∈ supp(α)}. This also implies that ν̃(R,ε) converges
to ν(R,ε) := μ − c(R)(λ) − c(ε)(α), as δ, ρ → 0, and due to the continuity of IMe and
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C(R, ε, ·) the respective terms converge. Altogether, we get that

lim sup
δ,ρ→0

lim sup
N→∞

1

N
logP

(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

)

≤ −I (R)
Mi (λ) − I (ε)

Ma(α) − IMe(ν
(R,ε)) + C(R, ε, ν(R,ε))

Observe that the right-hand side converges to −I (λ, α), if we let R → ∞ and ε → 0,
which proves the upper bound in (3.37). Notice that the requirement that ε /∈ {|y| : y ∈
supp(α)} is not a problem since supp(α) is countable.

Step 4: Construction of a recovery sequence. In this step, we prepare for the proof
of the lower bound in (3.37) (see Step 5) by constructing an almost optimal sequence
of �’s. We handle here only the case that κ is irreducible; see Remark 3.11 for hints
how to handle the case of a reducible κ . We may assume that c(λ) + c(α) ≤ μ, since
the rate function is equal to ∞ otherwise. For the same reason, we also may assume
that the mesoscopic mass ν := μ − c(λ) − c(α) satisfies ν � κν, since otherwise
IMe(ν) = ∞.

For R ∈ N and ε ∈ (0, 1] we construct a suitable recovery sequence �(N ) =
�(N )(R, ε) that will turn out in Step 5 as asymptotically optimal. To this end, we
construct it in such a way that it will put all mesoscopic mass ν := μ − c(λ) − c(α)

into several components that can all be described by the same configuration k(Me,N )

and which are actually on the lower end of the macroscopic scale, such that (3.20)
of Theorem 3.6 can be applied. Our construction also ensures that all components of
macroscopic scale have a strictly positive probability of being connected. Denote by
1 the element of N

S
0 that is equal to 1 in each entry. Define k(Me,N ) := �Nεν� + 1.

Using the representation α = ∑
i δy(i) put k(i,N ) := �Ny(i)� + 1 for i ∈ Jε(α) :=

{i : ∣∣y(i)
∣∣ > ε}.

Let us check now that we can actually apply Theorem 3.6 to pN (k(i,N )) for all
i ∈ Jε(α) ∪ {Me}. To check that τ(k(i,N )) > 0 for all i ∈ Jε(α) ∪ {Me} note the
following: Depending on the support of y(i) we might not have that κ is irreducible
with respect to y(i). However, the vectors k(i,N ) have support on the full type space
S for all N ∈ N by construction. Consequently, τ(k(i,N )) > 0 is implied by the fact
that κ is irreducible with respect to μ. Secondly, since ν � κν, we also have that
y(i) � κ y(i) for all i ∈ Jε(α): if not, IMa(α) = ∞ by definition and the lower bound
−∞ in (3.37) trivially holds. By construction it holds for all i ∈ Jε(α) that k(i,N )

s = 1
for s /∈ supp(y(i)) and for all N ∈ N, which ensures the boundedness condition. The
same holds for k(Me,N ).

Define now

�
(N )
k :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�λk N� if 2 ≤ |k| ≤ R

0 if R < |k| ≤ εN and k �= k(Me,N )

⌊
ε−1

⌋
for k = k(Me,N )

#{i ∈ Jε(α) : k = k(i,N )} if εN < |k|
Nμ

(N )
r − ∑

m:2≤|m|�
(N )
m mr if k = er for any r ∈ S,

(3.40)
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where the last line ensures that �(N ) ∈ LN . Observe that

lim
N→∞

1

N
�(N )
er − λer = cr (λ) − c(R)

r (λ) + νr − ⌊
ε−1⌋(ενr )

+cr (α) − c(ε)
r (α) for r ∈ S

lim
N→∞

1

N
�
(N )
k − λk = 0 for 2 ≤ |k| ≤ R,

which implies that limR→∞,ε→0 limN→∞ dL( 1
N �(N ), λ) = 0. Similarly,

limε→0 limN→∞ dA(α(N ), α) = 0, where α(N ) = ∑
k �

(N )
k δ k

N
.

Step 5: Proof of the lower bound in (3.37). Now we finish the proof of the lower
bound by showing that the recovery sequence (�(N ))N∈N that we constructed in Step
4 is giving the right asymptotics.

Fix δ, ρ > 0. Then by choosing R ∈ N large enough and ε > 0 small enough, we
have that 1

N �(N ) ∈ Bδ(λ) and α(N ) ∈ Bρ(α) for all but finitely many N ∈ N. Hence,
Lemma 3.7 implies that

P
(
MiN ∈ Bδ(λ),MaN ∈ Bρ(α)

) ≥ P(NMiN = �(N ))

= eo(N )z(N )
0,R(�(N ))z(N )

R,εN (�(N ))z(N )
εN ,N (�(N )).

Next, we want to use Lemmas 3.8 and 3.9(2) to get the exponential rates for the z-
terms. Note that we do not have limN→∞ 1

N �(N ) = λ on {k : |k| ≤ R}, so we will
instead apply Lemma 3.8 to the sequence �λN�, which gives

lim
N→∞

1

N
log z(N )

0,R(�λN�) = −I (R)
Mi (λ)

Using the definition (3.21), it is easy to verify that

lim
N→∞

1

N
log z(N )

0,R (�(N )) = lim
N→∞

1

N
log z(N )

0,R (�λN�) + lim
N→∞

1

N

∑

r∈S
log

z(N )(�
(N )
er , er )

z(N )(�λer N�, er )
= −I (R)

Mi (λ) + C̃(R, ε).

for some constant C̃(R, ε) vanishing as R → ∞ and ε → 0. For the mesoscopic part,
we use the asymptotic formula (3.20) of Theorem 3.6 for pN (k(Me,N )). We proved in
Step 4 that we can actually apply Theorem 3.6 to pN (k(Me,N )). This, together with
Stirling’s formula, gives us

lim
N→∞

1

N
log z(N )

R,εN (�(N )) = ⌊
ε−1⌋

〈
εν, log

(1 − e−κ(εν))μ

εν

〉
− 1

2

⌊
ε−1⌋〈εν, κ(μ − εν)〉.
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The right-hand side clearly converges to −IMe(ν) as ε → 0. The analysis of the
macroscopic part in Step 4 shows that we can directly use Lemma 3.9(2) to see that

lim
N→∞

1

N
log z(N )

εN ,N (�(N )) = −I (ε)
Ma(α).

Taking the limits R → ∞ and ε → 0 we obtain the lower bound in (3.37). This
finishes the proof of Theorem 3.1.

Remark 3.11 (The reducible case: proof of Theorem 3.2) Recall from Sect. 2.3 that
in the case that κ is reducible, one can decompose the type space S = ⋃

j S j in such
a way that κ restricted to S j × S j is irreducible and κ|Si×S j

= 0 for i �= j . Assume
that α ∈ A is connectable as defined in Sect. 2.3: for each y ∈ supp(α) there is some
j such that supp(y) ⊂ S j . Then we can argue that the lower bound in the proof of
(3.37) holds. For any j we can construct a recovery sequence as before, where we
approximate the macroscopic components by defining k(i,N ) := �Ny(i)� + 1S j for

any y(i) ∈ supp(α) to ensure that τ(k(i,N )) > 0. In the same way we approximate the
mesoscopic mass by defining ν( j) := ν1S j and k(Me, j,N ) := �Nεν( j)� + 1S j . The
rest will work out as in the proof above. The only additional observation needed is
that for any j we have that (κν( j))s = (κν)s if s ∈ S j .

On the other hand, if α ∈ A is not connectable, then we can argue that the upper
boundof theLDPholdswith I (λ, α) = ∞by additionally requiring that κN = κ for all
but finitely many N ∈ N: Indeed, there exists y ∈ supp(α) such that for any sequence

k(N ) with limN→∞ k(N )

N = y we have that τ(k(N )) = 0 and by using that κN = κ we
get that pN (k(N )) ≤ τ(k(N ))N−(|k|−1) = 0, which gives that I (λ, α) = ∞.

4 Proofs of the results from Sect. 3.3

The aim of this section is to prove the results about the connection probabilities that
where formulated in Sect. 3.3, namely Lemmas 3.4, 3.5 and Theorem 3.6. In our
presentation we focus on deriving Theorem 3.6, while the lemmas will be a by-product
of the procedure. Their proofs can be found after Lemma 4.8.

The idea for the proof of Theorem 3.6 is to construct a sequence of graphs that
contain with high probability a macroscopic component with the desired type con-
figuration. In order to understand how to choose the parameters correctly we have to
understand the characteristic equation (2.4) and how it emerges from the generating
function of weighted trees. This will be done in Sect. 4.1. In Sect. 4.2 we will col-
lect estimates that provide the link between the weighted trees and the connection
probabilities of the graph and finally prove Theorem 3.6, which is a consequence of
Lemmas 4.10 and 4.13.
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4.1 The characteristic equation and tree combinatorics

In this section we discuss a power series representation of the solution of fixed point
equation (2.4). This will be crucial both in the proof of Theorem 3.6 and in the analysis
of the minimizers of the rate function in Sect. 6.

We rewrite the equation in the following way. Fix ν = (νs)s∈S ∈ [0,∞)S . We say
that ν∗ = (ν∗

s )s∈S is a solution to the characteristic equation with respect to ν if

ν∗
s e

−(κν∗)s = νse
−(κν)s , s ∈ S. (4.1)

Recall that this is equivalent to the characteristic equation (2.11) that was studied in
[7] via the substitution ν = μ and ρ = 1 − dν∗

dν . However, we will need Eq. (4.1) on
different occasions and for several choices of ν. Note that any solution ν∗ to (4.1) is
necessarily non-negative and for any s ∈ S we have that ν∗

s > 0 if and only if νs > 0.
Also note that ν itself is always a solution. Whether there exists a non-trivial solution
ν∗ (i.e., ν∗ �= ν) or not will turn out to depend on the quantity Σ(κ, ν), introduced in
(2.2) and (2.3):

Σ(κ, ν) = ‖Tκ,ν‖ν = sup
{
‖Tκ,ν f ‖ν : f ∈ [0,∞)S , ‖ f ‖ν = 1

}

= sup

⎧
⎪⎨

⎪⎩

⎛

⎝
∑

r∈S
νr

(
∑

s∈S
κ(r , s) f (s)νs

)2
⎞

⎠

1/2

: f ∈ [0,∞)S ,
∑

r∈S
νr f (r)

2 ≤ 1

⎫
⎪⎬

⎪⎭
,

(4.2)

where we write ‖ · ‖ν for the norm on L2(RS , ν) and also for the corresponding
operator norm. We note that Σ(κ, ν) is equal to the spectral radius of the matrix
Tκ,ν = (κ(r , s)νs)r ,s∈S , as is seen from an elementary analysis of (4.2), also using
Frobenius eigenvalue theory. Indeed, the variational equations for the maximizer f in
(4.2) (with

∑
r νr f (r)2 = 1 instead of ≤ 1) say that f is a positive eigenvector of

the matrix T 2
κ,ν . Since also the (up to positive multiples, unique) positive eigenvector

of Tκ,ν is a positive eigenvector of T 2
κ,ν , we have that f is the Frobenius eigenvector

of Tκ,ν . The corresponding Frobenius eigenvalue, i.e., the spectral radius, is equal to
Σ(κ, ν).

Another elementary application of Frobenius eigenvalue theory yields that the map
ν 	→ Σ(κ, ν) is non-decreasing with respect to componentwise ordering.

Now we cite the results from [7] regarding the solutions of the characteristic
equation.

Lemma 4.1 Let ν ∈ [0,∞)S .

(i) If Σ(κ, ν) ≤ 1, then the only solution ν∗ to the characteristic equation (4.1)
satisfying ν∗ ≤ ν is given by ν∗ = ν.

(ii) If Σ(κ, ν) > 1, then there exists a solution ν∗ to (4.1) that satisfies ν∗ ≤ ν and
ν∗ �= ν. If additionally κ is irreducible, then ν∗ is the only solution to (4.1) that
satisfies ν∗ ≤ ν and ν∗ �= ν. Further, Σ(κ, ν∗) < 1.
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Proof See Theorem 6.2 and Theorem 6.7 in [7] and substitute ρ = 1 − dν∗
dν . ��

Our aim is to verify the following.

Proposition 4.2 Let ν ∈ [0,∞)S . Then for any r ∈ S

∑

k∈NS
0

τ(k)kr
∏

s∈S

(νse−(κν)s )ks

ks ! = ν∗
r (4.3)

where ν∗ is the smallest solution to (4.1).

The result of Proposition 4.2 will be used in Sect. 4.2 to derive the asymptotics
of the probability that a macroscopic set of vertices is connected. Further, it will be
used in Sect. 6 to optimize the microscopic part of the rate function. The left-hand
side of Eq. (4.3), when divided by νr , is equal to the extinction probability of the
branching process that we mentioned in Sect. 2.2. This observation, together with
additional results from [7], is already enough to prove Proposition 4.2. However, we
will provide a different proof that mainly uses the structure of the power series and
additionally gives us a refined control of the convergence of the series, thanks to the
estimates given in Lemma 4.5. They will be used later to bound probabilistic terms
that we derive from components of mesoscopic sizes, but also in Sect. 6 where we
need uniform convergence for a certain family of power series.

We now prepare for the proof of Proposition 4.2. We define a function Γ =
(Γr )r∈S : [0,∞)S → [0,∞)S by putting, for θ = (θs)s∈S ∈ [0,∞)S ,

Γr (θ) :=
∑

k∈NS
0

τ(k)kr
∏

s∈S

θ
ks
s

ks ! ∈ [0,∞] for r ∈ S. (4.4)

The idea of the proof is to show that θ 	→ Γ (θ) is the inverse of the function ν 	→
θ(ν) := νe−κν on the domain {ν[0,∞)S : Σ(κ, ν) ≤ 1}. It turns out that this is an
easy example of a technique known as Lagrange inversion, where directed trees are
used to extract the variables of a power series, see [25, 26] for more general results
on this topic. The relation of our combinatorial quantity τ to directed trees is given
in the following lemma. The second statement will be useful to derive a criterion for
analyticity of the power series defined in (4.4).

Lemma 4.3 Let k ∈ N
S
0 and r ∈ S. Then the following holds.

1. Let
−→T r (k) denote the set of directed trees with vertex set {1, . . . , |k|}, root of type

r and edges directed away from the root. We use the convention that
−→T r (0) = ∅.

Then

τ(k)kr =
∑

T∈−→T r (k)

∏

(i, j)∈E(T )

κ(xi , x j ). (4.5)
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2. Write S0 := supp(k) ⊂ S and
−→
Tr (S0) for the set of all directed trees with vertex set

S0, root vertex given by r and edges directed away from the root.We set
−→
Tr (∅) = ∅.

Then

τ(k)kr =
⎛

⎝
∏

s∈S0
(κk)ks−1

s

⎞

⎠ × Δr (k) (4.6)

where

Δr (k) =
∑

A∈−→
Tr (S0)

∏

(s,s′)∈E(A)

κ(s, s′)ks . (4.7)

Proof (1) Given some vertex i ∈ [|k|] of type r , we can turn any undirected tree from
T (k) uniquely into a directed tree that has vertex i as its root by giving to each edge
the direction away from the root. For each undirected tree T in T (k) there are kr ways
to choose the root, hence the weight of T appears kr times on the right-hand side of
(4.5).

(2)We use the formula derived in [4, Theorem 2] with xs,s′,i := κ(s, s′) = κ(s′, s).
Note that in [4] the edges of the trees are directed towards the root. Adapted to our
notation their formula reads as

∑

T∈−→T r (k)

∏

s,s′∈S0
κ(s, s′)#{(i, j) : xi=s,x j=s′} =

⎛

⎝
∏

s∈S0
(κk)ks−1

s

⎞

⎠ × Δr (k). (4.8)

By (4.5) we have that

τ(k)kr =
∑

T∈−→T r (k)

∏

(i, j)∈E(T )

κ(xi , x j ) =
∑

T∈−→T r (k)

∏

s,s′∈S0
κ(s, s′)#{(i, j) : xi=s,x j=s′},

so together with (4.8) we have proven equation (4.6). Note that in the case r /∈ S0, we
have that

−→
Tr (S0) = ∅, so both sides of (4.8) are 0. ��

Lemma 4.4 If Γ is analytic in θ (i.e., Γr is analytic in θ for all r ∈ S), then for all
r ∈ S

Γr (θ) = θr exp ((κΓ (θ))r ) . (4.9)

Proof Using formula (4.5) we can rewrite the power series using directed trees. Given

a tree T in
−→T r (k) and some h ∈ N

S
0 we say that a vertex i ∈ [|k|] is of parent-type

(r , h) if i is of type r and points to exactly hs vertices of type s for any s ∈ S. In
that case, its weight is defined by w(i) = ∏

s∈S κ(r , s)hs =: gr ,h . The weight of the
tree T is defined by w(T ) := ∏|k|

i=1 w(i). Defining gr (x) = ∑
h∈NS

0
gr ,h

∏
s∈S

xhss
hs ! ,
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for x ∈ R
S , we can apply the multinomial theorem to see that gr (x) = exp{(κx)r }.

Althogether, we have that

Γr (θ) =
∑

k∈NS
0

⎛

⎜
⎝

∑

T∈−→T r (k)

w(T )

⎞

⎟
⎠

∏

s∈S

θ
ks
s

ks ! ,

which is an exponential generating function, evaluated in θ ∈ R
S and shall be under-

stood as a formal power series. We now cite a fact from [23] (see the proof of Theorem
1):

Γr (θ) = θr
∑

h∈NS
0

gr ,h
∏

s∈S

(Γs(θ))hs

hs ! = θr gr (Γ (θ)), r ∈ S, (4.10)

where all equations denote equality of formal power series, i.e., we have equality of the
coefficients of θ

ks
s . In particular, Γr (θ) might be infinite. However, by our assumption

that Γ is analytic in θ , Eq. (4.10) holds in the usual sense, i.e., all series in (4.10)
converge absolutely. Recalling that gr (x) = exp{(κx)r }, we have verified that (4.9)
holds.

The idea behind proving (4.10) is to decompose the set of trees with root of type r
into sets of trees with root of parent-type (r , h) for each h ∈ N

S
0 . For fixed h ∈ N

S
0 ,

one then decomposes a tree with root of parent-type (r , h) into a single vertex of type
r and exactly hs many trees with root of type s for each s ∈ S. By studying how this
decomposition affects the exponential generating function, one obtains the formula. ��

Next, we derive a criterion for analyticity of the map θ 	→ Γ (θ), i.e., about the
domain of convergence of the corresponding power series. We need to introduce the
quantity

χ(κ, θ) = inf
{〈

v, log
v

(κv)θ

〉
: v ∈ M1(S), v � θ

}
, (4.11)

where M1(S) denotes the set of probability measures on S. One can easily see that
θ 	→ χ(κ, θ) is lower semi-continuous.

Lemma 4.5 1. For any θ ∈ [0,∞)S and r ∈ S,

∑

k∈NS
0 : |k|=n

τ(k)kr
∏

s∈S

θ
ks
s

ks ! = eo(n)e−n[χ(κ,θ)−1], n → ∞. (4.12)

2. Fix θ ∈ [0,∞)S . If χ(κ, θ) > 1, then for any r ∈ S the series Γr defined in (4.4)
is analytic in θ . If on the other hand χ(κ, θ) < 1, then Γr (θ) diverges.

3. For arbitrary ν ∈ (0,∞)S and θs(κ, ν) = νse−(κν)s , s ∈ S, we have that

χ(κ, θ(κ, ν)) = Σ(κ, ν) − logΣ(κ, ν) ≥ 1 (4.13)
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with equality if and only if Σ(κ, ν) = 1.

Proof (1)Wewill use the identity (4.6) fromLemma4.3. Let n ∈ N.WewriteM(n)
1 (S)

for the set of all probability measures v on S satisfying nv ∈ N
S
0 . For any k ∈ N

S
0

with |k| = n we substitute k = nv to get

∑

k∈NS
0 : |k|=n

τ(k)kr
∏

s∈S

θ
ks
s

ks ! =
∑

v∈M(n)
1 (S)

⎛

⎝
∏

s∈supp(v)

(n(κv)s)
nvs−1

⎞

⎠
∏

s∈S

θ
nvs
s

(nvs)!Δr (nv)

=
∑

v∈M(n)
1 (S)

eo(n)n−|supp(v)|en
[
1−∑

s vs log
vs

(κv)s θs

]
Δr (nv),

where we used Stirlings formula N ! = NN e−N eo(N ) as N → ∞ and assumed

throughout that k � θ and v � θ respectively. Note that
∣∣∣M(n)

1 (S)

∣∣∣ = eo(n) and

that the terms n−|S| and Δr (nv) are only polynomial in n, thus also of order eo(n).
Collecting everything, we arrive at (4.12).

(2) As a consequence of (1) we get the following. If χ(κ, θ) > 1, then the series
Γr (θ) converges and since the mapping θ 	→ χ(κ, θ) is lower-semicontinuous, we get
that Γr is analytic in θ . If χ(κ, θ) < 1, then Γr (θ) diverges.

(3) Put φ(x) = x log x for x ≥ 0. Inserting the definition θs(ν) = νse−(κν)s , s ∈ S,
we can estimate for any v ∈ M1(S)

〈
v, log

v

(κv)θ(ν)

〉
=

〈
v, log

v

(κv)ν

〉
+ 〈v, κν〉

= 〈ν, κv〉
∑

r∈S

(κv)rνr

〈ν, κv〉 φ
( vr

(κv)rνr

)
+ 〈v, κν〉

≥ 〈ν, κv〉φ
( ∑

r vr

〈ν, κv〉
)

+ 〈v, κν〉 = − log〈ν, κv〉 + 〈ν, κv〉

where the estimate is due to Jensen’s inequality applied to the convex function φ.
Further, we used the fact that v is a probability measure and the symmetry of κ . Since
φ is even strictly convex, the application of Jensen’s inequality gives an equality if and
only if v is such that the map S " r 	→ vr/((κv)rνr ) is constant, i.e., if there is some
a ∈ R such that (κv)r = a vr

νr
for any r ∈ S. Clearly, a > 0. It follows that 〈ν, κv〉 = a

and that w = (vr/νr )r∈S is an eigenvector of the matrix Tκ,ν = (κ(r , s)νs)r ,s∈S with
eigenvalue a. Our assumption ν > 0 and the irreducibility of κ imply that Tκ,ν is also
irreducible. Hence the Perron–Frobenius theorem gives that, if a would be smaller
than the spectal radius Σ(κ, ν) of Tκ,ν , then w could not be non-negative, implying
that v = (wrνr )r would not be in M1(S). Hence, a is necessarily equal to Σ(κ, ν)

and Eq. (4.13) holds. Since x − 1 ≥ log x holds for any x ≥ 0 with equality if and
only if x = 1, the rest of the statement in (3) holds. ��

Now, we can give the proof of Proposition 4.2.
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Proof of Proposition 4.2 We will proceed in three steps and weaken the assumptions
on ν gradually.

