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 20 

Abstract 21 

Pesticides can help reduce yield losses caused by pests, pathogens, and weeds, but their 22 

overuse causes serious environmental pollution. They are persistent in the environment and 23 

are biomagnified through the food chain, becoming a serious health hazard for humankind. 24 

Bioremediation, where microbes are used to degrade pesticides in situ, is a useful technology. 25 

This review summarizes data on the fungi involved in the biodegradation of chemical 26 

pesticides; and their application in soil and water bioremediation. Indications for future 27 

studies in this field are given.  28 

 29 
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Keywords: Pesticides, Agrochemicals, Antibiotics, Sustainable bioremediation, Fungi, 30 

Synthetic microbial community, Environmental risk assessment. 31 

 32 

Introduction 33 

Because of their unique functions, fungi are involved in ecosystem services essential to human 34 

well-being. Among others, fungi also carry out the transformation and detoxification of pollutants. 35 

For this reason, learning from nature, they represent an effective toolbox for a sustainable 36 

bioremediation of pesticides in soil and water. Many researches have revealed the untapped 37 

potential of fungi, and recent years have witnessed very interesting developments regarding the 38 

application of fungi not only to improve environmental quality but also human health (e.g. Gargano 39 

et al. 2017). 40 

Pesticides are a diverse group of inorganic and organic chemicals that include herbicides, 41 

insecticides, nematicides, fungicides, antibiotics and soil fumigants (Verger and Boobis 2013; 42 

Verma et al. 2014). They are employed in agriculture to enhance crop yield and quality, and to 43 

maximize economic returns by preventing pest or weed attack. They are bioactive, toxic substances, 44 

capable of directly or indirectly influencing soil fertility and health as well as agroecosystem quality 45 

(Pinto et al. 2012; Verma et al. 2014). Given that belowground biodiversity is closely linked to land 46 

management, agricultural intensification exerts many pressures that lead to loss of biodiversity.  47 

Consequently, soil pollution is one of the main threats to the decline of taxonomic and functional 48 

biodiversity, and to agricultural soil sustainability (Harms et al. 2017). Most pesticide emission 49 

(99 %) in Europe is associated with agricultural practices, whereas industrial and urban sources 50 

such as the manufacturing of pesticides or the at-home use of insecticides have a minor impact 51 

(EEA 2016).  52 

The extensive and massive use of pesticides in agricultural activities has a serious impact on the 53 

environment, compromising soil and water quality (Pinto et al. 2012; Zhang et al. 2015; Pinto et al. 54 

2016). In addition to pesticides, large quantities of antibiotics are added to agricultural fields 55 

worldwide through the application of wastewater, manures and biosolids, also resulting in antibiotic 56 

contamination and elevated environmental risks (Jechalke et al. 2014; Zhang et al. 2015; Pan and 57 

Chu 2016). A clear correlation between agriculture and water contamination was observed in Mar 58 

Chiquita lake (Argentina), where large amounts of endosulfan residues were detected soon after 59 

application and post-application periods (Ballesteros et al. 2014). The presence of the fungicide 60 

thifluzamide in the water in rice paddies in China was maximal after application, with variation 61 

over time associated with the dilution effect of rainfalls in the area (Wei et al. 2015).  62 
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Preventive measures are required, to mitigate the impact of agriculture on the environment. These 63 

must take into account both the use of safe pesticides and the optimization of farmer procedures. 64 

Aravinna et al. (2017) found that most of the 32 studied pesticides leached off rice paddies 65 

following specific pathways. Since direct runoff and erosion from soil were the main vehicles of 66 

dispersion, authors suggested alternative strategies (high resident time for pesticides, holding ponds 67 

for rice drainage water, delayed filling of paddies after pesticide application, and the use of less 68 

mobile compounds) to reduce the movement of the pesticides. 69 

The intensive use of organic agrochemicals (OACs) poses risks to both wild lives and human 70 

health. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their 71 

target species through air, water and soil (Miller 2004). Around 30% of pesticides marketed in 72 

developing countries do not meet internationally accepted quality standards, posing a serious threat 73 

to human health and the environment (Popp et al. 2013). They are persistent in the environment and 74 

are biomagnified through the food chain, and it has been estimated that millions of agricultural 75 

workers worldwide experience unintentional pesticide poisoning each year. The correlation between 76 

long-term exposure to pesticides in occupational settings and illness is known, but recently non-77 

occupational exposures have also been associated with an elevated rate of chronic diseases (Parrón 78 

et al. 2014). 79 

Varieties and consumption of pesticides worldwide have increased dramatically, by up to 4-fold 80 

since 40 years ago (Mnif et al. 2011). According to De et al. (2014), about 45 % are used in Europe, 81 

25 % in the USA, and 25 % in the rest of the world. The main pesticide consumer is Spain (around 82 

79,000 ton of active ingredients sold between 2011 and 2014), followed by France (~ 75,000), Italy 83 

