5 research outputs found

    The mycobiota of high altitude pear orchards soil in colombia

    No full text
    Simple SummarySoil fungi are extremely important in the agro-environment. They are among the main decomposers of organic matter, contributing to carbon, nitrogen, and phosphorous cycles. They often establish positive relationships with plants, protecting them from pathogens and abiotic stresses. This study aimed to uncover the soil fungal communities of two high altitude pear orchards with biomolecular techniques. We found a rich and diverse assemblage, dominated by fungi belonging to Ascomycota and Mortierellomycota. Most of the found species were novel records for soil fungi in Colombia. The most common fungal genera were Mortierella, Fusarium, Pseudaleria and Cylindrocarpon. Among the identified fungi, some species are known to be bioactive, with promising activities as biocontrol agents, plant-growth promoters, and producers of valuable substances. These results could contribute for a more attentive management of Colombian pear orchards in future and an enrichment of knowledge on Colombian biodiversity.In Colombia, the cultivation of deciduous fruit trees such as pear is expanding for socio-economic reasons and is becoming more and more important for the local population. Since organized cultivation is slowly replacing sustenance cultivation, scientific information on the present agro-environment is needed to proceed in this change in an organic and environmentally friendly way. In particular, this study is an accurate description of the mycobiota present in the bulk soil of two different high altitude pear orchards in the Colombian Andes. The metabarcoding of soil samples allowed an in-depth analysis of the whole fungal community. The fungal assemblage was generally dominated by Ascomycota and secondly by Mortierellomycota. As observed in other studies in Colombia, the genus Mortierella was found to be especially abundant. The soil of the different pear orchards appeared to host quite different fungal communities according to the soil physico-chemical properties. The common mycobiota contained 35 fungal species, including several species of Mortierella, Humicola, Solicoccozyma and Exophiala. Moreover, most of the identified fungal species (79%) were recorded for the first time in Colombian soils, thus adding important information on soil biodiversity regarding both Colombia and pear orchards

    Fungi as a toolbox for sustainable bioremediation of pesticides in soil and water

    Get PDF
    Pesticides can help reduce yield losses caused by pests, pathogens, and weeds, but their overuse causes serious environmental pollution. They are persistent in the environment and are biomagnified through the food chain, becoming a serious health hazard for humankind. Bioremediation, where microbes are used to degrade pesticides in situ, is a useful technology. This review summarizes data on the fungi involved in the biodegradation of chemical pesticides and their application in soil and water bioremediation. Indications for future studies in this field are given

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population

    The risk of COVID-19 death is much greater and age dependent with type I IFN autoantibodies

    No full text
    International audienceSignificance There is growing evidence that preexisting autoantibodies neutralizing type I interferons (IFNs) are strong determinants of life-threatening COVID-19 pneumonia. It is important to estimate their quantitative impact on COVID-19 mortality upon SARS-CoV-2 infection, by age and sex, as both the prevalence of these autoantibodies and the risk of COVID-19 death increase with age and are higher in men. Using an unvaccinated sample of 1,261 deceased patients and 34,159 individuals from the general population, we found that autoantibodies against type I IFNs strongly increased the SARS-CoV-2 infection fatality rate at all ages, in both men and women. Autoantibodies against type I IFNs are strong and common predictors of life-threatening COVID-19. Testing for these autoantibodies should be considered in the general population
    corecore