(1) Assume that ν ∈ (0,∞)S and that κ is irreducible with respect to ν. Consider
the case Σ(κ, ν) �= 1, then by Lemma 4.5 we have that χ(κ, θ(ν)) > 1 and thus for
any r ∈ S the power series Γr defined as in (4.4) is analytic in θ(ν). Applying Lemma
4.4 and using the definition of θ(ν) we get that

νr exp(−(κν)r ) = θr (ν) = Γr (θ(ν)) exp(−(κΓ (θ(ν)))r ) (4.14)

for any r ∈ S. In other words, Γ (θ(ν)) is a solution of (4.1). Now, Lemma 4.1 gives
that ν = Γ (θ(ν)) if Σ(κ, ν) ≤ 1 and the claim follows. If Σ(κ, ν) > 1, then by
Lemma 4.1 there exists (a strictly positive) ν∗ ≤ ν, ν∗ �= ν, solving Eq. (4.1) and
satisfying Σ(κ, ν∗) < 1. So, Γ (θ(ν)) = Γ (θ(ν∗)) = ν∗ follows by applying the
previous case.

Now, consider the case Σ(κ, ν) = 1, which is equivalent to χ(θ(ν)) = 1. Let
ν(n) ↗ ν, in particular Σ(κ, ν(n)) < 1 for all n. Then by Fatou’s lemma and the first
case we get that for any r ∈ S

Γr (θ(ν)) =
∑

k∈NS
0

τ(k)kr
∏

s

θs(ν)ks

ks ! ≤ lim inf
n→∞

∑

k∈NS
0

τ(k)kr
∏

s

θs(ν
(n))ks

ks !

= lim inf
n→∞ ν(n)

r = νr . (4.15)

Put ν∗ := Γ (θ(ν)) and assume towards a contradiction that ν∗ �= ν. Then there
exists s ∈ S such that ν∗

s < νs and by irreducibility of κ there exists at least one s′
such that κ(s′, s) > 0, and thus κ(s′, s)ν∗

s < κ(s′, s)νs . Hence the Perron–Frobenius
theorem implies that Σ(κ, ν∗) < 1. Therefore the power series is analytic in θ(ν), so
by Lemma 4.4 and the definition of θ(ν) we get that ν∗ exp(−κν∗) = ν exp(−κν).
Applying Lemma 4.1 yields ν∗ = ν in contradiction to our assumption.

(2) Let ν ∈ (0,∞)S and an arbitrary κ . Then we can decompose S into disjoint
sets S j , j ∈ J , such that κ( j) = κ|S j×S j is irreducible with respect to ν( j) = ν|S j for
any j ∈ J . For any j ∈ J we can apply (1) to get that

Γ
( j)
r (θ(ν( j))) :=

∑

k∈NS j
0

τ(k)kr
∏

s∈S j

(ν( j)e−(κ( j)ν( j))s )ks )

ks ! = ν
(∗, j)
r , r ∈ S j ,

(4.16)

where ν( j) solves Eq. (4.1) on S j . Observe that if k ∈ N
S
0 is such that supp(k) �⊂ S j

holds for any j ∈ J , then τ(k) = 0. Consequently for fixed r and j such that r ∈ S j

we get that

Γr (θ(ν)) = Γ
( j)
r (θ(ν( j))) (4.17)
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where we also used that (κν)s = (κ( j)ν( j))s for s ∈ S j holds by construction. Define

ν∗ = (ν∗
s )s∈S by putting ν∗

s := ν
(∗, j)
s if s ∈ S j . Then it is easy to verify that ν∗ is the

smallest solution to (4.1).
(3) Let ν ∈ [0,∞)S . Observe that for r /∈ supp(ν) we have Γr (θ(ν)) = 0. The rest

follows by restricting to supp(ν) and applying (2). ��

Remark 4.6 (Connection with branching processes) For the reader who is familiar
with the results and techniques used in [7], a natural question that arises is about the
connection between the power series that we study in Proposition 4.2 and the multi-
type branching process that is used in [7] to explore the clusters of the random graph,
as we mention in Sect. 2.2. Indeed, both objects carry the same information, as is
shown in the following lemma.

Lemma 4.7 Fix ν ∈ (0,∞)S . Let X be a multi-type branching process, where the
individuals are equipped with types from S and an individual of type r ∈ S gives birth
to a number of individuals of type s ∈ S that is Poisson distributed with parameter
κ(r , s)νs , independently for each s ∈ S. LetΞ be the vector inN

S
0 that counts the total

progeny of the process X according to their types. For r ∈ S let Pr be the probability
measure under which X starts with one single individual of type r . Then

Pr (Ξ = k) = τ(k)
kr
νr

∏

s∈S

(νse−(κν)s )ks

ks ! , k ∈ N
S
0 . (4.18)

We omit the proof of the lemma, which comes from combinatorial manipulations
and properties of the Poisson distribution of the offspring.

As a consequence, the result of Proposition 4.2 can be reformulated in terms of the
branching process X . If ρ∗

r denotes the probability that the process X goes extinct
under Pr , then

ρ∗
r =

∑

k∈NS
0

Pr (Ξ = k) = 1

νr

∑

k∈NS
0

τ(k)kr
∏

s∈S

(νse−(κν)s )ks

ks ! , r ∈ S. (4.19)

Furthermore, by substituting ρ∗ := ν∗
ν
, the statement of Proposition 4.2 is equivalent

to the fact that the survival probabilityρ = 1−ρ∗ is themaximal non-negative solution
to

ρ = 1 − e−κ(ρν)

as stated in Theorem 2.5.
Recall that, in the single-type case |S| = 1, the right-hand side of (4.18) is identical

to the Borel distribution on N0. Hence, we call it also in the general case where S is
a finite set the multi-type Borel distribution and denote it by Boκ,ν . It is a probability
measure on N

S
0 if and only if ρ∗ = 1.
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4.2 Proofs for the asymptotics for the connection probabilities

Using the results from Sect. 4.1 we can now study the connection probabilities for the
different cases, namely for microscopic, mesoscopic and macroscopic clusters.

The first result provides the link between the connection probabilities of micro-
scopic clusters and the weight of spanning trees. Its proof is elementary and uses
well-known arguments. As a consequence we can prove Lemmas 3.4 and 3.5. Recall
the definition of τ(k) from (3.6) and that κ ∈ [0,∞)S×S is the limiting matrix of the
sequence κN as N → ∞. We define τN (k) as in (3.6) with respect to κN instead of
κ . We will assume that κN (r , s) ≤ N for any r , s ∈ S, which holds in the finite type
setting if N ∈ N is large enough.

Lemma 4.8 (Bounds for the connection probability of microscopic clusters) For any
N ∈ N and k ∈ N

S
0 \{0},

(
1 − ‖κN‖∞

N

)|k|2/2
≤ pN (k)

N 1−|k|τN (k)
≤ 1. (4.20)

Proof We start with the upper bound. For T ∈ T (k) we denote by ΩT the event
that the edge set E(T ) of T is contained in the edge set of G(|k|, x, 1

N κN ). Since
G(|k|, x, 1

N κN ) has to contain at least one spanning tree in order to be connected, we
have

pN (k) = P

( ⋃

T∈T (k)

ΩT

)
≤

∑

T∈T (k)

P(ΩT )

=
∑

T∈T (k)

∏

{i, j}∈E(T )

κN
(
xi , x j

)

N
≤

(
1

N

)|k|−1

τN (k),

where we used the fact that each T ∈ T (k) has exactly |k| − 1 edges.
Now we continue with the lower bound. For T ∈ T (k) we denote by Ω̃T the

event that the edge set of G(|k|, x, 1
N κN ) is equal to E(T ). Note that the events Ω̃T ,

T ∈ T (k), are disjoint and therefore

pN (k) ≥
∑

T∈T (k)

P(Ω̃T ) =
∑

T∈T (k)

( ∏

{i, j}∈E(T )

κN (xi , x j )

N

)

×
∏

{i, j}/∈E(T )

(
1 − κN (xi , x j )

N

)

≥
(
1 − ‖κN‖∞

N

)(|k|
2 )−(|k|−1) (

1

N

)|k|−1

τN (k)

≥
(
1 − ‖κN‖∞

N

)|k|2/2 (
1

N

)|k|−1

τN (k).

��
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Proof of Lemma 3.4 Equation (3.17) is a Corollary of the estimate (4.20) and the fact
that the left-hand side of (4.20) converges to 1, as N → ∞, since |k| does not depend
on N and ‖κN‖∞ is bounded in N . ��
Proof of Lemma 3.5 For fixed k ∈ N

S
0 denote Sk := supp(k). For pN (k) and r ∈ Sk

we use the upper bound in (4.20) from Lemma 4.8 and also the formula for τN (k)kr
given in (4.6) to obtain

pN (k) ≤ N 1−|k|τN (k) = N 1−|k| 1
kr

(∏

s∈Sk
(κNk)

ks−1
s

)
ΔN ,r (k), (4.21)

where ΔN ,r (k) is defined as in (4.7) but with respect to the kernel κN . Now, observe
that

ΔN ,r (k) =
∑

A∈−→T r (Sk )

∏

{s,s′}∈E(A)

κN (s, s′)ks′ ≤ ‖κN‖|Sk |−1∞ |Tr (Sk)|
∏

s∈Sk\{r}
ks, (4.22)

and by Cayley’s formula we have that |Tr (Sk)| = |Sk ||Sk |−1. Hence, combining
Eq. (4.21) with the inequality (4.22) gives (3.18). ��

Now we turn to the proof of Theorem 3.6, which comes as a consequence
of the following Lemmas 4.10–4.13. The intuitive idea of the proof is to embed
G(|k(N )|, x, 1

N κN ) in a larger random graph with vertex set given by somem(N ) ∈ N
S
0

such that the component k(N ) appears with high probability as the typical giant com-
ponent in this graph. We make heavy use of the expansion in Lemma 4.9, which is a
straightforward multi-type generalization of equation (4) from [24].

Lemma 4.9 Fix m ∈ N
S
0 and r ∈ S such that mr ≥ 1. Then the following formula

holds

1 =
∑

h∈NS
0 : er≤h≤m

[ ∏

s∈S

(
ms − δr ,s

hs − δr ,s

)]
pN (h)

∏

s,s̃∈S

(
1 − κN (s, s̃)

N

)hs (ms̃−hs̃ )
. (4.23)

Proof Consider the graph G(|m|, x, 1
N κN ) where x is a fixed vector compatible with

m. Fix a vertex i ∈ {1, . . . , |m|} of type r . For fixed h ∈ N
S
0 with er ≤ h ≤ m denote

by Ω(h) the event that the connected component containing i is given by some set
C ⊂ {1, . . . , |m|} that contains exactly hs vertices of type s for each s ∈ S. We claim
that the summand on the right-hand side of (4.23) is the probability of Ω(h). Indeed,
there are

∏
s∈S

(ms−δr ,s
hs−δr ,s

)
possibilities to choose a set C\{i} from {1, . . . , |m|}\{i}.

The probability that C is the connected component containing vertex i is given as the
product of pN (h), i.e., the probability that it is connected, and the probability that no
edge exists between C and its complement {1, . . . , |m|}\C , which is easily seen to be
equal to

∏
s,s̃∈S(1− κN (s,s̃)

N )hs (ms̃−hs̃ ). Equation (4.23) follows by the observation that
the events Ω(h), er ≤ h ≤ m, form a decomposition of the underlying probability
space. ��
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The idea is now to pick m = m(N ) in such a way that the summand for h = k(N )

is maximal, such that, on the exponential scale, the right-hand side of (4.23) can be
replaced by just this summand. It will turn out that the correct choice is m(N ) ∼ Nν

with νr = yr/(1−e−(κ y)r ) for r ∈ S. Intuitively, this choice of ν comes from inverting
equation (2.11): indeed one can see that y = ρν where ρ solves

ρ = 1 − e−Tκ,νρ .

Notice that the assumption y � κ y is crucial for ν to be well-defined. While in the
upper bound of Lemma 4.10 this is not important (in that case we see from (4.25) that
the upper bound of pN (k(N )) converges to 0), we need it in order to get a non-trivial
lower bound in Lemma 4.12.

Lemma 4.10 (Upper bound in (3.20)) Let k ∈ N
S
0 with kr ≥ 1 for some r ∈ S. Let

m ∈ N
S
0 such that m ≤ k. Then

pN (k) ≤
[

∏

s∈S

(
ms − δr ,s

ks − δr ,s

)]−1 ∏

s,s̃∈S

(
1 − κN (s, s̃)

N

)−ks (ms̃−ks̃ )

. (4.24)

Fix y ∈ [0, 1]S\{0}. Let {k(N )}N∈N be a sequence in N
S
0 such that limN→∞ k(N )

r
N = yr

for all r ∈ S. Then

lim sup
N→∞

1

N
log pN (k(N )) ≤

∑

r∈S
yr log

(
1 − e−(κ y)r

)
, (4.25)

where the right-hand side takes the value −∞ when y �� κ y.

Proof The inequality (4.24) is a direct consequence of (4.23), where from the right-
hand side we pick only the summand for h = k, which is present since m ≥ k.

Let us focus now on (4.25). Let m(N ) ∈ N
S
0 be such that m(N )

r : =
�k(N )

r (1 − e− 1
N (κk(N ))r )−1� for all r ∈ S, therefore m(N ) ≥ k(N ). Fix r ∈ S such

that k(N )
r ≥ 1 and consider (4.24).

For brevitywewillwrite k andm instead of k(N ) andm(N ).With the help of Stirling’s
formula n! = (n/e)neo(n) and the exponential limit theorem limn→∞(1 + c

n )n = ec

and some elementary calculation, we get that, as N → ∞,

[
∏

s∈S

(
ms − δr ,s

ks − δr ,s

)]
∏

s,s̃∈S

(
1 − κN (s, s̃)

N

)ks (ms̃−ks̃ )

= exp
(

−
〈
k, log

k

m

〉
−

〈
m − k, log

m − k

m

〉)
× exp

(
− 〈m − k, κk〉

)
eo(N )

= exp
(

− 〈
k, log(1 − e− 1

N κk)
〉)
eo(N ),
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where in the last step we used that k/m = 1 − e− 1
N κk (by the definition of m). Now,

we insert the asymptotics in (4.24) and see that

pN (k(N )) ≤ exp

(

N
∑

r∈S

k(N )
r

N
log

(
1 − e− 1

N (κk(N ))r
)
)

eo(N ).

Consequently, the claim in (4.25) follows, including the convention for y �� κ y. ��
In order to prove the lower bound we need the following auxiliary lemma.

Lemma 4.11 For h′, h ∈ N
S
0 with h′ ≤ h we have, for any N ∈ N,

pN (h′) ≤ pN (h)
∏

r∈S

(
1 − e− 1

N (κN h′)r
)−(hr−h′

r )

. (4.26)

Proof Let I := [|h|] and let x = (xi )i∈I be compatible with h, i.e.,
∑

i∈I δxi = h.
Consider the graph G := G(|h|, x, 1

N κN ) on the vertex set I . There exists I ′ ⊂ I
such that x ′ = (xi )i∈I ′ is compatible with h′. The subgraph G ′ of G that is induced
by I ′ can be identified with G(|h′|, x ′, 1

N κ ′
N ), where κ ′ denotes the restriction of κ to

I ′ × I ′. If G ′ is connected and for any i ∈ I\I ′ there is an edge {i, j} ∈ E(G) with
j ∈ I ′, then also G is connected. Therefore, using that 1 − x ≤ e−x for any x ∈ R,
we have

pN (h) ≥ pN (h′)
∏

r∈S

(
1 −

∏

s∈S

(
1 − κN (r , s)

N

)h′
s
)hr−h′

r

≥ pN (h′)
∏

r∈S

(
1 − e− 1

N (κN h′)r )hr−h′
r .

��
In the following lemmaswe give the lower bound for the connection probabilities in

the macroscopic setting. It is sufficient to restrict to the case y � κ y, since otherwise
the limit is already ensured to be −∞ by Lemma 4.10.

Lemma 4.12 (Lower bound in (3.20) for irreducible κ) Fix y ∈ (0, 1]S satisfying
y � κ y andassume thatκ is irreduciblewith respect to y. Let {k(N )}N∈N be a sequence

in N
S
0 such that limN→∞ k(N )

r
N = yr for all r ∈ S and assume that τ(k(N )) > 0 holds

for all N ∈ N. Then

lim inf
N→∞

1

N
log pN (k(N )) ≥

∑

r∈S
yr log

(
1 − e−κ yr

)
. (4.27)

Proof For δ ≥ 0 satisfying 2δ < inf{ys : s ∈ S} define y(δ) := y − δ as well as

ν(δ)
s := y(δ)

s

1 − e−(κ y(δ))s
, for s ∈ S. (4.28)
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For purely technical reasons that will become apparent later, we cannot work directly
with ν := ν(0). Note that for all δ ≥ 0 our construction ensures that with respect to
ν(δ) the characteristic equation (4.1) has a non-trivial solution, which is equivalent to
Σ(κ, ν(δ)) > 1 by Lemma 4.1. Let m(N ,δ) ∈ N

S
0 be such that m(N ,δ)

r = �(k(N ) −
Nδ)(1 − e− 1

N (κ(k−Nδ))r )−1�. In particular, limN→∞ m(N ,δ)

N = ν(δ). Clearly, we have
that ν(δ) → ν as δ → 0. Note that y ≤ ν. Moreover, there exist δ∗ > 0 and N0 such
that m(N ,δ) ≥ k(N ) for all δ ≤ δ∗ and N ≥ N0, which we will assume from now on.
For brevity we will write k and m(δ) instead of k(N ) and m(N ,δ).

Fix r ∈ S with yr > 0 and note that by the assumption y � κ y this implies
(κ y)r > 0 and thus yr < νr . From here on, h will always denote an element in the set
{h ∈ N

S
0 : er ≤ h ≤ m(δ)}. For such h abbreviate

a(δ)
N (h) :=

[
∏

s∈S

(
m(δ)

s − δr ,s

hs − δr ,s

)]

pN (h)
∏

s,s̃∈S

(
1 − κN (s, s̃)

N

)hs (m(δ)

s̃ −hs̃ )
. (4.29)

Recall from Lemma 4.9 that the sum of a(δ)
N (h) over the mentioned h’s is equal to

one. In the following, we will split this sum into the three parts where |h| ≤ R, and
R < |h| ≤ εN and |h| > εN for some large R ∈ N and some small ε > 0. We
will show that the first part converges towards something in (0, 1), the second part
vanishes, and we will identify the exponential rate of the other one explicitly via some
Laplace approximation. Explicitly, we will prove the following three claims:

Claim 1: lim sup
δ↓0

lim sup
R→∞

lim sup
N→∞

∑

h : |h|≤R

a(δ)
N (h) ≤ 1 − yr

νr
∈ [0, 1). (4.30)

Claim 2: If ε is small enough, for some sufficiently small δ0 > 0 and some sufficiently
large N0 ∈ N,

lim sup
R→∞

sup
N≥N0

sup
δ∈(0,δ0]

∑

h : R<|h|≤εN

a(δ)
N (h) = 0. (4.31)

Claim 3: For any δ > 0,

∑

h : |h|>εN

a(δ)
N (h) ≤ eo(N )eNC(δ)e−N f̃ (y,ν) pN (k) + εN , (4.32)

for some sequence (εN )N = (εN (δ))N that converges to 0, where f̃ (y, ν) =
〈y, log(1 − e−κ y)〉, and C(δ) is a constant only depending on δ and vanishing as
δ ↓ 0.

Let us first explain how the assertion of the lemma follows from these three claims.
We start by using Lemma 4.9 and Claim 3 to obtain, in the limit as N → ∞,

1 −
∑

h : |h|≤R

a(δ)
N (h) −

∑

h : R<|h|<εN

a(δ)
N (h) ≤ eo(N )eNC(δ)e−N f̃ (y,ν) pN (k) + εN .
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By (4.30) and (4.31), the left hand side is not smaller than yr/νr , when taking the
limits as N → ∞, followed by R → ∞ and δ ↓ 0, if ε is small enough. In particular,
the left-hand side is bounded away from zero when taking these limits. Hence, the
exponential rate of the right-hand side as N → ∞ is nonnegative. This implies that
lim infN→∞ 1

N log pn(k) ≥ f̃ (y, ν), which is the assertion of the lemma. It remains
to prove the three claims.

Proof of Claim 3:Aswe explained in the proof of Lemma 4.10, the exponential rate
of the two products in the definition of a(δ)

N (h) can easily be identified with the help
of Stirling’s formula and the exponential limit theorem limn→∞(1 + c

n )n = ec and

elementary calculations. Indeed, for any sequence h(N ) such that limN→∞ h(N )

N = x

exists and x ∈ [0, 1]S\{0}, and for any δ > 0,

a(δ)
N (h(N )) = eo(N )e−N f (x,ν(δ)) pN (h(N )), N → ∞, (4.33)

where we introduce f (x, x̃) = 〈x, log x
x̃ 〉+ 〈x̃ − x, log x̃−x

x̃ 〉+ 〈x̃ − x, κx〉 for x, x̃ ∈
[0, 1]S\{0} and x ≤ x̃ . We can write

f (x, x̃) =
∑

s∈S
x̃s

[ xs
x̃s

log
xs
x̃s

1 − e−(κx)s
+

(
1 − xs

x̃s

)
log

1 − xs
x̃s

e−(κx)s

]

+
∑

s∈S
xs log(1 − e−(κx)s )

= 〈x̃, H(x; x̃)〉 + 〈x, log(1 − e−κx )〉,

(4.34)

where we write H = (Hs)s∈S and for s ∈ S we write Hs(x; x̃) for the entropy of the
Bernoulli distribution with parameter xs/x̃s with respect to the one with parameter
1 − e−(κx)s .

The second term in the second line of (4.34) will be handled jointly with the
exponential rate of pN (h(N )), so let us discuss here the minimum of the first. Since
every component of H is an entropy between probability measures, we have that
H(x, ν(δ)) ≥ 0 pointwise for all x ≤ ν(δ) with equality if and only if x

ν(δ) = 1− e−κx .