(~ 64,000), Germany (~ 46,000) and United Kingdom (~ 23,000) (Eurostat 2016). The United 84 

States applies over 1 billion pounds annually (Alavanja 2009) with dramatic consequences for 85 

human beings and environment (Carvalho 2017).  According to other authors (Huang McBeath and 86 

McBeath 2010), China is the world's largest pesticide user, with a pesticide output of around 3.7 87 

million tons (National Bureau of Statistics of China - http://data.stats.gov.cn), and a consumption of 88 

about 1.8 million tons in 2014. More than 350 insecticides, herbicides, microbicides, nematicides 89 

and other pesticides are reported to be used. The average amount of pesticides used per hectare in 90 

China is roughly 1.5- to 4-fold higher than the world average (Qiu 2011), thus resulting in 91 

contamination of water bodies in the receiving areas and disturbance of ecological equilibrium (Hui 92 

et al. 2003). Overall, use of pesticides in China breaks down as herbicides 47.5 %, insecticides 93 

29.5 %, fungicides 17.5 % and others 5.5 % (De et al. 2014). 94 

The adverse effects of OAC pollution have been of concern for a long time and many highly toxic 95 

and persistent pesticides have been banned worldwide. Although relatively safer pesticides have 96 
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been developed and replaced the highly toxic ones, environmental pollution resulting from the long-97 

term application of pesticides is far from being solved. Obsolete pesticides still represent a threat to 98 

environment, biodiversity, and human health for the region of Southeast Europe and their risk to the 99 

environment and to humans needs to be assessed in order to mitigate it. Many organochlorines, 100 

organophosphates and pyrethroids have been banned but this has not yet solved the problem 101 

(Aravinna et al. 2017). In Argentina, hexachlorocyclohexane pesticides have been limited since the 102 

late ’90s and were definitely banned in 2011, but samples taken from a saline lake in 2014 showed 103 

levels to be more than 5-fold over the legal limit of 4 ng/l for lindane levels in the environment 104 

(Ballesteros et al. 2014). Likewise in China, although the use of organichlorine pesticides has been 105 

banned for over 20 years, they can still be found in the water and sediments of main drainage areas 106 

(Nakata et al. 2005; Xue et al. 2006; Zhou et al. 2006), due to run-off from aged and weathered 107 

agricultural soils and from anaerobic sediments (Zhou et al. 2006). Water bodies and sediments, the 108 

water, the soil and even the air in many cities in China are polluted by OACs, in both urban and 109 

suburban areas (Gong et al. 2004; Nakata et al. 2005; Yang et al. 2008). 110 

OACs pose pivotal environmental problems, due to their high resistence in the environment and the 111 

consequent low natural attenuation. As an example, organochlorine pesticides were poorly affected 112 

by photochemical, chemical and biological processes, and more than 95% of them impacted on non-113 

target organisms (Mrema et al. 2013). As a consequence, regulatory and risk assessment procedures 114 

have to be adopted against OACs. Driven by the carcinogenicity of pesticides, Directive 91/414/ 115 

EEC aimed to regulate the authorization of pesticides marketing within the EU.  116 

The particular attention given to pesticides is because, as confirmed in recent studies, even low 117 

doses might trigger adverse effects on wildlife and humans (EEA 2005). As groundwater is our 118 

primary source of drinking waters, both the Groundwater Directive 2006/118/EC and the Drinking 119 

Water Directive 98/83/EC deal with maximum pesticide exposure concentrations: 0.1 µg/l of a 120 

single pesticide and 0.5 µg/l total pesticide load. Risk assessment needs to consider not only the 121 

source of contamination, but also the multifaceted direct and indirect pathways of contact with 122 

human beings. Kim et al. (2017) reported a number of routes pesticides might follow to meet human 123 

beings; the resulting direct and indirect multi-pathway exposure may affect human health. 124 

Experimental evidence of progress in natural restoration processes highlight that time is our ally, 125 

since the abandonment of disturbed/polluted agricultural land for long time can reduce 126 

contamination (Kardol and Wardle 2010). Studies by Morriën et al. (2017) reported that nature 127 

restoration on ex-arable land resulted in increased connettance of soil biota networks, as restoration 128 

progresses. Such results confirm that soil biota provide many and varied services, and that 129 

detoxification of pollutants and xenobiotics is one of the primary ones.  130 
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In this context, innovation involves the search for solutions inspired by nature, with the strategy 131 

being to accelerate the natural attenuation processes in contaminated sites. Bioremediation has 132 

arisen as a useful technology to degrade OACs (Singh 2008; Velázquez-Fernández et al. 2012), 133 

with several benefits over landfill disposal and incineration, such as the formation of non-toxic end 134 

products, lower costs of disposal, reduction of effects on health and ecology and on the long-term 135 

liabilities associated with destructive treatment methods, and the ability to perform the treatment in 136 

situ without unduly disturbing native ecosystems (Sarkar et al. 2005). Over the past decade, 137 

numerous microorganisms capable of degrading antibiotics and pesticides have been isolated, and 138 

detoxification processes for target pollutants have been analyzed. Fungi and especially ligninolytic 139 

fungi have been suggested as the most promising group of organisms, as they are able to transform 140 

recalcitrant compounds through a unique set of extracellular oxidative enzymes (Anastasi et al. 141 