As κ is irreducible with respect to ν(δ) the latter condition is true if and only if
x = y(δ) or x = 0, see Lemma 4.1. Hence, we have seen that, for ε sufficiently
small, minx : |x |≥ε〈ν(δ), H(x; ν(δ))〉 = 〈ν(δ), H(y(δ); ν(δ))〉.

Let us now prove (4.32). The work we still have to do is to combine (4.33) with
estimates for the pN -term from Lemmas 4.10 and 4.11, and we have to distinguish
the cases that h is left of k but close to k (then Lemma 4.11 applies), or bounded away
from k (then Lemma 4.10 suffices). Let h(N ) be such that |h(N )| > εN and assume
that x := limN→∞ h(N )

N exists. Note that x ∈ [0, 1]\{0}. We first examine the case
where h(N ) ∈ [k − 2Nδ, k] for large N and hence |x − y| ≤ 2δ. With the help of
(4.33) and using the estimate from Lemma 4.11 we get that

a(δ)
N (h(N )) ≤ eo(N )eN ( f (y,ν)− f (x,ν(δ))−〈y−x,log(1−e−κx )〉)e−N f (y,ν) pN (k)
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≤ eo(N )eNC(δ)e−N f (y,ν) pN (k) (4.35)

where

C(δ) = sup
x : |x−y|≤2δ

| f (y, ν) − f (x, ν(δ)) − 〈y − x, log(1 − e−κx )〉| (4.36)

and it can be easily verified that C(δ) → 0 as δ → 0. Now, let us examine the case
h(N ) /∈ [k − 2Nδ, k] for large N , i.e., |x − y(δ)| ≥ δ. We start with (4.33) and use the
estimate (4.25) from Lemma 4.10 to get

a(δ)
N (h(N )) ≤ eo(N )e−N 〈ν(δ),H(x,ν(δ))〉 ≤ eo(N )e−NC̃(δ) (4.37)

where the number

C̃(δ) := inf
x : |x |>ε,|x−y(δ)|≥δ

〈ν(δ), H(x, ν(δ))〉 (4.38)

is strictly positive since the function x 	→ H(x, ν(δ)) is continuous and its only zeros
are at x = 0 and x = y(δ). Now, it is not hard to see that #{h ∈ N

S
0 : h ≤ m(δ)} ≤

(νN )|S| = eo(N ), hence a simple Laplace approximation argument implies that (4.32)
holds with εN := eo(N )e−NC̃(δ), which vanishes as N → ∞ since C̃(δ) > 0.

Proof of Claim 1: Applying Lemma 4.8 to pN (h) we get,for any N , R ∈ N and
δ > 0,

∑

h : |h|≤R

a(δ)
N (h)

≤ N

m(δ)
r

∑

h : |h|≤R

τN (h)hr
∏

s∈S

m(δ)
s
N

m(δ)
s −1
N · · · m(δ)

s −hs+1
N

(∏
s̃∈S (1 − κN (s,s̃)

N )m
(δ)

s̃ −hs̃
)hs

hs !

≤ N

m(δ)
r

∑

h : |h|≤R

τN (h)hr
∏

s∈S

[ 1

hs !

(
m(δ)

s

N
e−κN ( m

(δ)−h
N )s

)hs ]
,

(4.39)

where we used that 1 − x ≤ e−x for any x ∈ R in the second line. Hence,

lim sup
N→∞

∑

h : |h|≤R

a(δ)
N (h) ≤ 1

ν
(δ)
r

∑

h : |h|≤R

τ(h)hr
∏

s∈S

[ 1

hs !
(
ν(δ)
s e−(κν(δ))s

)hs ]
=: Λ

(δ)
R

(4.40)

Observe that by Proposition 4.2 and by the definition of ν(δ) given in (4.28), we have

that limR→∞ Λ
(δ)
R = ν

(δ)
r −y(δ)

r

ν
(δ)
r

∈ [0, 1) and clearly limδ→0 limR→∞ Λ
(δ)
R = νr−yr

νr
∈

(0, 1).
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Proof of Claim 2: For the sum on h satisfying R < |h| ≤ εN , we can use basically
the same estimates as in (4.39), but we modify the second line by now estimating

∏

s,s̃∈S

(
1 − κN (s,s̃)

N

)(m(δ)

s̃ −hs̃ )hs ≤
( ∏

s∈S
e− 1

N (κNm(δ))shs
)
e

1
N ‖κN ‖∞|h|2 , (4.41)

since we do not have that m(δ) ≥ h on this sum. This gives

∑

h : R<|h|≤εN

a(δ)
N (h) ≤ N

m(δ)
r

εN∑

n=R+1

enε‖κN ‖∞

∑

h : |h|=n

τN (h)hr
∏

s∈S

[ 1

hs !
(m(δ)

s

N
e−( 1

N κNm(δ))s
)hs]

. (4.42)

This is the main part of a power series with coefficients τ , which we studied in Lemma
4.5. Note that the term in round brackets converges to νse−(κν)s as N → ∞, followed
by δ ↓ 0. Furthermore, this vector θ(κ, ν) = νe−κν satisfies χ(κ, θ(κ, ν)) > 1, since
Σ(κ, ν) > 1 by construction (see Lemma 4.5(3)). It will turn out that this is sufficient
to estimate the sum on n against some convergent geometric series.

We pick a small threshold ε′ > 0. We may pick δ0 so small and then N0 ∈ N so
large that

m(δ)
s

N
e
−

(
1
N κNm(δ)

)

s ≤ νse
−(κν)s eε′

, δ ∈ (0, δ0], N ≥ N0, s ∈ S.

Additionally, we can also assume that N/m(δ)
r ≤ 1+ 1/νr for these δ and N . By τ we

denote the function defined as in (3.6) for the matrix κ , then, since limN→∞ κN = κ ,
we may also pick N0 so large that additionally

τN (h) ≤ τ(h)eε′|h|, h ∈ N
S
0 , N ≥ N0.

We also may and will assume that ‖κN‖∞ ≤ 1 + ‖κ‖∞ for N ≥ N0. Therefore, we
can now estimate, for δ ∈ (0, δ0] and N ≥ N0, and any R ∈ N,

∑

h : R<|h|≤εN

a(δ)
N (h) ≤ (

1 + 1
νr

) ∞∑

n=R+1

enε(1+‖κ‖∞)e2ε
′n

∑

h : |h|=n

τ(h)hr
∏

s∈S

[ 1

hs !
(
νse

−(κν)s
)hs

]
.

Now we can apply (4.12) in Lemma 4.5 to estimate the sum on h against
eo(n)e−n[χ(κ,θ(κ,ν))−1]. We recall that χ(κ, θ(κ, ν)) − 1 > 0 and pick now ε and
ε′ so small that the sum on n can be estimated against a convergent geometric series.
Hence, the entire sum vanishes as R → ∞, which ends the proof. ��
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In the following we want to verify the statement of Lemma 4.12 without assuming
that κ is irreducible with respect to y but still under the assumption that τ(k(N )) > 0.
What we have inmind are components k(N ) where for a certain set of types S̃ ⊂ S only
o(N ) vertices of those types are available, i.e., k(N )

s ∈ o(N ) for all s ∈ S̃. However,
these types might be necessary in order to connect the vertices with types in S\S̃. For
that case we prove in the following that on the exponential scale the asymptotics of
the connection probability pN (k(N )) are the same as in the previous lemma.

Lemma 4.13 (Lower bound in (3.20) under generalized assumptions) Fix y ∈
[0, 1]S\{0} satisfying y � κ y. Let {k(N )}N∈N be a sequence in N

S
0 such that

limN→∞ k(N )
r
N = yr for all r ∈ S and assume that {k(N )

s }N is bounded for all
s /∈ supp(y). Assume further that τ(k(N )) > 0 holds for all but finitely many N ∈ N.
Then

lim inf
N→∞

1

N
log pN (k(N )) ≥

∑

r∈S
yr log

(
1 − e−κ yr

)
. (4.43)

Proof Throughout the proof we will assume without loss of generality that S =⋂
N supp(k(N )). If y > 0 on S and κ is irreducible with respect to y, then we are

in the setting of Lemma 4.12, which yields the claim. In the other case, it always
holds that S̃ := S\supp(y) �= ∅. We decompose supp(y) into disjoint sets S j , j ∈ J ,
satisfying that the restriction of κ to S j × S j is irreducible with respect to y restricted
to S j .

We will start with the special case where k(N )
s = 1 for all s ∈ S̃ and N ∈ N. It is

easily seen that the assumption τ(k(N )) > 0 for all but finitely many N ∈ N implies
that there exists a tree T on the type set S such that

∏
{r ,s}∈E(T ) κ(r , s) > 0. Define

Ẽ := {{r , s} ∈ E(T ) : r ∈ S̃ or s ∈ S̃}. (4.44)

For every r ∈ S we now fix a vertex ir ∈ [|k(N )|] that is of type r . Note that
{ir : r ∈ S̃} already contains all the vertices with types in S̃. We will abbreviate
GN = G(|k(N )|, x, 1

N κN ). Note that the event {{ir , is} ∈ E(GN ) : {r , s} ∈ Ẽ} is inde-
pendent of the existence of edges {i, i ′}, if the types of i and i ′ are in S j for any j ∈ J .
Therefore,

pN (k(N )) ≥
[ ∏

j∈J

pN (k(N )1S j )
]

×
∏

{r ,s}∈Ẽ
P({ir , is} ∈ E(GN ))

≥
[ ∏

j∈J

pN (k(N )1S j )
]

×
∏

{r ,s}∈Ẽ

1

N
κN (r , s).
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Clearly the second product is≥ eo(N ), since κN is bounded away from zero, uniformly
in all large N . Applying Lemma 4.12 to k(N )1S j for every j ∈ J , we get that

1

N
log pN (k(N )) ≥ o(1) +

∑

j∈J

∑

r∈S j
yr log(1 − e−(κ(y1S j ))r ))

= o(1) +
∑

r∈S
yr log(1 − e−(κ y)r ), (4.45)

where in the last equation we used that with fixed j ∈ J , for any r ∈ S j and s ∈ S\S j

we have either κ(r , s) = 0 or ys = 0. Thus, for r ∈ S j we get

(κ(y1S j ))r =
∑

s∈S j
κ(r , s)ys =

∑

s∈S
κ(r , s)ys = (κ y)r . (4.46)

This implies that Eq. (4.43) holds in the special case.
Now, consider the general case, where {k(N )

s }N is bounded in N for all s ∈ S̃. Then
by Lemma 4.11

pN (k(N )) ≥ pN (k(N )1S\S̃ + 1S̃) ×
∏

r∈S̃
(1 − e−(κ y)r )k

(N )
r −1.

Observe that the last product is eo(N ) by assumption, hence the claim is implied by
the treatment of the first case. ��

5 Proof of Theorem 1.1 for a general type set

The aim of this section is to finally prove our main result, Theorem 1.1, for the general
case, where the type space S is some compact metric space. The main idea is to
approximate the general graph model introduced in Sect. 1.1 by a discretized model
with a finite type space and discretized kernels. To derive the LDP we will use the
LDPofTheorem3.1 for finite type spaces, togetherwith theDawson–Gärtner theorem,
which we will slightly modify for our purposes.

In Sect. 5.1 we introduce the approximation scheme and derive lower and upper
approximations for the distribution of the empirical measures of the general graph via
a comparison with certain discretized graph models. In order to lift statements about
the distribution of the discretized model to the general case we introduce in Sect. 5.2
a projective system. There, we also identify the projective limit spaces with the state
spaces of our empirical measures, i.e., with L×A, and verify that the projective limit
topology is strong enough to imply an LDP result also with respect to our chosen
topology. In Sect. 5.3 we conclude with the derivation of our main result by using
the Dawson–Gärtner approach, adapted to our purposes: we have to use different
distributions for the lower and the upper bound and will have to deal with some
additional technical difficulty concerning the lower bound. Finally, Theorem 1.1 is
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implied by combining the results of Lemma 5.16, where we prove the upper bound,
and Lemma 5.18, where we prove the lower bound.

The following objects will be fixed for the remainder of the section. Let S be a
compact metric space. Fix a probability measure μ on S. For any N fix a type vector
x = x(N ) = (x1, . . . , xN ) ∈ SN such that its empirical measure μN = 1

N

∑N
i=1 δxi

weakly converges toμ as N → ∞. Furthermore, let a continuous kernel κ : S×S →
[0,∞) be given that is irreducible w.r.t.μ, as well as a sequence of continuous kernels
κN that converges to κ uniformly on S × S as N → ∞. By GN = G([N ], x, 1

N κN )

we denote the inhomogeneous random graph introduced in Sect. 1.1 and by (Ci )i
we denote the vertex sets of the connected components of GN . We will denote the
probability measure corresponding to the graph GN by PN . Recall the definition of the
microscopic and macroscopic empirical measures MiN and MaN given in (1.2). The
goal is to derive the LDP for the pair (MiN ,MaN ) that is formulated in Theorem 1.1.

Before chosing a discretization scheme, we would like to collect some properties
of our state space L × A. Recall that

L := {
λ ∈ M(MN0(S)) : cλ ≤ μ or cλ ≤ μN for some N ∈ N, λ({0}) = 0

}
,

(5.1)

A := {
α ∈ MN0(M(S)\{0}) : cα ≤ μ or cα ≤ μN for some N ∈ N

}
, (5.2)

and that both are equipped with vague topologies, i.e., a sequence (λn)n∈N in L con-
verges toλ, if for any continuous, compactly supported test function g : MN0(S) → R

the integrals
∫
g dλn converge to

∫
g dλ, as n → ∞. In the same way, a sequence

(αn)n∈N inA converges to α, if for any continuous, compactly supported test function
g : M(S)\{0} → R the integrals

∫
g dαn converge to

∫
g dα, as n → ∞. Both on

MN0(S) andM(S)\{0} we consider the topologies of weak convergence. In the next
lemma, we give a short characterization of compactness that is implied by this choice;
a verification is left to the reader.

Lemma 5.1 The following assertions hold:

1. A subset N ⊂ MN0(S) is compact if and only if it is closed and
sup {ν(S) : ν ∈ N } < ∞.

2. A subset N ⊂ M≤1(S)\{0} is compact if and only if it is closed and
inf {ν(S) : ν ∈ N } > 0.

The following lemma implies that any vague accumulation points of MiN andMaN
are indeed elements of L and A if they exist.

Lemma 5.2 Both L and A are compact spaces.

Proof Denote M := {μ} ∪ {μN : N ∈ N}.
(1) Compactness of L: For any λ ∈ L note that |λ| ≤ cλ(S) ≤ supμ̃∈M μ̃(S) =

1. The set B1 := {λ ∈ M(MN0(S)) : |λ| ≤ 1} is a bounded subset of the
dual of C0(MN0(S)\{0}) (the space of continuous functions g on MN0(S) with
limk(S)→∞ g(k) = 0), so by applying the Banach-Alaoglu Theorem we get that B1 is
compact w.r.t. the vague topology. Since L ⊂ B1 it remains to argue that L is closed.
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Let (λn)n∈N be a sequence in L with vague limit λ. Then for each n ∈ N there exists
μ̃n ∈ M such that cλn ≤ μ̃n . Since M is compact w.r.t. the weak topology, we can find
μ̃ ∈ M and a subsequence (which we will also denote by (μ̃n)n∈N) such that μ̃n → μ̃

weakly, as n → ∞. We now argue that this implies that cλ ≤ μ̃. Let f : S → [0,∞)

be a continuous and bounded function. For any R ∈ N, let χR : [0,∞) → [0,∞) be a
smooth function satisfying 1[0,R] ≤ χR ≤ 1[0,R+1], such that R 	→ χR is increasing
pointwise. Define

Φ
f
R : MN0(S) → R, Φ

f
R (k) =

( ∫

S
f (s) k(ds)

)
χR(k(S)) (5.3)

and note that Φ
f
R (k) ↗ ∫

f (s) k(ds), as R → ∞, pointwise for any k. By Lemma

5.1 we have that Φ f
R is compactly supported and it can be easily seen that continuity

of χR and f imply that Φ f
R is continuous. Therefore

∫

S
f (s) cλ(ds) = sup

R∈N

∫
Φ

f
R (k) λ(dk) = sup

R∈N
lim
n→∞

∫
Φ

f
R (k) λn(dk)

≤ sup
R∈N

lim
n→∞

∫

S
f (s) cλn (ds) ≤ lim

n→∞

∫

S
f (s) μ̃n(ds) =

∫

S
f (s) μ̃(ds).

Since this holds for any f ≥ 0, we can conclude that cλ ≤ μ and thus λ ∈ L.
(2) We only sketch the construction of a vague limit point. Fix a sequence (εi )i∈N,

with εi ↘ 0 as i → ∞, and define Nεi := {y ∈ M≤1(S)\{0} : |y| ≥ εi }. Note
that εiαn(Nεi ) ≤ cαn (S) ≤ 1 implies that αn(Nεi ) ≤ 1/εi . Thus, for fixed i ∈ N,
the restricted measures (αn|Nεi

)n∈N are bounded and thus have a vaguely converging
sub-sequence. By diagonalization we can construct for each i ∈ N a subsequence of
(αn)n∈N such that the restrictions to Nεi converge vaguely to some α(i) ∈ M(Nεi )

and in such a way that α(i+1)
∣∣
Nεi

= α(i) holds for all i ∈ N. Thus the monotone limit

limi→∞ α(i) =: α onM≤1(S)\{0} is a countably additive extension of the measures
α(i), i ∈ N. Since every compactly supported test function has its support contained
in Nεi for some i by Lemma 5.1 one sees that in the vague topology αn → α.

To see that α ∈ A (i.e., that A is closed) we can proceed as in the proof for L.
Note that for ε > 0 we can find a smooth function χε : [0,∞) → [0,∞) satisfying
1[2ε,∞) ≤ χε ≤ 1[ε,∞), which allows us to define Φ

f
ε as above but by truncating with

χε. ��

5.1 Discretization and approximation

Let (Pm)m∈N be a sequence of finite partitions of S into non-empty sets. Form ∈ Nwe
denote Pm = {Am,i : i = 1, . . . , |Pm |}. We say that (Pm)m∈N is nested if for m ≤ n
and any Am,i ∈ Pm there is J ⊂ {1, . . . , |Pn|}, such that Am,i = ⋃

j∈J An, j . For
any subset A we write diam(A) := sup{d(x, y) : x, y ∈ A}. For any measure ν on S
a set A ⊂ S is called a continuity set of ν if ν(∂A) = 0. The following lemma is a
modification of Lemma 7.1 from [7].
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Lemma 5.3 There exists a sequence of finite partitions (Pm)m∈N ofS with the following
properties:

1. For any m ∈ N and any i = 1, . . . , |Pm | we have that Am,i is measurable and a
continuity set of μ and μN for all N ∈ N.

2. (Pm)m∈N is nested.
3. It holds that

lim
m→∞ max

i=1,...,|Pm | diam(Am,i ) = 0. (5.4)

Proof The proof can be done as in the proof of Lemma 7.1 in [7] with two small
modifications. Let A ⊂ S be the set of points that are atoms of μ or μN for some
N ∈ N. Then A is still a countable set, so we may pick the balls Bmi in a way such
that they are continuity sets of μ and μN for all N ∈ N. Since in our case the set S is
compact, we can cover it with finitely many of these balls, hence we get the stronger
property formulated in (5.4). ��

In the following we always assume that (Pm)m∈N has all the properties given in
Lemma 5.3. For m ∈ N and any Am,i ∈ Pm we pick exactly one point xm,i from the
set Am which we call the representative of Am,i . We define

Sm := {xm,i : i = 1, . . . , |Pm |} (5.5)

and define the projection

πm : S → Sm, x 	→ xm,i (5.6)

where i is such that Am,i is the unique set containing x .
Further we can lift the projection to the space M(S), the space of finite measures

on S. For any m ∈ N we introduce (by abuse of notation)

πm : M(S) → M(Sm), πm(ν) := ν ◦ π−1
m for ν ∈ M(S). (5.7)

Going one level further, we also define

πm : M(M(S)) → M(M(Sm)), πm(λ) := λ ◦ π−1
m for λ ∈ M(M(S)).

(5.8)

We can now apply the projections to all the levels of our graph setting. On the
first level of discretization, i.e., from S to Sm , we approximate the type of a vertex
by some type from the discrete set Sm . On the second level, we approximate the type
configuration of a vertex set which, depending on the context, may or may not be a
cluster. On the third level, we approximate measures that count the multiplicities of
type configurations and are therefore suited to register the number of clusters described
by the different type configurations.
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Fixm ∈ N. We write πm(x) = (πm(x1), . . . , πm(xN )) ∈ (Sm)N for the discretized
type sequence and denote by μ

(m)
N = 1

N

∑N
i=1 δπm (xi ) its empirical measure. It is easy

to check that μ(m)
N = πm(μN ). Since our partition Pm has carefully been chosen such

that the sets Am,i ∈ Pm are continuity sets of μ, it holds that μ
(m)
N converges weakly

to μ(m) := πm(μ), as N → ∞. We also define ηπm(x) : P([N ]) → MN0(Sm) as the
discrete analog of the type registering measure ηx from (1.1), i.e., for any A ⊂ [N ]
we have that ηπm (x) = ∑

i∈A δπm (xi ) ∈ MN0(Sm). Abbreviating ηm = ηπm (x) we can
now define

Mi(m)
N = 1

N

∑

i

δηm (Ci ) and Ma(m)
N =

∑

i

δ 1
N ηm (Ci ). (5.9)

It is straightforward to show that Mi(m)
N = πm(MiN ) and Ma(m)

N = πm(MaN ). Both

empirical measures Mi(m)
N and Ma(m)

N evaluate type information given by the vertices
of the clusters only roughly by approximating the type of each vertex by an element
from Sm . Note that c

Mi(m)
N

= πm(cMiN ) ≤ μ
(m)
N and c

Ma(m)
N

= πm(cMaN ) ≤ μ
(m)
N .

Hence, the natural state spaces for the discretized empirical measures are given by

Lm = {
λ∈M(MN0(Sm)) : cλ ≤μ(m) or cλ ≤μ

(m)
N for some N ∈ N, λ({0})=0

}
,

(5.10)

Am = {
α ∈ MN0(M(Sm)\{0}) : cα ≤ μ(m) or cα ≤ μ

(m)
N for some N ∈ N

}
,

(5.11)

and we endow them with vague topologies.
At this point it is important to note that we cannot apply the discrete LDP from

Theorem 3.1 directly to get an LDP for the measure PN ((Mi(m)
N ,Ma(m)

N ) ∈ ·), since
the edges of the random graph GN are drawn according to the non-discretized types
of the vertices. Before applying Theorem 3.1 one has to approximate the underlying
graph itself by a discrete version.