2013; Harms et al. 2017). Comparative genomic analysis of 49 fungi with different nutritional 142 

modes, such as saprotrophic fungi, white-rot fungi (WRF), brown-rot fungi, soft rot fungi and 143 

symbiotic fungi indicate that there is a relationship between nutrition models and the enzymes for 144 

lignocellulose degradation. Saprotrophic fungi have a greater number of enzymes than symbiotic 145 

fungi, and brown-rot fungi have a smaller number than WRF and soft rot fungi (Wu et al. 2015a). 146 

This might provide some insight into how to choose fungi in OACs degradation. 147 

Finally yet importantly, the metabolic activity of fungal or microbial consortia could potentially 148 

produce unknown reaction products that are more toxic than the parent compounds. García-149 

Carmona et al. (2017) highlighted the importance of carrying out environmental monitoring 150 

activities ante- and post-operam phases, using bioassays to determine the success of the 151 

bioremediation process. Although it is fundamental to assess the quality of the environment to 152 

ensure it remains free of toxic residues, most of the analytical tests available for determining the 153 

concentration of toxic chemicals do not give the biological impacts of toxicants. For this reason, 154 

biotoxicity testing has grown steadily in recent years and is a useful tool in environmental risk 155 

assessment (Shen et al. 2016; Prokop et al. 2016).  156 

Indeed, there is a clear need to develop and define decontamination of hazardous pollutants as a 157 

concept that will support sustainable remediation by involving a broader uptake of principles, 158 

approaches and tools that integrate environmental, social and economical dimensions into 159 

remediation processes (Ridsdale and Noble 2016). Several organizations, academia and 160 

standardization committees are currently assessing remediation process and evaluating the 161 

complexity of sustainability. Documents have been developed by many countries across Europe and 162 

globally, addressing sustainable indicators for remediation activities (Harclerode et al. 2015).  163 
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The present review summarizes the current state of scientific knowledge on research and 164 

application of fungi as effective bioresources, considering recent advances in understanding their 165 

capacity to face up the pesticide contamination. 166 

 167 

Bioremediation of OACs by fungi in the soil system 168 

Large quantities of OACs are being added to agricultural fields worldwide through the application 169 

of wastewater, manures and biosolids, resulting in pesticide and antibiotic contamination and 170 

elevated environmental risks in terrestrial environments (Jechalke et al. 2014; Zhang et al. 2015; 171 

Pan and Chu 2016). A large proportion of the OACs applied to soils with manure or biosolids are 172 

retained in surface soil, whereas those added through irrigation with wastewater can seep down to 173 

lower horizons or be diffused in surface run-off. Once present, OACs interact with the solid phase 174 

of soil and are prone to microbial transformation (Hammesfahr et al. 2008; Jechalke et al. 2014). In 175 

particular, veterinary antibiotics interact with the soil solid phase in sorption and desorption 176 

reactions. Sorption and desorption control not only their mobility and uptake by plants but also their 177 

biotransformation and biological effects. OACs, like microorganisms are not distributed 178 

homogeneously in soil but are concentrated in hotspots. The multiplicity of surfaces, voids, and 179 

pores provided by soil aggregates harbor a vast amount of biological diversity and chemical 180 

variability, and cause patchy distribution of natural organic matter, oxides, nutrients, and 181 

microorganisms on soil particle surfaces (Hammesfahr et al. 2008; Jones et al. 2012). Sorption, 182 

sequestration, and subsequent release of OACs likely also occur at and from hotspots. Little is 183 

known about the behavior of OACs at environmentally relevant concentrations in agricultural soil. 184 

Recently, many studies have highlighted the ability of fungi to transform and degrade recalcitrant 185 

OACs. In particular, one of promising group is the ligninolytic fungi that possess a unique set of 186 

extracellular enzymes suitable to degrade lignin and are able to transform recalcitrant compounds, 187 

(Čvančarová et al. 2015) (Supplemental material Table I; Table I References). Nguyen et al. (2014) 188 

reported the removal of diverse trace organic contaminants (Trichloroethyl chloroformate (TrOC) 189 

including phenolic and non-phenolic compounds, pharmaceuticals, pesticides, steroid hormones, 190 

industrial precursors and products, and phytoestrogens) by live (biosorption + biodegradation), 191 

intracellular, enzyme-inhibited and chemically inactivated (biosorption only) whole-cell 192 

preparations and the fungal extracellular enzyme extract (predominantly laccases) from Trametes 193 

versicolor (strain ATCC 7731). They showed how non-phenolic TrOC were readily biodegraded 194 

while the removal of hydrophilic TrOC was negligible. The whole-cell culture showed considerably 195 

higher degradation of the major compounds, indicating the importance of biosorption and 196 

subsequent degradation by intracellular and/or mycelium associated enzymes. However, there are 197 
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too few studies that examine both adsorption and degradation of antibiotics in agricultural soil, with 198 

most using unrealistically high concentrations (in mg/kg levels) to overcome limitations in 199 

measurement. In addition, no model has been developed to speculate about the adsorption and 200 

degradation of different types of antibiotics in agricultural soil and the environmental risks they 201 

may pose. Pan and Chu (2016) evaluated the adsorption and degradation of five antibiotics 202 

(tetracycline, sulfamethazine, norfloxacin, erythromycin, and chloramphenicol) by native 203 

microorganisms (bacteria and fungi) in non-sterilized (test) and sterilized (control) agricultural soils 204 

under aerobic and anaerobic conditions. They showed that all antibiotics were susceptible to 205 

microbial degradation under aerobic conditions, and most antibiotics were degraded by more than 206 

92% in non-sterilized soil after 28 days of incubation. For all the antibiotics, a higher initial 207 

concentration was found to slow down degradation and prolong persistence in soil. The degradation 208 

pathway of antibiotics varied in relation to their physicochemical properties as well as the microbial 209 

activities and aeration of the recipient soil. In their study, Pan and Chu (1996) were the first to 210 

develop a model for the prediction of antibiotic persistence in soil.  211 

Given the public concern for environmental pollution by OACs, there is increasing attention 212 

towards the development of biopurification systems for reducing the risk from point source 213 

contamination of soil resources. Various treatment methods (e.g. land filling, recycling, pyrolysis 214 

and incineration) have been used for the removal and remediation of these chemicals from the 215 

contaminated sites, but microbial degradation of pesticides is so far the most important and 216 

effective way to remove these compounds from the environment (Hai et al. 2012; Verma et al. 217 

2014), (Supplemental material Table I; Table I References).  218 

Microorganisms have the ability to interact both chemically and physically with substances, leading 219 

to structural changes or to complete degradation of the target molecule. In particular, fungi may 220 

transform pesticides and other xenobiotics by introducing minor structural changes to the molecule, 221 

producing nontoxic molecules that can be released into the soil for further degradation by 222 

microflora (Hai et al. 2012), (Supplemental material Table I; Table I References).  Mir-Tutusaus et 223 

al. (2014) investigated the degradation of the insecticides imiprothrin and cypermethrin and the 224 

insecticide/nematicide carbofuran using the white-rot fungus T. versicolor. Experiments with fungal 225 

pellets demonstrated extensive degradation of the tested agrochemicals, while in vivo studies with 226 

inhibitors of cytochrome P450 revealed that this intracellular system plays an important role in the 227 

degradation of imiprothrin and carbofuran, but not of cypermethrin. The simultaneous degradation 228 

of the compounds successfully took place with minimal inhibition of fungal activity and resulted in 229 

reduction of global toxicity, thus supporting the potential use of T. versicolor for the treatment of 230 

several OACs. 231 
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To date, the number of studies investigating novel treatment techniques for the removal of OACs 232 

from contaminated agricultural soils is limited. The bacteria-dominated conventional activated 233 

sludge process has been proved to be ineffective for OAC removal. While the importance of a 234 

mixed microbial community to initiate and complete OAC removal in the soil environment has been 235 

convincingly demonstrated by several researchers, studies concerning the removal of OACs from 236 

soils have predominantly focused on selected bacterial or fungal species separately. Few studies 237 

have explored the bioaugmentation synergy of fungi together with bacteria (Hai et al. 2012; Zhang 238 

et al. 2015; Madrigal-Zúñiga et al. 2016). Combining cultures of bacteria and fungi could be key to 239 

the removal of toxic and recalcitrant organic substances from contaminated agricultural soils.  240 

On-farm biopurification systems constitute a biotechnological approach to the mitigation of point 241 

source contamination by pesticides. The main component of biopurification systems is the 242 

biomixture, which acts as the biologically active core that accelerates the degradation of OACs. 243 

Madrigal-Zúñiga et al. (2016) studied the results of employing the ligninolytic fungus T. versicolor 244 

in the bioaugmentation of compost- (GCS) and peat-based (GTS) biomixtures for the removal of the 245 

insecticide-nematicide carbofuran (CFN). The transformation products of CFN were detected at the 246 

moment of CFN application, but their concentration decreased continuously until complete removal 247 

in both biomixtures. Mineralization of 14C radiolabeled CFN was faster in GTS than in GCS. The 248 

authors demonstrated the complete elimination of toxicity in the matrices after 48 days. Overall data 249 

suggested that the bioaugmentation improved the performance of the GTS rather than the GCS 250 

biomixture. 251 

Pinto et al. (2016) also studied the potential use of different substrates in biomixtures like cork, cork 252 

and straw, coat pine and LECA (Light Expanded Clay Aggregates) in the degradation of 253 

terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation using 254 

the WRF Lentinula edodes inoculated into the CBX was also assessed. The results obtained from 255 

this study clearly demonstrated the relevance of using natural biosorbents such as cork residues to 256 

increase the capacity for pesticide dissipation in biomixtures for establishing biobeds. Furthermore, 257 

greater degradation of all the pesticides was achieved by the use of bioaugmented biomixtures. 258 