Let κ
(m)
N : Sm × Sm → [0,∞), N ∈ N, be a sequence of kernels on Sm . We will

specify later, in which sense they should be an approximation for κN . Consider the
inhomogeneous random graph G(m)

N = G([N ], πm(x), 1
N κ

(m)
N ) and denote by (C(m)

i )i
the collection of the vertex sets of its connected components.

Instead of choosing just one approximating kernel, we will consider a lower and
an upper approximation for κN , which will allow us to find upper and lower bounds
for the distribution PN ((Mi(m)

N ,Ma(m)
N ) ∈ ·). For fixed m ∈ N let κ

(m,−)
N and κ

(m,+)
N ,

N ∈ N, be two sequences of kernels on Sm satisfying

κ
(m,−)
N (πm(x), πm(x̂)) ≤ κN (x, x̂) ≤ κ

(m,+)
N (πm(x), πm(x̂)), ∀ x, x̂ ∈ S, ∀ N ∈ N.

(5.12)
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An obvious choice is given by

κ
(m,−)
N (r , s) := inf{κN (x, x̂) : x, x̂ ∈ S, πm(x) = r , πm(x̂) = s}, for r , s ∈ Sm

(5.13)

κ
(m,+)
N (r , s) := sup{κN (x, x̂) : x, x̂ ∈ S, πm(x) = r , πm(x̂) = s}, for r , s ∈ Sm .

(5.14)

Defining κ(m,∗) = limN→∞ κ
(m,∗)
N for both ∗ ∈ {+,−} it is obvious that

κ(m,−)(πm(x), πm(x̂)) ≤ κ(x, x̂) ≤ κ(m,+)(πm(x), πm(x̂)), for all x, x̂ ∈ S,

(5.15)

and we see that

lim
m→∞ κ(m,∗)(πm(x), πm(x̂)) = κ(x, x̂), uniformly in x, x̂ ∈ S, ∗ ∈ {+,−}.

(5.16)

For both ∗ ∈ {+,−} we will denote by P
(m,∗)
N the probability measure corresponding

to the graph G(m,∗)
N = G([N ], πm(x), 1

N κ
(m,∗)
N ).

The following comparison lemma shows how we can estimate the distribution
PN ((Mi(m)

N ,Ma(m)
N ) ∈ ·) from below and above.

Lemma 5.4 Fix m ∈ N and let κ(m,−)
N and κ

(m,+)
N , N ∈ N, be two sequences of kernels

on Sm satisfying (5.12). Assume that N ∈ N is large enough such that 1
N κ

(m,+)
N ≤ 1.

Then, for any � ∈ MN0(MN0(Sm)),

(Δ
(m)
N )−1

P
(m,−)
N (NMiN = �) ≤ PN (NMi(m)

N = �) ≤ P
(m,+)
N (NMiN = �)Δ

(m)
N ,

(5.17)

where

Δ
(m)
N =

∏

r ,s∈Sm

(
1 − 1

N κ
(m,−)
N (r , s)

1 − 1
N κ

(m,+)
N (r , s)

) 1
2 N

2μ
(m)
N (r)μ(m)

N (s)

. (5.18)

Proof As in the discrete setting of Sect. 3.1 we can identify elements fromMN0(Sm)

with elements from N
Sm
0 and identify � with (�k)k∈NSm

0
. For ∗ ∈ {+,−} and any

k ∈ N
Sm
0 we write

p(m,∗)
N (k) = P

(m,∗)
N

(
G(|k|, xk, 1

N κ
(m,∗)
N ) is connected

)
, (5.19)

with xk ∈ S |k|
m any |k|-dimensional vector compatible with k. The main idea is that we

identify in the exact formula (3.15) in Lemma 3.3 those terms that are increasing in κ
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and those that are decreasing in κ . Indeed, the connection probabilities are increasing
in κ since the event of being connected is increasing in the edge parameter. Indeed,
for any k ∈ N

Sm
0 and x ∈ S |k| such that πm(

∑|k|
i=1 δxi ) = k,

p(m,−)
N (k) ≤ PN (G(|k|, x, 1

N κN ) is connected ) ≤ p(m,+)
N (k).

Furthermore, the powers of (1 − 1
N κ(·)) that describe the probabilities of not being

connected are increasing for negative powers, and decreasing for positive powers.
With those observations and combinatorial factors we can estimate

PN (NMi(m)
N = �) ≤

⎛

⎝
∏

r∈Sm

(Nμ
(m)
N (r))!

⎞

⎠

⎛

⎜
⎝

∏

k∈NSm
0

p(m,+)
N (k)�k

�k ! ∏r∈Sm
(kr !)�k

⎞

⎟
⎠

×
⎛

⎝
∏

r ,s∈Sm

(
1 − 1

N κ
(m,+)
N (r , s)

) 1
2

∑
k kr (Nμ

(m)
N (s)−ks )�k

⎞

⎠ Δ
(m)
N

(5.20)

The lower bound and its proof are analogous. ��

5.2 Projective system

Using our discretization scheme from Sect. 5.1 we now introduce a projective system
that fits into the framework of [19, Section 4.6]. Recall the notions introduced at the
beginning of Sect. 5.1, in particular the family of finite partitions (Pm)m∈N that has
the properties formulated in Lemma 5.3 and the definition (5.5) of the discretized type
spaces Sm . For any pair m, n ∈ N with m ≤ n we define

πm,n : Sn → Sm, xn, j 	→ xm,i (5.21)

where xm,i is the representative of Am,i and Am,i is the unique set in Pm containing
xn, j . As before, we lift this definition to the measure spaces by defining (with abuse
of notation)

πm,n : M(Sn) → M(Sm), πm,n(ν) = ν ◦ π−1
m,n, (5.22)

as well as

πm,n : M(M(Sn)) → M(M(Sm)), πm,n(λ) = λ ◦ π−1
m,n . (5.23)

It is easy to check that restricting the latter mapping to Ln andAn , respectively, gives
us two well-defined mappings πm,n : Ln → Lm and πm,n : An → Am , respectively.
Now, (Lm, πm,n)m≤n (or (Am, πm,n)m≤n) is called a projective system, if

– for any m ∈ N the space Lm is a Hausdorff topological space,
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– for any m, n ∈ N with m ≤ n the mapping πm,n : Ln → Lm is continuous,
– for any m, n, p ∈ N with m ≤ n ≤ p we have πm,p = πm,n ◦ πn,p.

The projective limit of the projective system (Lm, πm,n)m≤n is denoted by lim←−Lm

and is defined as the subset of the product space
∏

m∈N Lm that contains all elements
(λm)m∈N that satisfyπm,n(λn) = λm for any pairm, n ∈ Nwithm ≤ n. The projective
limit lim←−Lm is equipped with the topology that is induced by the product topology
on

∏
m∈N Lm . We call this the projective limit topology. In particular, a sequence

λ(n) ∈ lim←−Lm converges to λ ∈ lim←−Lm as n → ∞ if it holds for any m ∈ N that λ(n)
m

converges to λm as n → ∞.

Lemma 5.5 (Lm, πm,n)m≤n and (Am, πm,n)m≤n are projective systems.

Proof The fact that Lm andAm are Hausdorff topological spaces is a consequence of
the equivalence of their topologies with the discrete topologies that we described in
Sect. 3.1. Form ≤ n, the continuity ofπm,n is easily verified for the lowest level, i.e., on
Sn → Sm , and then lifted to the higher levels. Indeed, for each open setO ∈ M(Sm)

(which can be identified as an open set in R
Sm≥0\{0}), we see that π−1

m,n(O) is an open
set inM(Sm). The same is true at the higher level with open sets inLm andAm , which
are images of open sets in Ln and An . ��

Throughout this section we will denote L∞ = lim←−Lm and A∞ = lim←−Am . The
aim of this section is to prove the following

Proposition 5.6 The following assertions hold.

1. The set L × A can be identified with L∞ × A∞.
2. The projective limit topology on L∞ ×A∞ is equivalent to the vague topology on

L × A.

The proof will be a consequence of the following lemmas. In Lemma 5.8we explain
how to project from L×A to L∞ ×A∞. As a direct consequence of Lemma 5.9 we
get that this operation is continuous. Afterwards, we deal with the inverse operation.
In Lemma 5.10 we show the existence of the inverse and in Lemma 5.12 we argue that
it is continous.

Here is a basic property of the mappings πm and πm,n , which we need to prepare
for Lemma 5.8.

Lemma 5.7 Let m ≤ n. Then the equality πm = πm,n ◦ πn holds on all levels, i.e., for
all mappings that were defined in (5.6)–(5.8) and (5.21)–(5.23).

Proof On the lowest level, i.e., on S → Sm , the equality is a direct consequence of the
fact that (Pm)m∈N is nested. On the higher levels, the equality follows by the definition
of the image measure. ��
Lemma 5.8 The following holds.

1. Let λ ∈ L. Then for any m ∈ N we have that πm(λ) ∈ Lm. Further, we have that
the sequence (πm(λ))m∈N is an element of the projective limit L∞.
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2. Let α ∈ A. Then for any m ∈ N we have that πm(α) ∈ Am. Further, we have that
the sequence (πm(α))m∈N is an element of the projective limit A∞.

Consequently, the mapping Π : L × A → L∞ × A∞, (λ, α) 	→(
(πm(λ))m∈N, (πm(α)m∈N)

)
is well-defined.

Proof (1) For any λ ∈ L and m ∈ N we have that cπm (λ) = πm(cλ) ≤ πm(μ̃), where
μ̃ ∈ {μ} ∪ {μN : N ∈ N}, hence πm(λ) ∈ Lm . As a direct consequence of Lemma
5.7 the sequence (πm(λ))m∈N satisfies the consistency condition and is therefore an
element of L∞.

(2) For α ∈ A the proof is analogous. ��
Lemma 5.9 Fix any m ∈ N. The mappings πm : L → Lm and πm : A → Am are
continuous w.r.t. the vague topologies. Consequently, the mapping Π defined as in
Lemma 5.8 is continuous.

Proof On the lowest level, i.e., for πm : S → Sm , it is obvious that πm is continuous
on the set S\ ⋃|Pm |

i=1 ∂Am,i . Consider the second level, i.e., πm : M(S) → M(Sm).
We claim that πm is continuous on

N0 := {ν ∈ M(S) : ν(∂Am,i ) = 0 for all i = 1, . . . , |Pm |} (5.24)

w.r.t. weak convergence: Given some ν ∈ N0 and a sequence (νn)n∈N in M(S) such
that νn → ν weakly as n → ∞ and some continuous bounded function f : Sm → R

we clearly have that

∫

Sm

f dπm(νn) =
∫

S
f ◦ πm dνn →

∫

S
f ◦ πm dν =

∫

Sm

f dπm(ν),

as n → ∞, since f ◦πm is continuous ν-almost everywhere. Hence,πm(νn) → πm(ν)

weakly as n → ∞.
Now, consider πm : L → Lm . For λ ∈ L we have that cλ ≤ μ̃, where μ̃ ∈

{μ} ∪ {μN : N ∈ N}. This implies that for any i = 1, . . . , |Pm | we have that

λ
({k : k(∂Am,i ) > 0}) ≤

∞∑

n=1

nλ
({k : k(∂Am,i ) = n}) = cλ(∂Am,i ) ≤ μ̃(∂Am,i ) = 0

(5.25)

by Lemma (5.3). With other words, λ is concentrated on a subset of the set N0 given
in (5.24). Now, let (λn)n∈N be a sequence inL that converges vaguely to λ as n → ∞.
Then for any function g : MN0(Sm) → R that is continuous and compactly supported,
we have that

∫

MN0 (Sm )

g dπm(λn) =
∫

MN0 (S)

g ◦ πm dλn →
∫

MN0 (S)

g ◦ πm dλ

=
∫

MN0 (Sm )

g dπm(λ),
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as n → ∞, since g◦πm is compactly supported and continuous λ-almost everywhere.
Hence, πm(λn) → πm(λ) vaguely as n → ∞.

The proof for πm : A → Am is analogous. ��
In the next lemmaswewill deal with the construction of the inverse of the projection

mappingΠ and verify its continuity. This requires, for anym ∈ N, to identifymeasures
λm ∈ Lm with measures λ̄m ∈ L. To prepare for this identification we now define for
any m ∈ N

Mm(S) := {ν ∈ M(S) : ν is concentrated on Sm}, (5.26)

where for any measure ν on some measure space X and any measurable U ⊂ X we
say that ν is concentrated onU if ν(X \U) = 0. It is clear thatMm(S) can be identified
with M(Sm). Observe that this is possible because Sm ⊂ S, as we have defined it
via the representatives of each partition. For any νm ∈ M(Sm) we will denote the
corresponding element by ν̄m ∈ Mm(S) and we will write π̄m : M(S) → Mm(S)

for the mapping that we obtain by concatenating πm : M(S) → M(Sm) as defined
in (5.7) with the operation νm 	→ ν̄m . Then we can identify the space Lm that was
defined in (5.10) with

L̄m := {
λ ∈ L : λ is concentrated onMm(S) ∩ MN0(S)

}
. (5.27)

For any λm ∈ Lm we will denote the corresponding element by λ̄m ∈ L̄m and we will
write π̄m : L → L̄m for the mapping that we obtain by concatenating πm : L → Lm

with the operation λm 	→ λ̄m . In the same way, we identify the space Am that was
defined in (5.11) with

Ām := {
α ∈ A : α is concentrated on Mm(S) ∩ M(S)\{0}}. (5.28)

Now we construct the inverse of the projection mapping Π that was defined in
Lemma 5.8.

Lemma 5.10 The following assertions hold.

1. Let (λm)m∈N ∈ L∞. Then there exists a unique λ ∈ L such that λm = πm(λ)

holds for all m ∈ N.
2. Let (αm)m∈N ∈ A∞. Then there exists a unique α ∈ A such that αm = πm(α)

holds for all m ∈ N.

Consequently, the mapping Π defined in Lemma 5.8 is bijective with inverse Π−1.

Proof Fix (λm)m∈N ∈ L∞. The idea is to identify for anym ∈ N themeasure λm ∈ Lm

uniquely with the element λ̄m ∈ L̄m and to prove that the sequence (λ̄m)m∈N has a
vague limit point in L, which we will denote by λ. It then remains to show that
πm(λ) = λm holds for any m ∈ N.

Next, we will argue for the existence of a vague limit point of (λ̄m)m∈N. As an ele-
ment ofL∞ the sequence (λm)m∈N satisfies the consistency condition λm = πm,n(λn)
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for any m ≤ n. Abbreviating MN0 := MN0(S)\{0} and MN0,m := MN0(Sm)\{0},
we get that

λ̄m(MN0) = λm(MN0,m) = λn(π
−1
m,n(MN0,m)) = λn(MN0,n) = λ̄n(MN0)

and consequently, λ̄m , m ∈ N, is of constant total variation. Note that the measures
λ̄m ,m ∈ N, are in the dual ofC0(MN0) and that, due to the Banach–Alaoglu theorem,
they are compact w.r.t. the weak∗-topology, which implies compactness w.r.t. the
vague topology on L. Hence, there exists a vague limit point λ ∈ M(MN0) and a
subsequence (λ̄mi )i∈N in L converging vaguely to λ. Since L is compact by Lemma
5.2, we also have that λ ∈ L.

Next, we fix m ∈ N and our goal is to show that λm = πm(λ). Observe that as a
consequence of our identification between λn and λ̄n we have that πn(λ̄n) = λn for
any n ∈ N. Together with the consistency and Lemma 5.7 we get for n ≥ m that

λm = πm,n(λn) = πm,n(πn(λ̄n)) = πm(λ̄n).

Choosing a subsequence (λ̄ni )i∈N that converges vaguely to λ, we get that λm =
limi→∞ πm(λ̄ni ) = πm(λ) where we used the continuity of the mapping πm that we
showed in Lemma 5.9.

For a given (αm)m∈N ∈ A∞ the proof is analogous. ��
To prepare for the proof of the continuity of Π−1 we need the following lemma.

Lemma 5.11 On bounded subsets of M(S), the mapping M(S) → M(S), ν 	→
π̄m(ν), converges uniformly to the identity as m → ∞.

Proof Recall that we equip M(S) with the weak topology, which is generated by all
the test integrals against continuous bounded functionsS → R. Theweak topology on
M(S) admits a number of metrisations, especially since S is compact. We introduce
the dual bounded-Lipschitz distance given by

dBL(ν, ν̂) := sup
φ : ‖φ‖BL≤1

∣∣
∣∣

∫

S
φ dν −

∫

S
φ dν̂

∣∣
∣∣, (5.29)

where ‖φ‖BL = ‖φ‖∞ + Lip(φ) and Lip(φ) is the infimum of all Lipschitz constants
of φ : S → R. Let φ : S → R satisfy ‖φ‖BL ≤ 1 then

∣
∣∣∣

∫

S
φ dπm(ν) −

∫

S
φ dν

∣
∣∣∣ ≤

|Pm |∑

i=1

∫

Am,i

∣∣φ(xm,i ) − φ(x)
∣∣ ν(dx)

≤ max
i=1,...,|Pm | diam(Am,i )ν(S), (5.30)

where xm,i is the representative of Am,i as defined right before definition (5.5). Now,
if N ⊂ M(S) is bounded, i.e., supν∈N ν(S) < ∞, then dBL(ν, πm(ν)) vanishes as
m → ∞ uniformly on N by assumption (5.4). ��
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In the next lemma we verify that the mapping Π−1 constructed in Lemma 5.10 is
continuous.

Lemma 5.12 The following assertions hold.

1. Let λ(n), n ∈ N, be a sequence inL. Assume for all m ∈ N that πm(λ(n)) converges
to πm(λ) vaguely in Lm as n → ∞. Then λ(n) converges vaguely to λ.

2. Let α(n), n ∈ N, be a sequence inA. Assume for all m ∈ N thatπm(α(n)) converges
to πm(α) vaguely in Am as n → ∞. Then α(n) converges vaguely to α.

Consequently, the mapping Π−1 constructed in Lemma 5.10 is continuous.

Proof (1) Let λ(n), n ∈ N, be a sequence in L, such that for all m ∈ N it holds
that πm(λ(n)) converges to πm(λ) vaguely in Lm as n → ∞. Abbreviate MN0 :=
MN0(S)\{0} and fix a continuous and compactly supported function g : MN0 → R.
Recall the identification of Lm and L̄m introduced before Lemma 5.10. Clearly, we
have for any m ∈ N that

∣∣
∣
∫

g dλ(n) −
∫

g dλ
∣∣
∣

≤
∣∣
∣∣

∫
g dλ(n) −

∫
g dπ̄m(λ(n))

∣∣
∣∣ +

∣∣
∣∣

∫
g dπ̄m(λ(n)) −

∫
g dπ̄m(λ)

∣∣
∣∣

+
∣∣∣∣

∫
g dπ̄m(λ) −

∫
g dλ

∣∣∣∣

≤ (|λ(n)| + |λ|)‖g − g ◦ π̄m‖∞ +
∣∣
∣∣

∫
g dπ̄m(λ(n)) −

∫
g dπ̄m(λ)

∣∣
∣∣. (5.31)

Note that λ(n) ∈ L implies that |λ(n)| ≤ cλ(n) (S) ≤ supN∈N μN (S)∨μ(S) = 1 for all
n ∈ N, and in the same way |λ| ≤ 1. Further, the support of the function g is compact,
and thus bounded. So by Lemma 5.11 we have that the mappings π̄m restricted to
the support of g converge uniformly to the identity, as m → ∞. Hence, we can first
choose m ∈ N sufficently large such that

(|λ(n)| + |λ|)‖g − g ◦ π̄m‖∞ is arbitrarily
small, uniformly in n. Then we can use that, π̄m(λ(n)) → π̄m(λ), as n → ∞, holds
by assumption, so the second summand on the right-hand side of (5.31) vanishes as
n → ∞.

(2) Letα(n), n ∈ N, be a sequence inA, such that for allm ∈ N it holds thatπm(α(n))

converges to πm(α) vaguely inAm as n → ∞. Recall that for all n ∈ N the measures
α(n) are concentrated onM≤1(S), i.e., on subprobability measures on S, since for any
y ∈ supp(α(n)), we have that y(S) ≤ cα(n) (S) ≤ supN∈N μN (S) ∨ μ(S) = 1. The
same holds forα. Hence, without loss of generality we can show vague convergence by
considering any continuous compactly supported test function g : M≤1(S)\{0} → R.
By Lemma 5.1 there exists ε > 0 such that the support of g is contained in Nε :=
{ν ∈ M≤1(S)\{0} : ν(S) ≥ ε}. Analogously to (5.31) we get

∣∣∣∣

∫
g dα(n) −

∫
g dα

∣∣∣∣ ≤ (
α(n)(Nε) + α(Nε)

)
sup
y∈Nε

|g(y) − g ◦ π̄m(y)|
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+
∣∣
∣∣

∫
g dπ̄m(α(n)) −

∫
g dπ̄m(α)

∣∣
∣∣. (5.32)

To bound the first summand observe the following: Since α(n) ∈ A one has that
εα(n)(Nε) ≤ cα(n) (S) ≤ 1 and hence α(n)(Nε) ≤ 1/ε. The same holds for α and hence
α(n)(Nε) + α(Nε) ≤ 2/ε. Also, by Lemma 5.11 the supremum in (5.32) vanishes, as
m → ∞. So, by first choosingm large enough and then using that π̄m(α(n)) → π̄m(α),
as n → ∞, the right-hand side of (5.32) vanishes. ��

5.3 Dawson–Gärtner and identification of the rate function

As an easy consequence of Lemma 5.4 and the LDP of Theorem 3.1, we obtain upper
and lower LDP bounds for (Mi(m)

N ,Ma(m)
N ) with different rate functions. In order

to formulate this (in particular, to identify the rate functions) we need to introduce
additional notation.