Indeed, biomixtures inoculated with L. edodes EL1 were able to mineralize the selected xenobiotics, 259 

revealing that this WRF might be a suitable fungus to be used as inoculum source to improve the 260 

degradation efficiency of sustainable on-farm biopurification systems.  261 

Fungi isolated from biomixtures represent a biological source of potentially active bioremediation 262 

agents, and the adaptation skills developed by these microorganisms could make the difference in 263 

OAC removal (Supplemental material Table I; Table I References). This strategy was assessed by 264 

Pinto et al. (2012), who isolated fungi from a loamy sand soil and a biomixture contaminated with 265 
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terbuthylazine, difenoconazole and pendimethalin. The ability of autochthonous fungi (Penicillium 266 

brevicompactum and Lecanicillium saksenae) to degrade xenobiotics was compared with that of 267 

allochthonous strains taken from a culture collection (Fusarium oxysporum, Aspergillus oryzae and 268 

L. edodes). The best biodegradation yield was achieved with P. brevicompactum: its higher ability 269 

to metabolize terbuthylazine was presumably acquired through chronic exposure to contamination 270 

with the herbicide. 271 

 272 

Bioremediation of OACs by fungi in aquatic ecosystems 273 

Many OACs are common contaminants of fresh water due to their high water solubility associated 274 

with a low soil adsorption, and a high stability that assures them a long half-life. Contamination is 275 

heterogeneously distributed along watercourses as evidenced in several studies where pesticides 276 

were recurringly found in real water samples. In one accurate survey, more than 160 water samples 277 

taken in 23 European countries were assayed for the presence of pharmaceuticals, pesticides and 278 

recognised endocrine-disrupting chemicals (Loos et al. 2010). Among the most frequently detected 279 

compounds were the insecticide (DEET), and 7 other pesticides (chloridazon-desphenyl, DMS, 280 

desethylatrazine, chloridazon-methyldesphenyl, bentazone, desethylterbutylazine, dichlorprop) 281 

exceeded the European threshold of 0.1 µg/l. Overall, 29% of the water samples could not be 282 

considered safe (Loos et al. 2010). In a similar study in the USA, groundwater in 18 states was 283 

screened for 65 organic contaminants: along with plasticizers and detergent metabolites, 66% of the 284 

total pollutant load was ascribable to insect repellant (Barnes et al. 2008). 285 

The extent of freshwater contamination and the actual risk to human life depend on several factors 286 

concerning the hydrogeological characteristics of the soil, weather conditions and the chemical-287 

physical properties of the OACs. The environmental fate of a given compound is a critical issue in 288 

which the water/soil surface is the first barrier. For instance, the sorption kinetics of three widely 289 

used pesticides (simazine, imidacloprid, and boscalid) were found to be correlated with soil organic 290 

carbon content and the hydrophobicity of the pesticide, which ultimately affected soil retention 291 

behavior and bioavailability in waters (Salvestrini et al. 2014). Leaching into surface waters is also 292 

a matter of season, and a complex and unpredictable scenario is influenced by a variety of 293 

phenomena. A rainy period can cause massive run-off of OACs from the soil, contaminating the 294 

receiving basin (Sandin et al. 2018). The detection of high levels of OACs, however, is not 295 

exclusively coincident to their recent and massive use, but is ascribable to their persistency, their 296 

slow natural degradation and their accumulation in the various diffusion pathways (Aguilar et al. 297 

2017). They could then travel long distances in surface or groundwaters and the contamination can 298 

last for several decades (Ballesteros et al. 2014; Aravinna et al. 2017). 299 
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The so-called ecological services may help to contain the diffusion of OACs. The adaptation of 300 

microflora (fungi, Gram-positive and negative bacteria, actinobacteria, and sulfate-reducing 301 

bacteria) to soil environmental conditions may attenuate the pesticides released into groundwater 302 

sources (Mattsson et al. 2015). Several factors such as soil composition, temperature, aeration due 303 

to soil weaving, and depth influence autochthonous microbial community activity; if this balance 304 

fails, OACs are free to move among different ecological niches (i.e. sediments and water), alter 305 

their functioning and ultimately directly affect their animal inhabitants. For instance, significant 306 

ecological risk was associated with the presence of the insecticide fipronil and its metabolites in 307 

water ponds: the concentrations measured (up to 200 ng/l) affected the proper development of larval 308 

insects and crustaceans (Wu et al. 2015b). Evidence of the pesticide’s toxicity against fish has 309 

already been reported, and it clearly interferes in several metabolic pathways (Odukkathil and 310 