For dealing with the microscopic clusters, we need the discretized version of the
connection parameter τ defined in (1.9), which now has to be understood with respect
to the discretized kernels. For ∗ ∈ {+,−} and k ∈ M(Sm)\{0} we write

τ (∗)
m (k) =

∑

T∈T (k)

∏

{i, j}∈E(T )

κ(m,∗)(ri , r j ), (5.33)

where (ri )i=1,...,|k| ∈ S |k|
m is such that k = ∑|k|

i=1 δri ∈ MN0(Sm) and T (k) is the
set of spanning trees on [|k|] and we recall that |k| = k(Sm). Further, we define for
∗ ∈ {+,−}

C (∗)
m = 1

2
〈μ(m), κ(m,∗)μ(m)〉, (5.34)

Î (m,∗)
Mi (λ) = H(λ|Qμ(m) ) − 1 − 〈λ, log τ (∗)

m 〉 + |cλ| − |λ|, λ ∈ Lm, (5.35)

Î (m,∗)
Me (ν) =

〈
ν, log

dν

(κ(m,∗)ν) dμ(m)

〉
, ν ∈ M(Sm). (5.36)

where we recall that Qμ(m) is the distribution of a Poisson point process on Sm with
intensity measure μ(m) and that H denotes relative entropy between non-normalized
measures, defined as in (1.8). Again, we adopt the convention that I (m,∗)

Me (ν) = ∞
if dν

(κ(m,∗)ν) dμ(m) does not exist. We have to be more careful in the definition of the
macroscopic rate. For α ∈ Am we define

Î (m,∗)
Ma (α)

=
⎧
⎨

⎩

∫
M(Sm)\{0} α(dy)

[〈
y, log dy

(1−e−κ(m,∗) y) dμ(m)

〉
− 1

2 〈y, κ(m,∗)y〉
]

if α is connectable,

∞ otherwise,

(5.37)
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where again we define IMa(α) = ∞, if it is not true that α-almost everywhere the den-
sity in the log-term exists. The definition of ÎMa also takes into account the possibility
that the discretized kernel might not be irreducible. In particular if κ is irreducible, it
is not always true that κ(m,−) is also irreducible. In that case we have to additionally
assume that α is connectable with respect to κ(m,∗) to get a finite rate, as it is formu-
lated in the generalized version of Theorem 3.1, i.e., Theorem 3.2. We will comment
on this in detail below.

When estimating the distribution of the pair (Mi(m),Ma(m)) under the measure PN
by Lemma 5.4 we will get an additional error term. To deal with that we define for
(λ, α) ∈ Lm × Am

I (m,+)(λ, α)

=
{
Î (m,+)
Mi (λ) + Î (m,+)

Ma (α) + Î (m,+)
Me (μ(m) − cλ − cα) + C(−)

m if cλ + cα ≤ μ(m),

∞ otherwise,

(5.38)

I (m,−)(λ, α)

=
{
Î (m,−)
Mi (λ) + Î (m,−)

Ma (α) + Î (m,−)
Me (μ(m) − cλ − cα) + C(+)

m if cλ + cα ≤ μ(m),

∞ otherwise.

(5.39)

Corollary 5.13 (LDP bounds for (Mi(m)
N ,Ma(m)

N ) underGN )Assume thatμN converges
to μ as N → ∞. Let κN converge to a continuous kernel κ that is irreducible w.r.t.
μ. Fix m ∈ N and let κ

(m,−)
N and κ

(m,+)
N , N ∈ N, be two sequences of kernels on

Sm satisfying (5.12). Then the distribution of (Mi(m)
N ,Ma(m)

N ) under PN satisfies, as
N → ∞, the upper large-deviations bound with rate function I (m,+) and the lower
large-deviations bound with rate function I (m,−).

Proof It is easy to verify that

lim
N→∞

1
N logΔ

(m)
N = 1

2 〈μ(m), κ(m,+)μ(m)〉 − 1
2 〈μ(m), κ(m,−)〉 = C (+)

m − C (−)
m ,

where Δ
(m)
N is defined as in (5.18). Note that irreducibility of κ implies irreducibility

of κ(m,+). Hence, for the upper large-deviations bound we can apply Theorem 3.1
after using the upper bound from Lemma 5.4. For the lower bound we use the lower
bound from Lemma 5.4 and the lower bound from Theorem 3.2 that also applies if
κ(m,−) is reducible. ��

Of course, the basic idea is to use Corollary 5.13 for very large m and the hope is
that the discretized rate functions approximate the rate function I given in Theorem
1.1. However, the problem is that the lower bound can be arbitrarily bad due to the
following issue. Observe that although κ is assumed to be irreducible with respect
to μ, as a consequence of the definition of the lower approximation κ(m,−) given in
(5.13) we have to deal with the possibility that κ(m,−) is not irreducible with respect
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to μ ◦ π−1
m . This might even be the case for all m ∈ N. To illustrate this, we give a

brief example.

Example 5.14 Choose S = [0, 1], let μ be the Lebesgue measure and κN (x, x ′) =
κ(x, x ′) = xx ′ for x, x ′ ∈ S and all N ∈ N. Let {Pm}m∈N be any nested partition
for S and let Sm , m ∈ N, be any choice for the sets of representative points. Then
for any m ∈ N there exists some set Am ∈ Pm such that 0 ∈ ∂Am and μ(Am) > 0.
Let xm be the representative of Am . It can be directly verified that for any x ′

m ∈ Sm

we have that κ(m,−)(xm, x ′
m) = 0, although μ(m)({xm}) = μ(Am) > 0. On the other

hand, assumption (5.4) implies that μ(Am) → 0 as m → ∞ so there exists m0 such
that for m ≥ m0 we also have that μ(m)(Sm\{xm}) > 0 and hence κ(m,−) is reducible
with respect to μ(m) for all m ≥ m0. ♦

Regarding the approximation of the rate function I by its discrete version the
problem of (missing) irreducibility enters our analysis only via the function Î (m,−)

Ma .

Indeed, for Î (m,+)
Ma the additional case distinction given in (5.37) is not necessary, since

κ(m,+) is always irreducible and hence every α is connectable with respect to κ(m,+).
In order to make the lower approximation work, we formulate additional assumptions
on α. Since they are not satisfied for any α we have to find a way how to deal with the
other cases.

Lemma 5.15 (Identificationof the rate function)Letκ : S×S → [0,∞)be continuous
and irreducible with respect to μ. Assume that κ(m,+), κ(m,−) : Sm × Sm → [0,∞)

are given such that κ(m,−) ≤ κ(m,+) and

lim
m→∞ κ(m,∗)(πm(x), πm(y)) = κ(x, y), uniformly in x, y ∈ S, ∗ ∈ {+,−},

monotonously decreasing for ∗ = + and monotonously increasing for ∗ = −. We
abbreviate Πm(λ, α) := (πm(λ), πm(α)) for m ∈ N, (λ, α) ∈ L × A. Then the rate
function I introduced in Theorem 1.1 satisfies the following.

1. For any (λ, α) ∈ L × A it holds that I (m,+)(Πm(λ, α)) ↗ I (λ, α) as m → ∞.
2. Let (λ, α) ∈ L × A and assume that α satisfies the following: there exists some

m0 ∈ N such that for all m ≥ m0 the measuresπm(α) are connectable with respect
to κ(m,−). Then I (m,−)(Πm(λ, α)) → I (λ, α) as m → ∞.

Proof Fix λ ∈ L and α ∈ A. Also, we will denote λm = πm(λ) and αm = πm(α).
We first assume that cλ + cα ≤ μ. It is straightforward to show that this implies

that cλm + cαm ≤ μ(m) for all m ∈ N. We denote νm = μ(m) − cλm − cαm .
We will see in the proof that in each of the terms that we handle, the main part is an

entropy between two image measures under πm plus a perturbation and other terms
that will turn out to converge monotonically as m → ∞. Then we will use [22, Prop.
15.6], which says that the named entropy converges, as m → ∞, to its supremum
over m.

For this, we will handle each of the four terms in (5.34)–(5.36) separately.
Step 1: term C (∗)

m . It is easy to deduce that limm→∞ C (+)
m = 1

2 〈μ, κμ〉 =
limm→∞ C (−)

m and that C (∗)
m is decreasing in m for ∗ = + and increasing for ∗ = −.

Note that I (m,+) is defined with C (−)
m , so it has the right direction of monotonicity.
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Step 2: term Î (m,∗)
Mi (λm). Let us turn to the part Î (m,∗)

Mi (λm). Recall thatλm = λ◦π−1
m .

Since λm = λ ◦ π−1
m and Qμ(m) = Qμ ◦ π−1

m by the mapping theorem for Pois-
son point processes, [22, Prop. 15.6] implies that H(λm |Qμ(m) ) converges towards
H(λ|Qμ), andH(λm |Qμ(m) ) is increasing inm. According to our assumption in (5.16),

using the monotone convergence theorem, we see that the term −〈λm, log τ
(∗)
m 〉 con-

verges towards −〈λ, log τ 〉 (also if −〈λ, log τ 〉 = ∞). For ∗ = + the convergence is
from below, as desired. It is easy to verify that |cλm |−|λm | = |cλ|−|λ| holds for allm.

Hence, we have shown that Î (m,+)
Mi (πm(λ)) ↗ ÎMi(λ) and Î (m,−)

Mi (πm(λ)) → ÎMi(λ)

as m → ∞.
Step 3: term Î (m,∗)

Me (νm). Now we turn to the mesoscopic term Î (m,∗)
Me (νm). Note that

for ν = μ − cλ − cα the definition of the image measure implies that νm = ν ◦ π−1
m .

Further, we have that

Î (m,∗)
Me (νm) =

〈
νm, log

νm

μ(m)

〉
− 〈νm, log(κ(m,∗)νm)〉.

Hence, we may apply [22, Prop. 15.6] to the first term and see that 〈νm, log dνm
dμ(m) 〉

converges as m → ∞ to its supremum on m, and for the second term we use (5.16) to
see that limm→∞ −〈νm, log(κ(m,∗)νm)〉 = −〈ν, log(κν)〉 holds by the monotone con-
vergence theorem (also if −〈ν, log(κν)〉 = ∞). For ∗ = + the sequence is increasing
as desired.

Step 4: term Î (m,∗)
Ma (αm). Finally, we turn to the macroscopic term Î (m,∗)

Ma (αm). Note
that irreducibility of κ with respect toμ implies irreducibility of κ(m,+) with respect to
μ(m). Hence the measures πm(α), m ∈ N, are connectable. In the setting of statement
(2) this is true for m ≥ m0 by assumption. Therefore, without loss of generality, we
assume m ≥ m0. Applying the definition of the image measure we have that

Î (m,∗)
Ma (αm) =

∫
α(dy)

〈
ym, log

dym
dμ(m)

〉
−

∫
α(dy)

[
〈ym, log(1 − e−κ(m,∗)ym )〉

+ 1

2
〈ym, κ(m,∗)ym〉

]
,

where we wrote ym = y ◦ π−1
m . Now the convergence (including the desired mono-

tonicity) can be argued in the same way as for the microscopic and the mesoscopic
terms above, using the monotonicity of the entropy and our assumption in (5.16).

This finishes the proof of (1) and (2) in the case cλ + cα ≤ μ.
Finally, we are considering the case that λ ∈ L and α ∈ A do not satisfy cλ + cα ≤ μ.
Then there exists a μ-continuity set A ⊂ S such that cλ(A) + cα(A) > μ(A). Then
with Am = πm(A) we have that π−1

m (Am) ⊇ A and hence cλm (Am) + cαm (Am) ≥
cλ(A)+cα(A). Now, let 0 < ε < cλ(A)+cα(A)−μ(A). By Lemma 5.11we have that
π̄m(μ) → μ weakly, as m → ∞. Hence, we can choose m0 large enough such that
μ(A) ≥ π̄m(μ)(A) − ε/2 = πm(μ)(Am) − ε/2 holds for all m ≥ m0. Consequently,
cλm (Am)+ cαm (Am) ≥ πm(μ)(Am)+ ε/2. Therefore I (m,∗)(Πm(λ, α)) = ∞ for any
m ≥ m0 and ∗ ∈ {+,−}. ��

Nowwe derive an upper and a lower bound LDP for the distribution of (MiN ,MaN )

under GN by following the two parts of the proof of the Dawson–Gärtner theorem,
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[19, Theorem 4.6.1] and using the fact that due to Proposition 5.6 it is sufficient to
work with open and closed sets from the projective limit topology.

Lemma 5.16 (LDP—upper bound) Suppose that all assumptions of Theorem 1.1 are
satisfied. Then the distribution of (MiN ,MaN ) under PN satisfies the upper bound
part of the LDP with rate function I as defined in Theorem 1.1.

Proof Fix a set F ⊂ L×A that is closed with respect to the vague topology. Then by
Proposition 5.6 the set F is also closed with respect to the projective limit topology.
For any m ∈ N we use the notation Πm(λ, α) := (πm(λ), πm(α)) and recall that
(Mi(m)

N ,Ma(m)
N ) = Πm(MiN ,MaN ). Therefore,

lim sup
N→∞

1

N
logPN

(
(MiN ,MaN ) ∈ F

) ≤ lim sup
N→∞

1

N
logPN

(
(Mi(m)

N ,Ma(m)
N ) ∈ Πm(F)

)

≤ − inf
Πm (F)

I (m,+) = − inf
F

I (m,+) ◦ Πm ,

where we used Corollary 5.13 for the second inequality. Since the left-hand side does
not depend on m, we can proceed with the supremum over m ∈ N on the right-hand
side. By Lemma 5.15 we have that supm I (m,+) ◦Πm = I , which implies the claim. ��

It remains to prove the lower bound of the LDP formulated in Theorem 1.1. Since
the approximation of I from below via I (m,−) works only in the case where α sat-
isfies the assumptions given in the second statement of Lemma 5.15, we have to do
some additional work. The idea is the following: given some α that does not fulfill
the assumptions, we will first approximate α by some suitable choice for which the
assumptions hold. Then we can apply Lemma 5.15.

Lemma 5.17 Let α ∈ A with cα ≤ μ and IMa(α) < ∞. Then there exists a sequence
(α(δ,ε))δ>0,ε>0 in A such that the following properties hold:

(1) for fixed δ > 0 and ε > 0 there exists m0 = m0(δ) such that for all m ≥ m0 the
measures πm(α(δ,ε)) are connectable with respect to κ(m,−);

(2) α(δ,ε) → α as δ → 0 and ε → 0 with respect to the vague topology;
(3) for any λ ∈ L we have that I (λ, α(δ,ε)) → I (λ, α) as δ → 0 and ε → 0.

Proof We always write α = ∑
i∈J δyi , where J is a countable set. The idea is to pick

some type x ∈ S and to restrict the measures yi ∈ M≤1(S)\{0}, i ∈ J , to a subset
Sδ of S that contains all types x ′ ∈ S that can be connected to x by using a finite
sequence of intermediate types xh−1, xh for which we have κ(xh−1, xh) ≥ δ. Then for
large enoughm connectivity is preserved with respect to κ(m,−), which will imply (1).
The parameter ε > 0 is only introduced to deal with the fact that J might be infinite
and ensures the convergence claimed in (3).

Fix some x ∈ supp(μ). For δ > 0 define

Sδ := Sδ(x) := {x ′ ∈ S : ∃k ∈ N, ∃x0, x1, . . . , xk ∈ S, x0 = x, xk
= x ′, κ(xh−1, xh) ≥ δ, ∀h ∈ [k]}. (5.40)
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We first show that μ(S\Sδ) → 0 as δ → 0, which we will need for the proof of (2)
and (3). Observe that Sδ ⊂ Sδ′ if δ > δ′ and put S0 := ⋃

δ>0 Sδ . Since κ is irreducible
with respect to μ and x ∈ supp(μ) it is easy to see that for δ small enough we have
that μ(Sδ) > 0 and hence μ(S0) > 0. We now argue that κ = 0 μ-almost everywhere
on S0 ×S\S0. Assume the contrary, i.e.,

∫
S0

∫
S\S0 κ(x ′, x ′′)μ(dx ′)μ(dx ′′) > 0. Then

by continuity of κ we find sets of positive measure A ⊂ S0 and B ⊂ S\S0 where
δ′ := inf x ′∈A,x ′′∈B κ(x ′, x ′′) > 0, which is a contradiction to the fact that B ⊂ S\S0.
By the irreducibility of κ with respect to μ, the facts that μ(S0) > 0 and κ = 0 holds
μ-almost everywhere on S0 × S\S0 imply that μ(S\S0) = 0, so by continuity of
measures we have that μ(S\Sδ) → 0 as δ → 0.

Now for any δ ≥ 0 and ε ≥ 0 we define

α(δ,ε) :=
∑

i∈Jε

δ
y(δ)
i

, where y(δ) := y(· ∩ Sδ) for any y ∈ M≤1(S) (5.41)

and where Jε = {i ∈ J : |yi | > ε}. Note that |cα| ≤ 1 implies that for ε > 0 the set
Jε is finite.

Now we show that (α(δ,ε))δ,ε>0 has the three properties.
(1) Fix ε > 0 and δ > 0. Now take m0 such that ‖κ − κ(m,−) ◦ πm‖∞ ≤ δ/2

holds for all m ≥ m0. Let m ≥ m0. Then we have that κ(m,−) ◦ πm is irreducible
on Sδ , since κ(xi−1, xi ) ≥ δ implies κ(m,−) ◦ πm(xi−1, xi ) ≥ δ/2. With other words,
κ(m,−) is irreducible on π−1

m (Sδ). For any i ∈ J we have that supp(y(δ)
i ) ⊂ Sδ by

construction and hence supp(πm(y(δ)
i )) ⊂ π−1

m (Sδ). Therefore, we get for allm ≥ m0

that πm(α(δ,ε)) is connectable with respect to κ(m,−).
(2) It is straightforward to show that for all i ∈ J and δ > 0 we have

dBL(yi , y
(δ)
i ) ≤ yi (S\Sδ) ≤ μ(S\Sδ), where dBL is the metric defined in (5.29)

that induces the weak topology on M(S). For any continuous compactly supported
test function f : M≤1(S)\{0} → R there exists ε f > 0 such that f = 0 on
{y ∈ M≤1(S)\{0} : |y| ≤ ε f }, so for ε ≤ ε f (including the case ε = 0) we have

∣∣∣
∫

α(δ,ε)(dy) f (y) −
∫

α(dy) f (y)
∣∣∣ =

∑

i∈Jε f

| f (y(δ)
i ) − f (yi )|

≤ |Jε f | max
i∈Jε f

| f (y(δ)
i ) − f (yi )|. (5.42)

Observe that the right-hand side converges to 0 as δ → 0. This implies (2).
(3) By lower-semicontinuity of the rate function it is clear that I (λ, α) ≤

limδ,ε→0 I (λ, α(δ,ε)). So we only have to deal with the other estimate, i.e., we need
to find an upper bound for

I (λ, α(δ,ε)) − I (λ, α) = (
IMe(μ − cλ − cα) − IMe(μ − cλ − cα(δ,ε) )

)

+ (
IMa(α

(δ,ε)) − IMa(α
(0,ε))

) + (
IMa(α

(0,ε)) − IMa(α)
)
.

(5.43)
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Let γ > 0. It is straightforward to verify that cα(δ,ε) → cα weakly as δ, ε → 0. Since
IMe is continuous we can choose δ0 and ε0 such that |IMe(μ − cλ − cα) − IMe(μ −
cλ − cα(δ,ε) )| ≤ γ /3 for all δ ≤ δ0, ε ≤ ε0.

Recall that

IMa(α) =
∫

α(dy) fMa(y), where fMa(y) = 〈y, log dy
(1−e−κ y)dμ 〉 − 1

2 〈y, κ y〉,
(5.44)

and where we interpret the log term as equal to +∞ if the density does not exist.
We have that

IMa(α) = IMa(α
(0,ε)) + IMa(

∑
i /∈Jε δyi ) ≥ IMa(α

(0,ε)) + IMa(
∑

i /∈Jε yi ),

where the inequality follows from (7.1), which is proved in Lemma 7.1. Note that
| ∑i /∈Jε yi | → 0 as ε → 0 and fMa(y) → 0 as |y| → 0. So we can choose ε ≤ ε0

such that IMa(α
(0,ε)) − IMa(α) ≤ γ /3.

As a last step we want to choose δ = δ(ε) ≤ δ0 such that |IMa(α
(δ,ε)) −

IMa(α
(0,ε))| ≤ γ /3, so it remains to show that

lim
δ→0

IMa(α
(δ,ε)) = IMa(α

(0,ε)). (5.45)

Notice that the definition of y(δ) given in (5.41) implies that |y|−μ(S\Sδ) ≤ |y(δ)| ≤
|y|. Therefore, we can choose δ small enough such thatμ(S\Sδ) ≤ 1

2 mini∈Jε (|yi |−ε)

to ensure that for all i ∈ Jε we have that |y(δ)
i | > ε. Now, we choose a function

χε : M≤1(S)\{0} → R that is equal to one on {y ∈ M≤1(S)\{0} : |y| > ε}, equal
to zero on {y ∈ M≤1(S)\{0} : |y| ≤ ε/2} and continuous. In particular, the function
χε fMa is then compactly supported and we have that for all δ′ ≤ δ

IMa(α
(δ′,ε)) =

∫
α(δ′,0)(dy)χε(y) fMa(y).

Technically, we still have the problem that fMa can take values in R ∪ {+∞}. But our
assumption IMa(α) < ∞ implies that fMa(yi ) < ∞ for all i ∈ Jε, so by continuity of
fMa and the finiteness of Jε we can tune δ′ ≤ δ such that uniformly for all i ∈ Jε we
have fMa(y

(δ)
i ) ≤ C for some constant C . We already showed in (2) that α(δ′,0) → α,

so having established continuity and compactly supportedness of the function in the
integral we get that

lim
δ′→0

IMa(α
(δ′,ε)) = lim

δ′→0

∫
α(δ′,0)(dy)χε(y)( fMa(y) ∧ C)

=
∫

α(dy)χε(y)( fMa(y) ∧ C) = IMa(α
(0,ε)).

Altogether the right-hand side of (5.43) can be bounded by γ , which proves the
claim. ��
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Lemma 5.18 (LDP—lower bound) Suppose that all the assumptions of Theorem 1.1
are satisfied. Then the distribution of (MiN ,MaN ) under PN satisfies the lower bound
part of the LDP with rate function I .

Proof Fix a set G ∈ L×A that is open with respect to the vague topology and a point
(λ, α) ∈ G. We will show that for any γ > 0 we have that

lim inf
N→∞

1

N
logPN

(
(MiN ,MaN ) ∈ G

) ≥ −I (λ, α) − γ. (5.46)

Note that in the case where I (λ, α) = ∞, the claimed estimate always holds,
so we assume that I (λ, α) < ∞. Let γ > 0. We will use the approximating
sequence (α(δ,ε))δ>0,ε>0 constructed in Lemma 5.17. Let ε > 0 and δ > 0 be small
enough such that α(δ,ε) ∈ G and |I (λ, α) − I (λ, α(δ,ε))| ≤ γ /2. Again, we write
Πm(λ̃, α̃) = (πm(λ̃), πm(α̃)) and also Πm,n(λ̃, α̃) = (πm,n(λ̃), πm,n(α̃)) for any
n ≥ m. y Proposition 5.6 the set G is also open with respect to the projective limit
topology. It is a general fact that the set

B1 := {Π−1
m (Um) : m ∈ N, Um ⊂ Lm × Am open} (5.47)

is a basis of the projective limit topology. From now on, we fix some large m0 ∈ N

which we will specify later. We claim that also the set

Bm0 := {Π−1
m (Um) : m ≥ m0, Um ⊂ Lm × Am open} (5.48)

is a basis of the projective limit topology and argue this as follows: note that for any
m < m0 we can take any n ≥ m0 and use that πm = πm,n ◦ πn holds by Lemma
5.7 to derive that Π−1

m (Um) = Π−1
n (Π−1

m,n(Um)) for any open set Um . Since the set
Π−1

m,n(Um) is again open due to the continuity of πm,n , we get that Π−1
m (Um) ∈ Bm0 .