Vasudevan 2013; Ballesteros et al. 2014; Guerreño et al. 2016).  311 

The preservation of water quality is a priority, but OAC removal cannot be based only on natural 312 

attenuation. Water treatment plants (WTPs) are the major barriers where OACs should be removed. 313 

Not being specifically designed for micropollutant removal, however, they are often only partially 314 

effective, with a strong impact on the receiving ecosystem. Pesticides such as atrazine, fluconazole, 315 

tebuconazole, diazinon and diuron are particularly resistant to commonly used treatments (Köck-316 

Schulmeyer et al. 2013; Luo et al. 2014). There is plenty of evidence confirming the presence of 317 

OACs in WTP effluents at toxicologically and estrogenically relevant concentration, making them 318 

one of the most impactful sources of contamination (Bicchi et al. 2009; Campo et al. 2013; Jarošová 319 

et al. 2014).  320 

Particular attention has been given to advanced biological oxidation. Novel cost-effective and eco-321 

friendly processes based on fungi are an attractive option. Fungi are well-known for their 322 

physiological adaption skills, including the natural activation of tolerance mechanisms against 323 

pesticides (Talk et al. 2016). Some reports have already demonstrated that in comparison with 324 

bacteria, fungi can better tolerate the presence of organic contaminants. Although the insecticide 325 

endosulfan inhibited both fungi and bacteria, bacterial community structure significantly changed at 326 

concentrations as low as 0.1 mg/kg, while modifications to fungal community structures required 1 327 

mg/kg of pollutant (Zhang et al. 2015). Linuron reduced the bacterial count, and especially total 328 

bacteria, N2-fixing bacteria and nitrifiers, but not fungal numbers (Cycoń et al. 2010). 329 

The provenance of isolated fungi is of unquestionable importance. Strains isolated from 330 

contaminated niches indeed seem to develop specific adaptation skills due to chronic exposure. 331 

Carles et al. (2017) demonstrated that the aquatic microflora found in association with submerged 332 

leaves exposed to nicosulfuron is more efficient in its degradation than are communities that come 333 
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from a less polluted site. The authors indicated fungi as the main constituents of this active 334 

microflora and as being responsible for herbicide degradation. In the literature, several fungi 335 

isolated from contaminated areas or WTPs have been identified as degraders of nicosulfuron, 336 

diuron, isoproturon, glyphosate, chlorpyrifos, chlorfenvinphos and atrazine (Song et al. 2013; 337 

Carranza et al. 2014; Oliveira et al. 2015). 338 

Fungi can thus transform a broad range of recalcitrant organic compounds, including OACs (Gao et 339 

al., 2010). A number of fungi that are OAC degraders, mostly belonging to Basydiomycetes, such 340 

as Trametes, Pleurotus, Phlebia, Cerrena, Coriolopsis, etc., have been already investigated 341 

(Koroleva et al. 2002; Marco-Urrea et al. 2009; Xiao et al. 2011; Ulčnik et al. 2013; Chan-Cupul et 342 

al. 2014; Ceci et al. 2015). Several pesticides as lindane, atrazine, diuron, terbuthylazine, metalaxyl, 343 

DDT, gamma-hexachlorocyclohexane (g-HCH), dieldrin, aldrin, heptachlor, chlordane, lindane, 344 

mirex, etc. were effectively transformed by fungal treatment based on mycelium or enzymes 345 

(Supplemental material Table II). 346 

A bioremediation approach based on fungi may involve both biosorption and biodegradation 347 

processes; the latter combines biosorption, where the molecule binds to the fungal wall, and 348 

bioaccumulation with the pollutant being transported inside the cell in contact with intracellular 349 

enzymes (Kulshreshtha et al. 2014). Concentrations of the insecticide lindane decreased during time 350 

in the presence of two WRFs (T. versicolor and Pleurotus ostreatus) and one brown-rot fungus 351 

(Gloeophyllum trabeum), but the lack of any change in the chromatogram profile indicated that a 352 

fast adsorption process was mainly involved (Ulčnik et al. 2013). However, this phenomenon is 353 

often strain-dependent, and expecially related to metabolic differences between Ascomycetes and 354 

Basidiomycetes. Belonging to the brown-rot fungi, G. trabeum lacks the ligninolytic enzymes, 355 

responsible for lignin degradation and likely for that of OACs as well: adsorption onto fungal 356 

mycelium was mainly involved in the removal of endosulfan. On the contrary, the white-rot fungi 357 

actively degraded, producing endosulfan sulphate via oxidative pathways (Ulčnik et al. 2013). 358 

Although biosorption is a phenomenon that cannot be ignored, it is often secondary or at least 359 

negligible compared to biodegradation (Carles et al. 2017). For instance, the removal of clofibric 360 

acid found for heat-killed mycelium was less than 10 %, but more than 97 % for active T. versicolor 361 