Altogether we have that B1 ⊂ Bm0 .
Having established that Bm0 is a basis for the projective limit topology, we may

pickm ≥ m0 and an open setUm ⊂ Lm ×Am such that (λ, α(δ,ε)) ∈ Π−1
m (Um) ⊂ G.

Therefore, we see that

lim inf
N→∞

1

N
logPN

(
(MiN ,MaN ) ∈ G

) ≥ lim inf
N→∞

1

N
logPN

(
(Mi(m)

N ,Ma(m)
N ) ∈ Um

)

≥ − inf
Um

I (m,−) ≥ −I (m,−)(Πm(λ, α(δ,ε))),

(5.49)

where we used Corollary 5.13 for the second inequality. Using Lemmas 5.15 and 5.17
we can pick m0 large enough such that for all m ≥ m0 the measures πm(α(δ,ε)) are
connectable and |I (m,−)(Πm(λ, α(δ,ε))) − I (λ, α(δ,ε))| ≤ γ /2. Altogether, this gives
(5.46). ��
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6 Theminimizers of IMi

In this section, we derive an explicit description of the minimizer(s) λ of IMi under
the constraint cλ = c for any c ∈ M(S) satisfying c ≤ μ. This will allow us to solve
the optimization problem in (2.6), i.e., to identify the minimizer(s) of the rate function
for the LDP for MiN in Theorem 2.3. It will also be used as an important intermediate
step in deriving the full optimization of the rate function I of the LDP in Theorem
2.1, our main result. Recall the notation that we introduced in Sect. 2.1, in particular
the definition of Σ(κ, c) from (2.3). Here is the main result of this section.

Proposition 6.1 (Minimizers of IMi) Fix a probability measure μ on S and a kernel
κ on S × S that is nonnegative and continuous.

Let c ∈ M(S) be a measure such that c ≤ μ.

(i) Assume that Σ(κ, c) ≤ 1. Then

inf
λ∈L : cλ=c

IMi(λ) =
〈
c, log

dc

dμ

〉
+ 1

2
〈c, κ(μ − c)〉, (6.1)

and the infimum is attained in the unique minimizer λc defined in (2.1).
(ii) Assume that Σ(κ, c) > 1. Then

inf
λ∈L : cλ=c

IMi(λ) ≥ inf
λ∈L : cλ=b∗ IMi(λ) + IMe(c − b∗) (6.2)

where b∗ = b∗(c) ∈ M(S) is theminimal, non-trivial (i.e., not equal to c) solution
to (2.9) and satisfies Σ(κ, b∗) = 1.

It is interesting to notice that one can see the phase transition already from the sole
consideration of IMi. We will refer to (i) and (ii) as to the sub- and supercritical cases,
respectively.

In the case whereS is finite we can actually prove an equality in (6.2). In the general
case we also expect this to be true, but did not attempt a proof, since the inequality
will be enough to prove our main results, Theorems 2.3 and 2.1.

The proof is naturally divided into Sects. 6.1–6.4 according to the distinctions
between finite S (the discrete case) or general compact S and between the sub- and
supercritical cases. In Sect. 6.1 we construct minimizers for subcritical measures c for
finite S; we analyze if the only candidate λ (coming from the Euler–Lagrange equa-
tions) satisfies the constraint cλ = c, which requires the result about the multivariate
power series from Sect. 4.1. In Sect. 6.2 we generalize the results to a general compact
type space via an approximation argument. In order to deal with supercritical measures
c for S a finite set, we also rely on combinatorial results in Sect. 6.3. Afterwards, we
handle the general supercritical case in Sect. 6.4.

6.1 The discrete, subcritical case

In this section, we formulate and prove the main assertions about the minimizers of
IMi in the discrete case, i.e., the case of a finite type space S. Here we will be using
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the notation of linear algebra, i.e., measures λ ∈ L on MN0(S) will be written as
sequences (λk)k∈NS

0
.

Recall the definition of the rate function IMi fromTheorem3.1 aswell as the notation
for the integrated type-configuration cr (λ) = ∑

k∈NS
0

λk kr for r ∈ S introduced in

(3.5). We write [0, μ] for the set of all c ∈ [0,∞)S satisfying 0 ≤ cr ≤ μr for any
r ∈ S.

For c ∈ [0,∞)S , define λ(c) = (λk(c))k∈NS
0
by

λk(c) = τ(k)
∏

s∈S

(cse−(κc)s )ks

ks ! , k ∈ N
S
0 (6.3)

and note that this definition is the discrete analog of the general form of the minimizer
in (2.1).

The aim of the present Sect. 6.1 is to verify the subcritical case of Proposition 6.1
in the discrete setting, which we restate here quickly.

Proposition 6.2 Let c = (cs)s∈S be in [0, μ]. Assume that Σ(κ, c) ≤ 1. Then

inf
λ∈L : c(λ)=c

IMi(λ) =
〈
c, log

c

μ

〉
+ 1

2
〈c, κ(μ − c)〉 , (6.4)

and the infimum is attained in the unique minimizer λ(c) defined in (6.3).

To derive the form of the minimizer given in (6.3), we will start by giving a short
heuristic. First note that IMi is a strictly convex function and that {λ : c(λ) = c}
is a convex set, which implies that there is at most one minimizer. Assume that a
minimizer λ∗ exists in the interior of {λ : c(λ) = c}. Then by formally writing down
the Euler–Lagrange equations, one can see that

λ∗
k = τ(k)

∏

s∈S

θ
ks
s

ks ! , k ∈ N
S
0 , (6.5)

where θ = (θs)s∈S is some non-negative real-valued vector. Note that θ has to be
chosen in such a way that c(λ∗) = c, i.e., for every r ∈ S the multivariate power
series

cr (λ
∗) =

∑

k∈NS
0

τ(k)kr
∏

s

θ
ks
s

ks ! (6.6)

converges with limit cr . We already encountered in Sect. 4.1 that for θ = ce−κc the
power series on the right-hand side of (6.6) has the right value. The following is just
a reformulation of the results from Lemma 4.1 and Proposition 4.2 using the notation
of the present section.
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Corollary 6.3 Let c = (cs)s∈S in [0, μ] and assume that Σ(κ, c) ≤ 1. Then for
λ∗ = λ(c) we have that c(λ∗) = c.

A rigorous argument showing that this choice uniquely minimizes IMi can be found
at the end of this section. The identification of the optimal rate IMi(λ(c)) needs an
additional property of the minimizer, namely a formula of its total mass, which we
derive in Lemma 6.5. For this we use the following recursive formula.

Lemma 6.4 Let k ∈ N
S
0 . Then we have the recursion

∑

r ,s∈S
κ(r , s)

∑

m,m̃∈NS
0 : m+m̃=k

(∏

u∈S

ku !
mu !m̃u !

)
τ(m)mrτ(m̃)m̃s = 2(|k| − 1)τ (k).

(6.7)

Proof Let (xi )i∈[|k|] ∈ S |k| be a vector compatible to k, i.e., k = ∑
i δxi and recall the

definition of τ(k) from (3.6). For i, j ∈ [|k|] with i �= j define

Wi, j :=
∑

T∈T (k) : {i, j}∈E(T )

∏

{v,w}∈E(T )

κ(xv, xw), (6.8)

i.e., Wi, j is the total weight of trees containing the edge {i, j}. Observe, that each
tree T on [|k|] contains exactly |k| − 1 edges and, for each edge {i, j} ∈ E(T ) the
weight of T appears once in Wi, j and once in Wj,i . Thus, the weight of T is counted
2(|k| − 1) times in the sum

∑
i �= j Wi, j , which implies that

2(|k| − 1)τ (k) =
∑

i �= j

Wi, j . (6.9)

Now, for a fixed pair of types r , s ∈ S consider the weights of trees containing an edge
connecting some type r with some type s vertex, i.e., consider

∑
i �= j : xi=r ,x j=s Wi, j .

Notice that each tree contributing to this weight can be decomposed into an edge of
weight κ(r , s) and two trees Tr and Ts with roots of type r and s respectively. (The term
’root’ is here only used to mark a certain vertex, not to give some directed structure.)
This implies the formula

∑

i �= j : xi=r ,x j=s

Wi, j = κ(r , s)
∑

m+m̃=k

(∏

u∈S

ku !
mu !m̃u !

)
τ(m)mrτ(m̃)m̃s . (6.10)

Here we used formula (4.5) to collect the weight coming from the possible choices of
Tr and Ts , which is τ(m)mr and τ(m̃)m̃s respectively. Formula (6.7) now follows by
summing over all possible pairs r , s ∈ S. ��
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Lemma 6.5 Let c = (cs)s∈S be non-negative with Σ(κ, c) ≤ 1. Then for λ(c) defined
as in (6.3) we have that

|λ(c)| =
∑

k∈NS
0

λk(c) =
∑

r∈S
cr − 1

2
〈c, κc〉. (6.11)

Proof Writing λ∗ = λ(c) and using that c(λ∗) = c we show the equivalent equation

∑

k∈NS
0

λ∗
k(|k| − 1) = 1

2
〈c, κc〉. (6.12)

For fixed k ∈ N
S
0 the recursive equation (6.7) for τ(k) easily implies

1

2

∑

m,m̃∈NS
0 : m+m̃=k

∑

r ,s∈S
λ∗
mmrκ(r , s)λ∗̃

mm̃s = λ∗
k(|k| − 1).

With the assumptionΣ(κ, c) ≤ 1 all series in the next equations converge (absolutely)
by Corollary 6.3, so by rearranging terms we get that

∑

k∈NS
0

λ∗
k(|k| − 1) = 1

2

∑

m∈NS
0

∑

m̃∈NS
0

∑

r ,s∈S
λ∗
mmrκ(r , s)λ∗̃

mm̃s = 1

2
〈c, κc〉.

��
Combining the results from Corollary 6.3 and Lemma 6.5 we can now give the

proof of Proposition 6.2:

Proof of Proposition 6.2 Assume that Σ(κ, c) ≤ 1. Define λ∗ = λ(c) as in (6.3). By
Corollary 6.3 we have that cr (λ∗) = ∑

k λ∗
kks = cs for all s ∈ S. Now, take any λ

satisfying cs(λ) = ∑
k λkks = cs for all s ∈ S. Then from (3.7), using the formula

from Lemma 6.5, we get

IMi(λ) =
∑

k

λk log
λk

λ∗
k

+
∑

k

λk log
( ∏

s∈S
(cse−(κc)s

μs

)ks)

+
∑

k

λk(|k| − 1) + 1

2
〈c, κμ〉

= H(λ|λ∗) − |λ∗| +
〈
c, log

c

μ

〉
+ |c| + 1

2
〈c, κμ〉 − 〈c, κc〉

≥
〈
c, log

c

μ

〉
+ 1

2
〈c, κ(μ − c)〉,

(6.13)

where we wrote H(λ|λ∗) = 〈λ, log λ
λ∗ 〉 + |λ∗| − |λ| for the entropy and used that

H(λ|λ∗) ≥ 0 with equality if and only if λ = λ∗. ��
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6.2 The general subcritical case

In this section we derive Proposition 6.1(i). The proof is similar to the proof of the
discrete variant in Sect. 6.1. Again, there is an explicit candidate for the minimizer,
but one has to prove that it is admissible, and we need to identify its total mass. This is
done in the analogs of Corollary 6.3 and Lemma 6.5, see Lemmas 6.7 and 6.8, whose
proofs proceed via a discrete approximation based on the material of Sect. 5.1.

In the current case of a general compact metric type space S, the candidate for a
minimizer is given in terms of a Poisson point process, see (6.14). Recall that we write
Qθ for the distribution of a Poisson point process X = (Xi )i∈I in S with intensity
measure θ ∈ M(S). We write k = ∑

i δXi ∈ MN0(S) for the measure induced by the
random point cloud. Note that the points Xi do not have to be distinct with positive
probability, if θ has no Lebesgue density. We start by noting a simple fact about the
densities between absolute continuous Poisson point processes.

Lemma 6.6 Let θ, θ̂ ∈ M(S) with θ̂ � θ . Then Q
θ̂

� Qθ and

dQ
θ̂

dQθ

(k) = e〈k,log dθ̂
dθ 〉+θ(S)−θ̂ (S), k ∈ MN0(S).

Recall the definition of τ(k) introduced in (1.9). Also recall that for a fixed c ∈ M
according to definition (2.1) the candidate for theminimizer of IMi under the constraint
cλ = c has the form

λc(dk) = eθc(S)τ (k)Qθc(dk), where θc(dr) = e−κc(r)c(dr). (6.14)

Wefirst provide a generalized version of Corollary 6.3 andLemma 6.5.Wefirst impose
the stricter condition Σ(κ, c) < 1.

Lemma 6.7 Let c ∈ M(S) with c ≤ μ. Assume that Σ(κ, c) < 1. Then the following
holds.

1. For any continuous test function f : S → [0,∞) we have that

∫

MN0 (S)

λc(dk)〈k, f 〉 = 〈c, f 〉. (6.15)

2. The total mass of λc is given by

|λc| =
∫

MN0 (S)

λc(dk) = c(S) − 1

2
〈c, κc〉. (6.16)

Proof We focus on showing Eq. (6.15); the proof of (6.16) is similar (see the end of
the proof). Abbreviating θ := θc and inserting the definition of λc we have to prove
that

Qθ

[
τ(k)〈 f , k〉eθ(S)

]
= 〈 f , c〉, (6.17)
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where we conceive k as anMN0(S)-valued random variable on the left-hand side. The
idea is to deduce the equality from the one that we have in the finite-type case by using
the discretization scheme from Sect. 5.1. Recall the notation from Sect. 5.1, where we
discretized the compact metric space S into finite spaces Sm , m ∈ N, and defined the
projections πm ,m ∈ N, on different spaces in equations (5.6)–(5.8). For k ∈ MN0(S)

we will again identify the discretized measure πm(k)with an element of N
Sm
0 \{0}. Via

Sm ⊂ S the function f can be restricted to Sm and write fm = f |Sm
. Also, we write

cm := πm(c) and identify it with a vector (cm(r))r∈Sm . Recall the definitions of the
discretized kernels. Let κm ∈ {κ(m,+), κ(m,−)}, where κ(m,�) for � = ± is defined as in
(5.13) and (5.14). Denote θm(r) := e−(κmcm)(r)cm(r), r ∈ Sm . For k ∈ N

Sm
0 let τm(k)

be defined as in (3.6), but with respect to κm . Fix a continuous function f : S → R.
Our aim is to show that

Qθ

[
τ(k)〈 f , k〉eθ(S)

]
= lim

m→∞ Qθm

[
τm(k)〈 fm, k〉eθm (Sm )

]
= 〈 f , c〉, (6.18)

which finishes the proof of (6.15).
We start with proving the second equality of (6.18). It is straightforward to show

that

∣∣Σ(κm, cm) − Σ(κ, c)
∣∣ ≤ ‖κm ◦ πm − κ‖∞. (6.19)

and hence Σ(κm, cm) → Σ(κ, c), as m → ∞ and so we will have for large m ∈ N

that Σ(κm, cm) < 1. Then we get

Qθm

[
τm(k)〈 fm, k〉eθm (Sm )

]
=

∑

r∈Sm

fm(r)
∑

k∈NSm
0

τm(k)kr
∏

s∈Sm

(θm(s))ks

ks !

=
∑

r∈Sm

fm(r)cm(r) =
∫

S
f (πm(x)) c(dx)

→
∫

S
f (x) c(dx) = 〈 f , c〉, m → ∞.

where the second equation only holds if m is large enough, and thus Σ(κm, cm) ≤ 1
due to Lemma 4.1(i) and Proposition 4.2.

Now we show the first equation of (6.18). Note that Qθm is a point process on Sm ,
whereas Qθ is a point process on S. However, by defining an intensity measure on S
by θ̄m(dx) := e−(κmcm )(πm(x))c(dx) we have that θm = θ̄m ◦ π−1

m and hence Qθm =
Qθ̄m

◦ π−1
m holds by the mapping theorem for Poisson point processes. Therefore,

according to Lemma 6.6,

Qθm

[
τm(k)〈 fm, k〉eθm (Sm )

]
= Qθ̄m

[
τm(πm(k))〈 f , πm(k)〉eθm (Sm)

]
= Qθ

[
Ψ

f
m

]
,

(6.20)
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with

Ψ
f
m (k) := τm(πm(k))〈 f , πm(k)〉e〈k,κc−(κmcm )◦πm 〉eθ(S), k ∈ MN0(S). (6.21)

Note that Ψ
f
m converges pointwise to Ψ f , where Ψ f (k) = τ(k)〈 f , k〉eθ(S), k ∈

MN0(S). Hence, the first equation of (6.18) immediately follows as soon as we have
given an argument for interchanging the limit as m → ∞ and the integration with
respect to Qθ . We will be using Lebesgue’s theorem about dominated convergence for
that. Let us introduce a majorant. Recalling the definition (5.33) of τ

(+)
m we define Ψ̂m

by

Ψ̂m(k) := τ (+)
m (πm(k))|πm(k)|e〈k,κc−(κ(m,−)cm )◦πm 〉eθ(S), k ∈ MN0(S).

(6.22)

Then, since κ(m,−) ≤ κm ≤ κ(m,+) we clearly have for any k ∈ MN0(S) thatΨ f
m (k) ≤

‖ f ‖∞Ψ̂m(k) and Ψ̂m(k) ≤ Ψ̂m0(k) ifm ≥ m0. Hence, Ψ̂m0 is a majorant. It remains to
show that there existsm0 such thatQθ (Ψ̂m0) < ∞, then themajorant Ψ̂m0 is integrable.
Arguing as in (6.20) we have that

Qθ (Ψ̂m) =
∑

k∈NSm
0

τ (+)
m (k)|k|

∏

s∈Sm

θ
(−)
m (s)ks

ks ! , (6.23)

where θ
(−)
m (s) = e−(κ(m,−)cm)(s)cm(s), for s ∈ Sm . Let χm := χ(κ(m,+), θ

(−)
m ) be

defined as in (4.11). We can argue as in the proof of Lemma 4.5 to get that, for any
n ∈ N,

∑

k∈NSm
0 : |k|=n

τ (+)
m (k)|k|

∏

s∈Sm

(θ
(−)
m (s))ks

ks ! ≤ eo(n)e−n[χm−1], (6.24)

(where the eo(n)-term is actually given by |M(n)
1 (Sm)| ∑r∈Sm

Δr (nν)). Abbreviating

δm = ‖κ(m,+) − κ(m,−)‖∞, we further have that

χm = inf
ν∈M1(Sm )

⎧
⎨

⎩

∑

r∈Sm

νr log
νr

(κ(m,+)ν)r (θ
(+)
m )r

− 〈κ(m,+)cm − κ(m,−)cm, ν〉
⎫
⎬

⎭

≥ χ(κ(m,+), θ (+)
m ) − δm = Σm − logΣm − δm,

where Σm := Σ(κ(m,+), cm). Now, choose ε > 0 small enough such that Σ(κ, c) +
ε < 1 and Σ(κ, c)− log(Σ(κ, c)) > 1+ ε. It holds that Σm → Σ(κ, c), as m → ∞,
and clearly we have that δm → 0, as m → ∞. Additionally, we use that the function
x 	→ φ(x) := x−log x is continuous and decreasing on [0, 1]. Hence, we findm0 such
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that δm0 ≤ ε/2, as well as Σm0 ≤ Σ(κ, c) + ε < 1 and φ(Σm0) ≥ φ(Σ(κ, c)) − ε/2.
Consequently,

χm0 ≥ Σm0 − logΣm0 − ε

2
≥ Σ(κ, c) − logΣ(κ, c) − ε > 1,

which altogether implies that

Qθ (Ψ̂m0) =
∑

k∈NSm
0

τ (+)
m (k)|k|

∏

s∈Sm

(θ
(−)
m (s))ks

ks ! ≤
∑

n∈N
eo(n)e−n[χm0−1] < ∞.

(6.25)

Thus, Lebesgue’s theorem of dominated convergence is applicable and (6.18) follows.
Equation (6.16) can be shown in the same way and relies on the discrete version of

the equation, derived in Lemma 6.5. ��
Lemma 6.8 The statement of Lemma 6.7 is also true under the assumptionΣ(κ, c)=1.

Proof The idea is to construct a sequence c(n) ∈ M(S) with Σ(κ, c(n)) < 1 such that
θ(n) := θc(n) ↗ θc =: θ monotonically as n → ∞.

Recall thatS is compact and κ is continuous, hence a standard argument (see e.g. [7,
Lemma 5.15]) shows that the operator Tκ,c is a positive Hilbert–Schmidt operator and
therefore has a non-negative eigenfunction corresponding to the eigenvalue Σ(κ, c).
By the assumption Σ(κ, c) = 1 we can find a function g : S → (0,∞) such that

Tκ,cg = g. For any n ∈ N define c(n) ∈ M(S) via dc(n)

dc := 1 − 1
n g. Then for n large

enough c(n)(A) < c(A) for any measurable A ⊂ S with
∫
A g dc > 0. In particular

Σ(κ, c(n)) < 1. (An ad-hoc argument in the case that κ is irreducible is as follows:
Pick an L2(c(n))-normalized positive eigenfunction gn of Tκ,c(n) corresponding to
the eigenvalue Σ(κ, c(n)) and observe that g̃n(x) = gn(x)(1 − 1

n g(x))
1/2 is L2(c)

normalized and that Σ(κ, c(n)) = ‖Tκ,c(n)gn‖L2(c(n)) < ‖Tκ,cg̃n‖L2(c) ≤ ‖Tκ,c‖ =
Σ(κ, c). If κ is reducible, then apply this argument to the irreducible components.)
Now, observe that for any n ∈ N we have

dθ(n)

dθ
= eκ(c−c(n)) dc

(n)

dc
= eTκ,c(

1
n g)

(
1 − 1

n
g
)

= e
1
n g

(
1 − 1

n
g
)
,

and the right-hand side converges pointwise monotonically to 1, as n → ∞.
Now, fix any continuous test function f : S → [0,∞). Then, by monotone con-

vergence and the fact that we can apply Lemma 6.7 to c(n) for all n ∈ N, we get
that

Qθ

[
τ(k)〈k, f 〉eθ(S)

] = lim
n→∞ Qθ

[
τ(k)〈k, f 〉eθ(S)e〈k,log dθ(n)

dθ 〉]

= lim
n→∞ Qθ(n)

[
τ(k)〈k, f 〉eθ(n)(S)

]

= lim
n→∞〈c(n), f 〉 = 〈c, f 〉.
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The same argument shows that Qθ

[
τ(k)eθ(S)

]
= c(S) − 1

2 〈c, κc〉. ��

Nowwe can identify theminimizers of IMi. The following is a variant of Proposition
6.2 in the general setting. Once having established Lemmas 6.7 and 6.8, the proof in
the general setting follows the ones in the discrete setting. Recall thatμ is the reference
probability measure on S.

Lemma 6.9 (Minimizers of IMi) Assume that c ∈ M(S) with c ≤ μ satisfying
Σ(κ, c) ≤ 1. Then the unique minimizer λ of IMi under the assumption cλ = c is
equal to λc defined in (2.1) and

min
λ∈L : cλ=c

IMi(λ) = IMi(λc) = −1

2
〈c, κc〉 + 〈c, log dc

dμ 〉.

Proof Note that λc is admissible, according to Lemmas 6.7 and 6.8, since cλ∗ = c.
Using Lemma 6.6 and the fact that μ is a probability measure we can rewrite the

measure Qμ as

Qμ(dk) = eθ(c)(S)
Qce−κ∗c(dk)e〈k,κ∗c〉e−〈k,log dc

dμ 〉e−1

Now, writingM = MN0(S) we get for any λ ∈ L satisfying cλ = c that

IMi(λ) =
〈
λ, log

dλ

τdQμ

〉
+ c(S) − 2λ(M) + 1

2
〈c, κμ〉

=
〈
λ, log

dλ

dλc

〉
+

〈
c, log

dc

dμ

〉
− 〈c, κc〉 + c(S) − λ(M) + 1

2
〈c, κμ〉

= H(λ|λc) − λc(M) +
〈
c, log

dc

dμ

〉
− 〈c, κc〉 + c(S) + 1

2
〈c, κμ〉

= H(λ|λc) +
〈
c, log

dc

dμ

〉
+ 1

2
〈c, κ(μ − c)〉.

Weused the fact thatλc(M) = c(S)− 1
2 〈c, κc〉, whichwas derived in the last statement

of Lemma 6.7. Since H(λ|λc) ≥ 0 and H(λ|λc) = 0 if and only if λ = λc, the claim
follows. ��

6.3 The discrete, supercritical case

In this section, we assume again that S is a finite space and investigate the case
where the measure c (the one that formulates the constraint) is supercritical, meaning
Σ(κ, c) > 1. The aim of this section is to verify the following result.

Proposition 6.10 (Discrete, supercritical case) Let c ∈ [0, μ] withΣ(κ, c) > 1. Then

inf
λ : c(λ)=c

IMi(λ) = inf
λ : c(λ)=b∗ IMi(λ) + IMe(c − b∗) (6.26)
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where b∗ = b∗(c) is the minimal non-trivial (i.e., not equal to c) solution to

κ(c − b∗)b∗ = c − b∗, b∗ ≤ c, (6.27)

and satisfies Σ(κ, b∗) = 1.

Indeed, one possible realization of the rate (6.26) is given by constructing a mini-
mizer as in formula (6.3)with respect to the (sub-)critical parameterb∗ and realizing the
remaining part c−b∗ by means of a diverging sequence k(n), such that the mesoscopic
rate term appears.

The proof will be a consequence of the next lemmas. In Lemma 6.11 we derive an
upper and a lower bound for infλ : cλ=c IMi(λ) and in Lemma 6.12 we show that they
coincide, if there are solutions to the fixed point equation (6.27). We will postpone the
proof about existence of solutions to Sect. 6.4, Lemma 6.14.

Lemma 6.11 Let c ∈ [0, μ] with Σ(κ, c) > 1. For b ∈ [0, c] with Σ(κ, b) ≤ 1 we
put

Fc(b) =
〈
c, log

b

μ

〉
+ |c − b| + 1

2
〈b, κb〉 − 〈c, κb〉 + 1

2
〈c, κμ〉, (6.28)

Gc(b) =
〈
b, log

b

μ

〉
− 1

2
〈b, κb〉 +

〈
c − b, log

c − b

(κ(c − b))μ

〉
+ 1

2
〈c, κμ〉.

(6.29)

Then

sup
b∈[0,c] : Σ(κ,b)≤1

Fc(b) ≤ inf
λ : c(λ)=c

IMi(λ) ≤ inf
b∈[0,c] : Σ(κ,b)≤1

Gc(b). (6.30)

Proof We first show the first inequality in (6.30). Fix b ∈ [0, c] with Σ(κ, b) ≤ 1.
Let λ∗ := λ(b) be given as in (6.3). We proceed in the same way as in the proof of
Proposition 6.2, but use that this time |λ∗| = |b| − 1

2 〈b, κb〉. Then for any λ with
c(λ) = c we have

IMi(λ) = H(λ|λ∗) − |λ∗| +
〈
c, log

b

μ

〉
− 〈c, κb〉 + |c| + 1

2
〈c, κμ〉 ≥ Fc(b).

We now prove the upper bound in (6.30). Fix b ∈ [0, c] with Σ(κ, b) ≤ 1.
Case 1: First, we assume that κ is irreducible with respect to c− b. Let λ∗ := λ(b)

be defined as in (6.3). For n ∈ N define k(n) := �n(c− b)� and write Rn := ∣∣k(n)
∣∣ and

b(Rn) := ∑
|k|≤Rn

λ∗
kk. We define

λ
(n)
k :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ∗
es + εs if k = es for some s ∈ S

λ∗
k if 1 < |k| < Rn

1
n if k = k(n)

0 else

(6.31)
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with ε := c − b(Rn) − 1
n k

(n), which ensures that c(λ(n)) = c holds for all n ∈ N, but

is negligible in the limit, i.e., limn→∞ λ
(n)
es = λ∗

es for all s ∈ S. Note that due to the
irreducibility assumption we have that τ(k(n)) > 0 if n is large enough, which ensures
that IMi(λ

(n)) is finite.
Using the notation I (R)

Mi (λ) introduced in (3.22) we get

IMi(λ
(n)) = I (Rn−1)

Mi (λ(n)) + 1

2
〈c − b(Rn), κμ〉 + 1

n
log

1
n

∏
s k

(n)
s !

τ(k(n))e1−|k(n)| ∏
s μ

k(n)
s
s

Denote the last summand as An . By using the formula (4.6) from Lemma 4.3 for some
r ∈ supp(c) as well as Stirling’s formula for the factorial terms, we have that, as
n → ∞

An = o(1) +
∑

s∈S
(cs − bs) log

cs − bs
(κ(c − b)s)μs

+ 1

n
log

n(cr − br )
∏

s κ(c − b)s
eΔr (c − b)

,

(6.32)

where Δr is defined in (4.7), which can be easily extended to arguments in [0,∞)S .
Note that by construction Δr (c − b) > 0. Clearly, the last summand in (6.32) is of
order o(1). By the construction of λ(n) it is immediate that limn→∞ I (Rn−1)

Mi (λ(n)) =
〈b, log(b/μ)〉 + 1

2 〈b, κ(μ − b)〉, so altogether we get that

lim
n→∞ IMi(λ

(n)) =
〈
b, log

b

μ

〉
+ 1

2
〈b, κ(μ − b)〉 + 〈c − b, log

c − b

(κ(c − b))μ
〉

+ 1

2
〈c − b, κμ〉 = Gc(b).

Case 2: If κ is reducible with respect to c − b, we can find a decomposition of
supp(c − b) into disjoint sets S j such that κ restricted to S j × S j is irreducible and
κ|Si×S j

= 0 for i �= j . Then we have to modify the construction of λ(n) given above

by putting mass 1
n on each of the meso-particles k( j,n) := �n(c − b)�1S j . We omit

the details. ��

The following lemma completes the proof of Proposition 6.10. Its assumptions are
verified later and in more generality in Lemma 6.14.

Lemma 6.12 Let c ∈ [0, μ] with Σ(κ, c) > 1. If there exists a non-trivial solution
b∗ ∈ [0, c] to (6.27) andΣ(κ, b∗) = 1, then F(b∗) = G(b∗). Consequently, Eq. (6.26)
holds.

Proof Using the fixed point equation (6.27)we can substitute |c−b∗| = 〈b∗, κ(c−b∗)〉
to rewrite Fc(b∗) and 〈c − b∗, log[(c − b∗)/κ(c − b∗)] = 〈c − b∗, log b∗〉 to rewrite
Gc(b∗). Then Fc(b∗) = Gc(b∗). ��
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6.4 The general supercritical case

Building on the results of the previous subsection we derive a slightly weaker result
than Proposition 6.10 for the general case, which will still be enough to derive the
optimal rates for the contraction principle as well as to fully optimize the rate function
I .

Lemma 6.13 Fix c ∈ M(S) with c ≤ μ and Σ(κ, c) > 1. Then

inf
λ∈L : cλ=c

IMi(λ) ≥ inf
λ∈L : cλ=b∗ IMi(λ) + IMe(c − b∗), (6.33)

where b∗ = b∗(c) ∈ M(S) is the minimal, non-trivial (i.e., not equal to c) solution
to (2.9) and satisfies Σ(κ, b∗) = 1.

Sketch of proof We can generalize the proof of the lower bound of Lemma 6.11 and
the definition of Fc to obtain

inf
λ : cλ=c

IMi(λ) ≥
〈
c, log

db

dμ

〉
+ c(S) − b(S) + 1

2
〈b, κb〉 − 〈c, κb〉 =: Fc(b)

for any b ∈ M(S) with b ≤ c and Σ(κ, b) ≤ 1. This relies on the admissibility of the
(auxiliary) minimizers λb proved in Lemmas 6.7 and 6.8. The lower bound is obtained
by writing everything with entropies as in the proof of Lemma 6.9.

Observe that if b∗ is a solution of (2.9), then one can argue as in the proof of Lemma
6.12 to see that

Fc(b
∗) =

〈
b∗, log db∗

dμ

〉
− 1

2
〈b∗, κb∗〉 + IMe(c − b∗) + 1

2
〈c, κμ〉 =: Gc(b

∗)

��
Lemma 6.14 (Solutions to (2.9)) Fix c ∈ M(S).

(i) Assume that κ is irreducible w.r.t. c and Σ(κ, c) > 1. Then there exists exactly
one solution b∗ to (2.9) that satisfies b∗ �= c. Further, it holds that Σ(κ, b∗) = 1.

(ii) If Σ(κ, c) ≤ 1, then the only solution b∗ to (2.9) is given by the trivial solution
b∗ = c.

(iii) Assume that κ is reducible w.r.t. c and Σ(κ, c) > 1, then there exists at least one
solution b∗ to (2.9) with b∗ �= c. Moreover, there exists a unique minimal solution
b∗ to (2.9) (which is minimal in the sense that b∗ ≤ b∗ holds c-almost everywhere
for all solutions b∗ of (2.9)). Further, we have that Σ(κ, b∗) > 1 for all solutions
b∗ with b∗ �= b∗ and Σ(κ, b∗) = 1.

Proof We will study the existence and uniqueness of non-trivial solutions f ∗ : S →
[0, 1) to

Tκ,c f
∗ = f ∗

1 − f ∗ . (6.34)
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By substituting b∗ = (1 − f ∗)c it is easily seen that solving (6.34) is equivalent to
solving (2.9).

(i) Existence: We once more reformulate (6.34) by substituting g∗ = f ∗/(1− f ∗)
(which is equivalent to f ∗ = g∗(1 + g∗)). Then (6.34) is equivalent to

U (g∗) := Tκ,c

( g∗

1 + g∗
)

= g∗, (6.35)

i.e., we are searching for a fixed point of U . Note that g∗(s)/(1 + g∗(s)) ≤ 1 for all
s ∈ S. Together with the fact that κ is non-negative this implies that any solution g∗ of
(6.35) satisfies g∗ ≤ Tκ,c1. Hence, it suffices to study the operator U on the domain
D = {g : S → R : 0 ≤ g ≤ Tκ,c1}. We construct a solution iteratively by defining
g0 := Tκ,c1 and gm := U (gm−1) for m ∈ N. Since the function x 	→ x/(1 + x)
is strictly increasing on [0,∞) and κ is non-negative, we have that g ≤ g′ implies
U (g) ≤ U (g′). Since g1 ≤ g0 we can iterate this argument to show that gm ≤ gm−1
holds for any m ∈ N. Therefore the limit g∗ := limm→∞ gm ∈ D exists and by the
continuity of U it satisfies (6.35). We claim that our assumptions on κ and c imply
that g∗ > 0: By the assumptions that κ is irreducible w.r.t. c, S is compact and κ is
continuous, Tκ,c is a positive, irreducible and compact operator. Therefore there exists
a strictly positive eigenfunction v of Tκ,c with eigenvalue Σ(κ, c) > 1. Note that the
function Tκ,cv is continuous (by compactness of S and continuity of κ), hence v is
continuous and by compactness of S it is also bounded. So without loss of generality
we can pick v such that v(s) ∈ (0, 1] for any s ∈ S. Observe that by the irreducibility
assumption g0 = Tκ,c1 > 0. Now, pick δ > 0 such thatΣ(κ, c) ≥ 1+ δ and g0 ≥ δv.
Observe that for any g with g ≥ δv we have that

U (g) = Tκ,c

( g

1 + g

)
≥ Tκ,c

( δv

1 + δv

)
≥ δ

1 + δ
Tκ,cv ≥ δv.

Hence gm ≥ δv holds for all m ∈ N. Consequently, g∗ ≥ δv > 0.
Additionally, we claim that g∗ is the maximal solution to (6.35). Let g̃∗ be any

other solution to (6.35), then we necessarily have that g̃∗ ≤ Tκ,c1 = g0. It follows
by the monotonicity of U that g̃∗ = U (g̃∗) ≤ g1 and, iteratively, g̃∗ ≤ gm for any
m ∈ N. Hence g̃∗ ≤ g∗. By the equivalence of (6.34) and (6.35) and monotonicity of
x 	→ x/(1 + x) we have that f ∗ = g∗/(1 + g∗) is the maximal solution to (6.34).

Uniqueness: Assume towards a contradiction that f ∗ and f̃ ∗ are non-trivial solu-
tions of (6.34) and f ∗ �= f̃ ∗ on a set A ⊂ S with c(A) > 0. Without loss of generality
we can assume that f ∗ is the maximal solution (as constructed in the existence part),
i.e., f̃ ∗ ≤ f ∗ on S and f̃ ∗ < f ∗ everywhere on A. For any h : S → [0, 1] put
Ψ (h) := (1 − h)Tκ,ch. Then Ψ ( f ∗) = f ∗ and Ψ ( f̃ ∗) = f̃ ∗ and we have that

Ψ
( f ∗

2
+ f̃ ∗

2

)
= 1

2
Ψ ( f ∗) + 1

2
Ψ ( f̃ ∗) + 1

4
( f ∗ − f̃ ∗)Tκ,c( f

∗ − f̃ ∗)

≥ 1

2
Ψ ( f ∗) + 1

2
Ψ ( f̃ ∗) = 1

2
f ∗ + 1

2
f̃ ∗,
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where the inequality relies on the fact that κ is non-negative and f̃ ∗ ≤ f ∗. Note that
we even have a strict inequality on the set A. Now, define h := ( f ∗ − f̃ ∗)/2, then
f̃ ∗ + h = ( f̃ ∗ + f ∗)/2 and we already argued that Ψ ( f̃ ∗ + h) ≥ f̃ ∗ + h where the
inequality is strict on A. On the other hand, as h ≥ 0, we get

Ψ ( f̃ ∗ + h) = (1 − f̃ ∗ − h)Tκ,c( f̃
∗ + h) ≤ (1 − f̃ ∗)Tκ,c( f̃

∗ + h),

so altogether (1− f̃ ∗)Tκ,c( f̃ ∗ +h) ≥ f̃ ∗ +h with strict inequality on A. Using (6.34)
for f̃ ∗ and the symmetry of κ we get

〈c, f̃ ∗Tκ,c( f̃
∗ + h)〉 >

〈
c,

f̃ ∗

1 − f̃ ∗ ( f̃ ∗ + h)
〉
= 〈c, (Tκ,c f̃

∗)( f̃ ∗ + h)〉

= 〈c, f̃ ∗Tκ,c( f̃
∗ + h)〉,

which is a contradiction. Hence the solution to (6.34) is unique up to sets that have
measure zero w.r.t. c, which implies uniqueness of b∗.

We now argue that Σ(κ, b∗) = 1. Our procedure is very similar to the one used
in the proof of Lemma 6.6 in [7]. Let w : S → R be an eigenfunction of Tκ,b∗ with
eigenvalue a. Then using (6.34) and the symmetry of κ , we get that

〈c, w f ∗〉 = 〈c, w(1 − f ∗)Tκ,c f
∗〉 = 〈c, f ∗Tκ,c(w(1 − f ∗))〉

= 〈c, f ∗Tκ,b∗w〉 = a〈c, f ∗w〉. (6.36)

Hence, we either have that 〈c, w f ∗〉 = 0 or a = 1. By the Krein–Rutman Theo-
rem (the extension of the Perron–Frobenius Theorem to positive compact operators)
the eigenfunction w corresponding to the largest eigenvalue of Tκ,b∗ is non-negative
and non-trivial, so 〈c, w f ∗〉 > 0 and hence Σ(κ, b∗) = 1. (Interestingly, we
have constructed b∗ in such a way that all other eigenfunctions w̃ of Tκ,b∗ satisfy
〈c, w̃ f ∗〉 = 0.)

(ii) Let Σ(κ, c) ≤ 1. Assume towards a contradiction that f ∗ is a solution to (6.34)
and

∫
A f ∗ dc > 0 for some open set A ⊂ S such that c(A) > 0. Using the substitution

f ∗ = g/(1+g)we have that Eq. (6.34) is equivalent to Tκ,c(g/(1+g)) = g and since
κ is continuous and S is compact the left-hand side Tκ,c(g/(1 + g)) is a continuous
function, which implies that both g and f ∗ are continuous functions. So we can find
an ε > 0 and a set Aε ⊂ A such that f ∗ ≥ ε on Aε and c(Aε) > 0. Therefore,

Tκ,c f
∗ = f ∗

1 − f ∗ ≥ f ∗

1 − ε

holds on Aε and Tκ,c f ∗ ≥ f ∗ holds onS. This implies that ‖Tκ,c f ∗‖L2(c) > ‖ f ∗‖L2(c)
and hence Σ(κ, c) > 1 in contradiction to our assumption.

(iii) Since κ is reducible w.r.t. c, we find a decomposition of supp(c) into (countable
many) disjoint sets S j , j ∈ J , such that κ( j) = κ|S j×S j is irreducible with respect

to c( j), the restriction of c to S j for any j ∈ J , and κ|Si×S j = 0 holds c-almost

everywhere, if i �= j . Let J ′ := { j ∈ J : Σ(κ( j), c( j)) > 1} and note that J ′ �= ∅.
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By (i) we get that for any j ∈ J ′ there exists a function f ( j) : S j → [0, 1) that solves
(6.34) on S j and f ( j) > 0. By (ii) we get that for any j ∈ J\J ′ the only function
f : S j → [0, 1) that solves (6.34) on S j is equal to 0 c( j)-almost everywhere. Now for
σ = (σ j ) j∈J ′ ∈ {0, 1}J ′

define f (σ ) : S → [0, 1) by f (σ )(s) = σ j f ( j)(s), if s ∈ S j

for some j ∈ J ′ and f (σ )(s) = 0 for s ∈ S\ ⋃
j∈J ′ S j . It can now be easily checked

that all solutions to (6.34) are given by

F :=
{
f (σ ) : σ = (σ j ) j∈J ′ ∈ {0, 1}J ′}

(6.37)

and that F contains at least one non-trivial solution. Write b(σ ) = (1 − f (σ ))c and
note that all possible solutions of (2.9) are of this form. Clearly, the minimal solution
b∗ of (2.9) is given via the maximal solution in F , i.e., by choosing σ ≡ 1.

We will now investigate the quantities Σ(κ, b(σ )) for any choice of σ . First, let σ

be such that there exists some j ∈ J ′ with σ j = 0. Then for r ∈ S j and any function
h : S → R

Tκ,b(σ )h(r) =
∫

S j
κ(r , s)h(s)(1 − σ j f

( j)(s)) c(ds) = Tκ( j),c( j)h(r).

Therefore, given an eigenfunction g( j) of Tκ( j),c( j) that corresponds to the eigenvalue
Σ(κ( j), c( j)), we can construct an eigenfunction g for Tκ,b(σ ) with the same eigenvalue
by choosing g = g( j) on S j and g = 0 onS\S j . Hence,Σ(κ, b(σ )) = Σ(κ( j), c( j)) >

1. Now, consider σ ≡ 1. Then we can argue as in (6.36) to show that Σ(κ, b(σ )) = 1.
��

7 Analysis of minimizers of the rate function in Theorem 1.1

In this sectionwe provide the final steps needed for the optimization of the rate function
and prove Theorems 2.3 and 2.1. Since the arguments for the remaining steps do not
rely on discrete combinatorics (as it was the case in Sect. 6), we will immediately work
in the general setting. In Sect. 7.1 we study a constrained optimization problem for
the functions IMe and IMa. In Sect. 7.2 we prove the explicit form of the rate functions
that is derived by applying the contraction principle and formulated in Theorem 2.3.
Section 7.3 presents the last step for a full optimization of the rate function I that
gives Theorem 2.1. In Sect. 7.4 we derive the Flory equation that we formulated in
Proposition 2.7.

7.1 Theminimizers of IMa and IMe

Complementary to what was done in Sect. 6 for the function IMi we will solve the
analogous optimization problems for the functions IMe and IMa defined in (1.12) and
(1.13). To optimize the function IMe it is beneficial to combine it with IMa. We will
again fix a measure c ∈ M(S) to formulate the constraint. In contrast to the result of
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Proposition 6.1 it will turn out that we do not have to distinguish between the cases
Σ(κ, c) ≤ 1 and Σ(κ, c) > 1.

Lemma 7.1 (Minimizers of IMe and IMa) Let c ∈ M(S) be such that c ≤ μ. Then

inf{IMa(α) : α ∈ A, c(α) = c} = IMa(δc), (7.1)

inf{IMa(α) + IMe(ν) : α ∈ A, ν ∈ M(S), c(α) + ν = c} = IMa(δc) + IMe(0).

(7.2)

If κ is irreducible with respect to c, then the minimizers are unique.

In order to prove the result above, we need the following lemma.