(Marco-Urrea et al. 2009).  362 

Fungi have developed a specific mechanism that employs few enzymes and molecules with high 363 

oxidizing power, physiologically aimed at transforming lignocellulose structures. The same 364 

enzymatic pathway may play a pivotal role in transforming other aromatic molecules. White-rot 365 

fungi usually deploy extracellular lignocellulosic enzymes such as peroxidases (EC 1.11.1.x) and 366 

laccases (EC 1.10.3.2). The involvement of redox enzymes in fungal-mediated oxidation is 367 
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confirmed by the direct induction of enzyme production in the presence of OACs. The fungus T. 368 

versicolor responded to 17 pesticides by increasing laccase production in comparison with the 369 

control: particular attention was given to the transformation products of the herbicides diquat and 370 

monuron, capable of increasing fungal activity 10- and 17-fold, respectively (Mougin et al. 2002). 371 

The laccase production of Pycnoporus sanguineus, Trametes maxima, Pleurotus spp1, Pleurotus 372 

spp2, Cymatoderma elegans, and Daedalea elegans was stimulated by the presence of atrazine even 373 

at high concentrations of 3750 mg/l. Likewise, the manganese peroxidase activity of Pleurotus spp1 374 

and C. elegans was positively correlated with the pesticide (Chan-Cupul et al. 2014).  375 

Oxidoreductase stimulation was also observed with picloram (Maciel et al. 2013), bentazon (Da 376 

Silva Coelho et al. 2010) and carbofuran (Mir-Tutusaus et al. 2014). 377 

Although these oxidoreductases are probably the most-known enzymes for aromatic compound 378 

degradation, alternative pathways can be stimulated by the presence of OACs. Two clones (laccase-379 

positive and laccase-negative) of Mycelia sterilia were used to treat atrazine (20 µg/ml): even 380 

though one clone was defective in laccase production, comparable transformation yields (70-80%) 381 

were reached, indicating that the fungus can deploy alternatives to laccase in the degradation 382 

process (Vasil’Chenko et al. 2002). This behavior is commonly found in brown-rot fungi, which 383 

can trigger both nonenzymatic and enzymatic mechanisms, i.e. the Fenton mechanism or cellobiose 384 

dehydrogenase (CDH) reactions (Fan and Song 2014). The degradation of atrazine (20 µg/l) by an 385 

unidentified mycelial fungus was associated with the presence in the liquid medium of OH radicals 386 

and CDH. Moreover, CDH secretion was induced by the presence of the herbicide itself 387 

(Khromonygina et al. 2004). In addition, some fungi may associate extracellular oxidoreductases 388 

with intracellular enzymes such as the cytochrome P450 system (cyt450). In an effort to better 389 

characterize the degradation skills of T. versicolor, cyt450 inhibitors were used: fungal performance 390 

against clofibric acid and fipronil decreased (Marco-Urrea et al. 2009; Wolfand et al. 2016). Mori et 391 

al. (2017), suggest that in Phanerochaete sordida, cyt450 is involved in the initial stage of reduction 392 

of the clothianidin N-nitro group, but that the enzymes responsible of the further urea derivatives 393 

production are unknown. 394 

Fungal intra- and interspecies variability has long been recognized and has found confirmation in 395 

OAC treatment. Literature data about a given species cannot be taken for granted and preliminary 396 

screening is often required. Despite Phanerochaete chrysosporium often being indicated as the 397 

fungal model for organic degradation including pesticides (Wang et al. 2014), it was almost 398 

ineffective against clofibric acid (Marco-Urrea et al. 2009). Among five Basidiomycetes, only T. 399 

versicolor extensively degraded this herbicide (Marco-Urrea et al. 2009). Alvarenga et al. (2014) 400 

treated methyl parathion with several fungi, including 3 Aspergillus sydowii. Based on ability to 401 
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grow in the presence of the pesticide, only the isolate A. sydowii CBMAI 935 was selected for 402 

further studies. It indeed grew almost 4-fold more than the other A. sydowii. Bioremediation 403 

potential is often substrate-targeted, and the choice of fungus cannot be taken for granted. For 404 

instance, A. sydowii CBMAI 935, which totally converted methyl parathion (Alvarenga et al. 2014) 405 

was not the best performing one against the insecticide esfenvalerate. Among 6 fungi, 406 

Microsphaeropsis sp. Acremonium sp. and Westerdykella sp. gave better results than the Aspergillus 407 

strain (Birolli et al. 2016).  408 

Although the majority of these strains are effective in OAC removal in model solutions, only few 409 

researchers have taken the next step, and assessed bioremediation potential in contaminated waters. 410 

The experimentation with model solutions (single-compound solutions, high concentrations, no 411 

interfering molecules, etc.) is the only way to acquire information about degradation pathways 412 