Lemma 7.2 Let c ∈ M(S) and let κ be irreducible with respect to c. Let α ∈ A be
such that c(α) = c and assume that α = ∑

i∈I δy(i) with |I | ≥ 2 and IMa(α) < ∞.

Then for any fixed i ∈ I there is a measurable set A ⊂ S such that y(i)(A) > 0 and
κ(c − y(i))(x) > 0 for all x ∈ A.

Proof Denote y := y(i), S1 = supp(y) and S2 = supp(c(α) − y). We first study the
case where the sets S1 and S2 are disjoint. Assume towards a contradiction that for
y-almost every r we have that κ(c− y)(r) = 0. Then κ|S1×S2 = 0 which is equivalent
to saying that κ|S1×S\S1 = 0 holds c-almost everywhere. Since κ is irreducible with
respect to c we get that either c(S1) = 0 or c(S\S1) = 0. Consequently, either
y(S1) = 0 or (c − y)(S\S1) = 0, i.e., either y = 0 or c − y = 0 in contradiction to
our assumptions.

Now, assume that S1 and S2 are not disjoint. In that case we can pick j ∈ I\{i} in
such a way that with ŷ := y( j) there exists r0 ∈ supp(y)∩ supp(ŷ), which implies that
for any open neighborhood A0 ⊂ S of r0 we have that y(A0) > 0 and ŷ(A0) > 0. By
our assumption IMa(α) < ∞, we have that −∞ < 〈ŷ, log(1− e−κ ŷ)〉. This, together
with the uniform continuity of κ implies that we can find a neighborhood A0 of r0
such that κ ŷ

∣∣
A0

> 0. Now the claim follows, since κ(c − y) ≥ κ ŷ and y(A0) > 0. ��
Now we are ready to prove Lemma 7.1.

Proof of Lemma 7.1 Writing ÎMa(α) = IMa(α)− 1
2 〈c(α), κμ〉 and ÎMe(ν) = IMe(ν)−

1
2 〈ν, κμ〉 it suffices to prove Eqs. (7.1) and (7.2) for ÎMa and ÎMe since the difference
does not depend on c. Observe that ÎMa(α) = A(α) + B(α), where

A(α) =
∫

S
μ(dr)

∫
α(dy)

dy

dμ
(r) log

dy
dμ(r)

κ y(r)
, (7.3)

B(α) =
∫

S
μ(dr)

∫
α(dy)

dy

dμ
(r) log

κ y(r)

e
1
2 κ y(r) − e− 1

2 κ y(r)
. (7.4)

Let α ∈ A with c(α) = c. Note that
∫

α(dy) κ y(r) = κc(r) for r ∈ S. With
φ(u) = u log u we use Jensen’s inequality to get that

A(α) =
∫

S
μ(dr)κc(r)

∫
α(dy)

κ y(r)

κc(r)
φ

( dy
dμ(r)

κ y(r)

)
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≥
∫

S
μ(dr)κc(r)φ

(∫
α(dy)

dy
dμ(r)

κc(r)

)

=
∫

S
μ(dr)

dc

dμ
(r) log

dc
dμ(r)

κc(r)
= A(δc), (7.5)

where we used that
∫

α(dy) dydμ(r) = dc
dμ(r). We now derive a corresponding lower

bound for B(α). Note that the function u 	→ u/ sinh(u) =: ψ(u) is strictly decreasing
on [0,∞) and that for any y ∈ supp(α) we have that κ y ≤ κc. Therefore

B(α) =
∫

S
μ(dr)

∫
α(dy)

dy

dμ
(r) logψ

( 1
2κ y(r)

)

≥
∫

S
μ(dr)

∫
α(dy)

dy

dμ
(r) logψ

( 1
2κc(r)

)

=
∫

S
μ(dr)

dc

dμ
(r) logψ

( 1
2κc(r)

) = B(δc). (7.6)

This implies Eq. (7.1). Now, let α ∈ A and ν ∈ M(S) be such that c(α) + ν = c.
Note that

ÎMa(α) + ÎMe(ν) = A(α + δν) + B(α).

Since c(α+δν) = c holds, we can use the estimate from before to get that A(α+δν) ≥
A(δc). To get the estimate for B(α), observe that we still have that κ y ≤ κc for any
y ∈ supp(α). So,

B(α) ≥
∫

S
μ(dr)

dc(α)

dμ
(r) logψ

(
1
2κc(r)

)
≥

∫

S
μ(dr)

dc

dμ
(r) logψ

(
1
2κc(r)

)
= B(δc),

where the second estimate is due to the the fact that ψ(u) ∈ [0, 1] for u ≥ 0 and thus
logψ( 12κc(r)) ≤ 0. Combining the estimates gives Eq. (7.2).

For both uniqueness claims we rely on Lemma 7.2 above.
To show uniqueness of the minimizer in Eq. (7.1) assume that α ∈ Awith c(α) = c

and α �= δc. Without loss of generality we can assume that IMa(α) < ∞. Now, we
only have to note that the inequality in the estimate (7.6) is a strict inequality, since
by Lemma 7.2 we have that κ y < κc holds on some set A, for which y(A) > 0 and
the function ψ is strictly decreasing.

To showuniqueness of theminimizer in Eq. (7.2) assume thatα ∈ A and ν ∈ M(S)
with ν �= 0 and c(α) + ν = c. Then by the same arguments as before

B(α) ≥ B(δc(α)) =
∫

c(α)(dr) logψ (κc(α)(r)) >

∫
c(α)(dr) logψ (κc(r)) ≥ B(δc)

holds, if κc > κc(α) on some measurable set A ⊂ S for which c(α)(A) > 0. To see
that the latter condition is satisfied, we apply Lemma 7.2 to the measure δc(α) + δν .
This proves the claim. ��
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7.2 Minimization for the contraction principles

Here, we will exploit the work of Sects. 6 and 7.1 to prove Theorem 2.3, which is an
application of the contraction principle but also provides an explicit solution for the
optimization problem. When studying the optimization problem in the large deviation
principle for MaN , we encounter a functional that combines rates coming from the
microscopic and the mesoscopic part. Its optimization is derived in the following
lemma.

Lemma 7.3 Fix c ∈ M(S) with c ≤ μ. For b ∈ M(S) with b ≤ c and Σ(κ, b) ≤ 1
let Gc be as in (6.29)

Gc(b) :=
〈
b, log

db

dμ

〉
− 1

2
〈b, κb〉 +

〈
c − b, log

d(c − b)

κ(c − b)dμ

〉
+ 1

2
〈c, κμ〉.

Then the following holds.

1. If Σ(κ, c) ≤ 1, then

min {Gc(b) : b ∈ M(S), b ≤ c,Σ(κ, b) ≤ 1} = Gc(c), (7.7)

and c is the unique minimizer.
2. If Σ(κ, c) > 1, then

min {Gc(b) : b ∈ M(S), b ≤ c,Σ(κ, b) ≤ 1} = Gc(b
∗(c)) (7.8)

and b∗(c) is the unique minimizer, which is given as the minimal, non-trivial (i.e.,
not equal to c) solution of (2.9), and it satisfies Σ(κ, b∗(c)) = 1.

Proof (1) We use that 1
2 〈c, κc〉− 1

2 〈b, κb〉 = 〈b, κ(c−b)〉+ 1
2 〈c−b, κ(c−b)〉 holds

by the symmetry of κ . Therefore,

Gc(b) − Gc(c) =
〈
b, log

db

dc

〉
− 1

2
〈b, κb〉 +

〈
c − b, log

1 − db
dc

κ(c − b)

〉
+ 1

2
〈c, κc〉

=
〈
b, log

db
dc

e−κ(c−b)

〉
+

〈
c − b, log

1 − db
dc

κ(c − b)e− 1
2 κ(c−b)

〉
.

We claim that κ(c−b)e− 1
2 κ(c−b) ≤ 1−e−κ(c−b) holds pointwise. Indeed, the function

ψ(z) := 1− e−z − ze− z
2 , z ≥ 0, satisfies that ψ(0) = 0 and ψ ′(z) = e− z

2 (e− z
2 − (1−

z
2 )) ≥ 0 for any z ≥ 0, implying that ψ(z) ≥ 0 for any z ≥ 0. So the claim holds,
since κ(c − b) ≥ 0 holds pointwise. Therefore, we can estimate

Gc(b) − Gc(c) ≥
〈
b, log

db
dc

e−κ(c−b)

〉
+

〈
c − b, log

1 − db
dc

1 − e−κ(c−b)

〉

=
∫

S
c(dr)

[db
dc

(r) log
db
dc (r)

e−κ(c−b)(r)
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+
(
1 − db

dc
(r)

)
log

1 − db
dc (r)

1 − e−κ(c−b)(r)

]
≥ 0,

with equality if and only if b = c. The last inequality can be seen by applying Jensen’s
inequality to the function x 	→ x log x or by noting the following: For any point r ∈ S
the term in brackets in the last line is an entropy between theBernoulli distributionwith
(success) parameter db

dc (r) and the Bernoulli distribution with parameter e−κ(c−b)(r)

and therefore non-negative.
(2) Define Fc as the generalized analog of (6.28), i.e., for b ≤ c

Fc(b) =
〈
c, log

db

dμ

〉
+ (c − b)(S) + 1

2
〈b, κb〉 − 〈c, κb〉 + 1

2
〈c, κμ〉.

Let b, b′ ≤ c with Σ(κ, b) ≤ 1 and Σ(κ, b′) ≤ 1. We want to show that Fc(b′) ≤
Gc(b). By rearranging terms one can see that

Gc(b) − Fc(b
′) = H(c − b|κ(c − b)b′) + H(b|b′) − 1

2
〈b − b′, κ(b − b′)〉. (7.9)

Now, given the signed measure b − b′ we use the Hahn decomposition theorem to
decompose S into two disjoint sets S+, S− with S+ ∪ S− = S such that δ+(·) :=
(b − b′)(· ∩ S+) and −δ−(·) := −(b − b′)(· ∩ S−) are non-negative measures and
b − b′ = δ+ − δ−. Observe that

1

2
〈b − b′, κ(b − b′)〉 = 1

2

∫

S+
(b − b′)(ds) κ(b − b′)(s)

+ 1

2

∫

S−
(b′ − b)(ds) κ(b′ − b)(s).

We write fb′,b := db′
db 1S+ and denote by 〈·, ·〉b the inner product on L2(b), i.e.

〈 f , g〉b = ∫
f (s)g(s) b(ds). Note that by the symmetry of κ we have 〈 f , Tκ,bg〉b =

〈g, Tκ,b f 〉b, so we have that Σ(κ, b) = sup f �=0
〈 f ,Tκ,b f 〉b

〈 f , f 〉b ≤ 1. Then

1

2

∫

S+
(b − b′)(ds) κ(b − b′)(s) = 1

2
〈1S+ − fb′,b, Tκ,b(1S+ − fb′,b)〉b

≤ 1

2
Σ(κ, b)〈1S+ − fb′,b,1S+ − fb′,b〉b ≤ 1

2

∫

S+
b(ds) (1 − fb′,b(s))

2. (7.10)

An elementary analysis shows that 1
2 (1 − x)2 ≤ − log x + x − 1 for x ∈ (0, 1] with

equality if and only if x = 1, and since b′ ≤ b on S+ implies that fb′,b(s) ∈ (0, 1] for
s ∈ S+, we get that

1

2

∫

S+
b(ds) (1 − fb′,b(s))

2 ≤
∫

S+
b(ds)

(
− log fb′,b(s) + fb′,b(s) − 1

)

(7.11)
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Denote fb,b′ := db
db′1S− . Interchanging the roles of b and b′ and replacing S+ by S−

one can argue as in (7.10) to show that

1

2

∫

S−
(b′ − b)(ds) κ(b′ − b)(s) ≤ 1

2

∫

S−
b′(ds) (1 − fb,b′(s))2.

An elementary analysis shows that 1
2 (1 − x)2 ≤ x log x + 1 − x for x ∈ (0, 1] with

equality if and only if x = 1, and since b ≤ b′ on S− implies that fb,b′(s) ∈ [0, 1] for
s ∈ S−, we get that

1

2

∫

S−
b′(ds) (1 − fb,b′(s))2 ≤

∫

S+
b′(ds)

(
fb,b′(s) log fb,b′(s) + 1 − fb,b′(s)

)
.

(7.12)

Note that the two expressions on the right-hand sides of (7.11) and (7.12) sum up to
H(b|b′), hence we have shown that

H(b|b′) − 1

2
〈b − b′, κ(b − b′)〉 ≥ 0

and we have equality if and only if b = b′. Using this in Eq. (7.9) and the fact that the
first entropy term in (7.9) is always non-negative, we get that

sup
b≤c : Σ(κ,b)≤1

Fc(b) ≤ inf
b≤c : Σ(κ,b)≤1

Gc(b).

Note that Gc(b) − Fc(b′) = 0 if and only if the following conditions are satisfied: (i)
b = b′, (ii) b is a solution of (2.9) and (iii) Σ(κ, b) = 1. By Lemma 6.14 the only
choice is given by b = b′ = b∗, where b∗ is the unique minimal solution of (2.9).
Hence, the uniqueness claim holds. ��

Proof of Theorem 2.3 The projection (λ, α) 	→ λ is continuous with respect to the
vague topology, so the contraction principle gives that the LDP for MiN holds with
rate function

IMi(λ) = inf
α : c(α)≤μ−c(λ)

I (λ, α)

= IMi(λ) + inf
α∈A,ν∈M(S) : c(α)+ν=μ−c(λ)

(
IMa(α) + IMe(ν)

)

(7.13)

assuming c(λ) ≤ μ (the other case is trivial). By Eq. (7.2) of Lemma 7.1 we
immediately get the representation for IMi claimed in Eq. (2.6).
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The projection (λ, α) 	→ α is continuous with respect to the chosen topology, so
the contraction principle gives that the LDP for MaN holds with rate function

IMa(α) = inf
λ : c(λ)≤μ−c(α)

I (λ, α)

= IMa(α) + inf
c∈[0,μ−c(α)]

(
inf

λ : c(λ)=c
IMi(λ) + IMe(μ − c(α) − c)

)
,

(7.14)

assuming c(α) ≤ μ (the other case is trivial). Define μα = μ − c(α).
Now, assume that Σ(κ,μα) ≤ 1. Then for any fixed c ∈ M(S) with c ≤ μα we

have that Σ(κ, c) ≤ 1, so according to Eq. (6.1) of Proposition 6.1 we have

inf
λ : c(λ)=c

IMi(λ) + IMe(μα − c) = Gμα (c)

with Gμα (c) defined as in (6.29). By Lemma 7.3 we have that minc≤μα Gμα (c) =
Gμα (μα), which implies Eq. (2.7) under the assumption Σ(κ,μα) ≤ 1.

Now, assume that Σ(κ,μα) > 1. Then by Proposition 6.1 we have

inf
λ : c(λ)=c

IMi(λ) + IMe(μα − c)

=
{
Gμα (c) if Σ(κ, c) ≤ 1,

Gc(b∗(c)) + 〈μα − c, log μα−c
κ(μα−c) 〉 if Σ(κ, c) > 1.

In the case Σ(κ, c) > 1, one can use the same argument as in (7.5) to show that
Gc(b∗(c)) + 〈μα − c, log μα−c

κ(μα−c) 〉 > Gμα (b
∗(c)), where b∗ = b∗(c) is given as in

(2.9). In particular, Σ(κ, b∗(c)) = 1 holds, so any possible minimizer has to be in the
set {c : Σ(κ, c) ≤ 1}. Now, recall that due to Lemma 7.3

inf
c : Σ(κ,c)≤1

Gμα (c) = Gμα (b∗(μα))

This proves the claim of equation (2.7) under the assumption Σ(κ,μα) > 1. ��

7.3 Theminimizers of I

Proof of Theorem 2.1 Note that inf I (λ, α) = infc∈M(S) : c≤μ J (c) where for fixed
c ∈ M(S) with c ≤ μ we define

J (c) = inf
λ,α:c(λ)=c

I (λ, α) =:
{
J≤1(c) if Σ(κ, c) ≤ 1

J>1(c) otherwise.
(7.15)

123



L. Andreis et al.

By Proposition 6.1 and Lemma 7.1 we have that

J≤1(c) =
〈
c, log

dc

dμ

〉
+ 1

2
〈c, κ(μ − c)〉 + IMa(δμ−c)

J>1(c) ≥
〈
b∗, log db∗

dμ

〉
+ 1

2

〈
b∗, κ(μ − b∗)

〉 + IMe(c − b∗) + IMa(δμ−c)

with b∗ = b∗(c) characterized in (2.9).
We will start by minimizing the function J≤1 over all c ∈ M(S) with c ≤ μ.

Rearranging terms, we get that

J≤1(c) =
∫

S
μ(dr)

(
dc

dμ
(r) log

dc
dμ(r)

e−κ(μ−c)(r)
+

(
1 − dc

dμ
(r)

)
log

1 − dc
dμ(r)

1 − e−κ(μ−c)(r)

)

=
∫

S
μ(dr)H(β(r)|γ (r)),

where for r ∈ S we defined β(r) and γ (r) to be Bernoulli distributions with success
rate dc

dμ(r) and e−κ(μ−c)(r), respectively (note that c ≤ μ implies that dc
dμ(r) ≤ 1 for

all r ∈ S). By Jensen’s inequality we have that H(β(r)|γ (r)) ≥ 0 for all choices of
β(r) and γ (r) and H(β(r)|γ (r)) = 0 if and only if β(r) = γ (r), that is if and only if
dc
dμ(r) = e−κ(μ−c)(r). The minimizer of J≤1 is therefore characterized by (2.4).

In the case Σ(κ,μ) ≤ 1 (which implies Σ(κ, c) ≤ 1 for all c ∈ M(S) with
c ≤ μ), Lemma 4.1 states that μ is the only solution to (2.4). Note that even though
we formulated Lemma 4.1 only for the case of a finite type space, it is valid also under
our general assumptions due to Theorem 6.2 and Theorem 6.7 in [7].

Now assume thatΣ(κ,μ) > 1. Then for any c ∈ M(S)with c ≤ μ andΣ(κ, c) >

1, Lemma 7.1 implies that IMe(c−b∗)+ IMa(δμ−c) > IMa(δμ−b∗), where b∗ = b∗(c)
is given as in (2.9) and satisfies Σ(κ, b∗) = 1. Therefore, J>1(c) > J≤1(b∗(c)),
which implies that the minimizer of J lies in the set {c : Σ(κ, c) ≤ 1}. (Note, that in
this way,μ is ruled out as a minimizer, although it solves Eq. (2.4)). By the analysis of
J≤1 above, the minimizer of J is given by a solution to (2.4) satisfying Σ(κ, c) ≤ 1.
Applying the second part of Lemma4.1 (again under generalized assumptions) finishes
the proof. ��

Remark 7.4 (Reducibility) Theorem 2.1 and 2.3 are proved under the assumptions of
Theorem 1.1, in particular when κ is irreducible with respect to μ. We see however
that this condition does not play any role in the minimization of Proposition 6.1 and of
Lemma 7.1. It is indeed Theorem 2.6 that excludes the admissibility of a minimizer of
the form (λc∗, δμ−c∗)whenΣ(κ,μ) > 1 for Ĩ , asα∗ = δμ−c∗ may not be connectable.
It is straightforward to see that the optimal macroscopic mass in this case takes the
form α̃∗ = ∑

n δy(n) , with y(n)(·) = (μ− c∗)(· ∩ S(n)), for each irreducible class S(n).

123



A large-deviations principle for all the components in a…

7.4 The Flory equation

As we explained in Sect. 2.4 the graph model studied in this paper has an important
connectionwith a certain inhomogeneous coagulation process. In this sectionwe prove
that the statistics of the limiting microscopic cluster distribution, i.e., the minimizer
of the rate function I , satisfy the Flory equation (2.14), the related deterministic PDE,
over the entire time interval [0,∞), before and after the gelation time tc = 1/Σ(κ, μ).
We prove it in the case of a finite type set S.

We fix an irreducible symmetric matrix κ on the finite type space S. Recall from
Proposition 6.2 the explicit formula

λk(c; κ) = τ(k; κ)
∏

r∈S

(cre−(κc)r )kr

kr ! , k ∈ N
S
0 , c ∈ (0,∞)S , (7.16)

for the minimizer of the microscopic rate function IMi (see also (6.3)). With this
notationwe stressed the dependence on κ , sincewe consider now tκ instead of κ , where
t ∈ [0,∞) is a time instant, writing λ(μ; tκ). Note that λ(μ; tκ) is the minimizer
both for t < tc and for t ≥ tc, as the characteristic equation c∗

r (t)e
−t(κc∗(t))r =

μre−t(κμ)r (where c∗(t) is the c∗ of Proposition 6.2 for tκ instead of κ) ensures that
λ(c∗(t); tκ) = λ(μ; tκ). Note that c(λ(c∗(t); tκ)) = c∗(t). We now show that the
function t 	→ λ(μ; tκ) solves the Flory equation that corresponds to our model.

Lemma 7.5 The function t 	→ λ(μ; tκ) is a solution of

d

dt
lk(t) = 1

2

∑

m+m̃=k

lm(t)lm̃(t)〈m, κm̃〉 − lk(t)
∑

m

lm(0)〈k, κm〉, for k ∈ N
S
0 ,

(7.17)

with initial condition λ(μ; 0) = ∑
r∈S μr1{er }.

Proof The initial condition is easily checked.
Since any tree contributing to the term τ(k; tκ) has exactly |k| − 1 edges, we can

rewrite λ(μ; tκ) for any t ≥ 0 as

λk(μ; tκ) = t |k|−1τ(k; κ)e−t〈k,κμ〉 ∏

r∈S

μ
kr
r

kr ! , for k ∈ N
S
0 . (7.18)

Abreviating λ(t) := λ(μ; tκ), we get that

d

dt
λk(t) = (|k| − 1)

1

t
λk(t) − 〈k, κμ〉λk(t). (7.19)

Now, we study the first summand of the r.h.s. of (7.17). By first inserting (7.18) and
then using the recursive Eq. (6.7) from Lemma 4.3, we have that
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1

2

∑

m+m̃=k

λm(t)λm̃(t)〈m, κm̃〉

= 1

2
t |k|−2e−t〈k,κμ〉(∏

u

μ
ku
u

ku !
) ∑

r ,s

κ(r , s)
∑

m+m̃=k

(∏

u

ku !
mu !m̃u !

)
τ(m)mrτ(m̃)m̃s

= (|k| − 1)
1

t
λk(t).

Furthermore, we have that

λk(t)
∑

m

λm(0)〈k, κm〉 = λk(t)〈k, κμ〉,

which implies the claim. ��
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