(Masaphy et al. 1993; Birolli et al. 2016), but it is less predictive of fungal performance in real 413 

environmental water samples. Each type of wastewater has its own critical issues, making it 414 

difficult to predict fungal behavior. Some data highlight the robustness of fungal systems, although 415 

detailed case-by-case investigation is needed. A partially diluted leachate was shown to disturb the 416 

growth of T. versicolor and Stereum hirsutum, but this did not prevent them totally degrading 417 

linuron and dimethoate at 10 mg/l. As regards dimethoate, the presence of adsorbents enhances final 418 

yields from 50% to 97%, because the adsorption action combines with and exalts fungal 419 

biodegradation processes (Castellana and Loffredo 2014). The immobilization of Bjerkandera adusta 420 

and Irpex lacteus on coffee grounds, almond shells and a biochar favored the removal of the non-421 

phenolic herbicides fenuron and carbaryl from a municipal landfill leachate (Loffredo et al. 2016).  422 

Surface waters, ground waters and municipal wastewaters represent a very unique environment, 423 

characterized by extreme chemical and physical conditions, the presence of a heterogeneous and 424 

variable mixture of micropollutants and an active autochthonous microflora. When inoculated into 425 

real surface water, a fungal consortium (Aspergillus fumigatus, Aspergillus terreus, Cladosporium 426 

tenuissimum, Cladosporium cladosporioides, Fusarium begoniae, Penicillium citrinum, Penicillium 427 

melanoconidium and Phoma glomerata) was not stable over time, probably due to the presence of 428 

toxic pesticides and interaction with the natural microbial population: P. citrinum, A. fumigatus and 429 

A. terreus were the most robust to the environmental conditions and were found to degrade the 430 

spiked chlorfenvinphos  (Oliveira et al. 2015).  431 

The set-up of active microbial consortia offers the intriguing possibility of strengthening and 432 

combining the bioremediation potential of different organisms: the combination of Bacillus subtilis 433 

and A. niger led to higher degradation rates of nicosulfuron than those obtained by using each strain 434 

singly (Lu et al. 2012). The biodegradation of aldicarb, atrazine and alachlor by Coriolus versicolor 435 
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was strongly enhanced by combination with activated sludge. Along with modifications in fungal 436 

morphology, when the bacterial-fungal consortium was established, the bio-absorbed fraction of 437 

especially atrazine was reduced: over 98% of atrazine was removed by degradation processes in two 438 

weeks (Hai et al. 2012).  439 

The fate of the treated OACs must be carefully considered. Residual toxicity is a critical issue. 440 

Interestingly fenuron and carbaryl degradation (up to 70%) catalyzed by B. adusta and I. lacteus led 441 

to significant abatement of the phytotoxicity (rapeseed and flax tests) (Loffredo et al. 2016). Mori et 442 

al. (2017) monitored the neurotoxicity of clothianidin and the main metabolite it produced during P. 443 

sordida treatment: following treatment the insecticide still altered the viability of the neuronal cell 444 

line, but the metabolite was no longer neurotoxic. 445 

Despite their well-demonstrated properties, the application of whole cell systems has some 446 

drawbacks including the fact that a living organism needs controlled growing conditions in terms of 447 

nutrients, pH, O2, etc. (Majeau et al. 2010). The addition of synthetic nutrients can strengthen 448 

fungal mycelium activity, but it should be carefully balanced to allow subsequent scale-up of the 449 

process. The fact that T. versicolor needed 1% of glucose as carbon source to degrade atrazine 450 

would ultimately interfere with its potential use in real WTPs (Khromonygina et al. 2004). Likewise 451 

several fungi such as A. niger and Dacryopinax elegans, etc. required both easily available carbon 452 

and nitrogen sources to efficiently act against nicosulfuron and diuron, respectively (Lu et al. 2012; 453 

Arakaki et al. 2013). Particular attention should be instead given to those fungi, like A. sydowii and 454 

Penicillium decaturense, that maintained the same performance without glucose addition, indicating 455 

potential for using methyl parathion or triclosan as sole carbon source (Alvarenga et al. 2014; Tian 456 

et al. 2016). 457 

A promising alternative is offered by the direct use of fungal enzymes, capable of catalyzing strong, 458 

rapid oxidation reactions, with less technical drawbacks in comparison with fungal cultures. The 459 

potential of enzymes-based methods has been worldwide recognized; the Swiss Industrial 460 

Biocatalysis Consortium defined oxidative enzymes as the biocatalysts displaying the highest 461 

development potential for the next decades (Meyer and Munch 2005). Great importance is given to 462 

the discovery of novel enzymes with wide substrate specificity, stable and applicable to industrial 463 

uses. A number of articles have reported the ability of fungal enzymes to degrade OACs. The 464 

potential of laccase-mediator systems has been assessed for the degradation of isoproturon (Margot 465 

et al. 2015), imiprothrin (Mir-Tutusaus et al. 2014), chloroxuron (Palvannan et al. 2014), 466 

isoproturon (Zeng et al. 2017), atrazine (Chan-Cupul et al. 2016). Laccases cannot be considered a 467 

novelty, unlike a phytase of A. niger capable of degrading organophosphorus pesticides (Shah et al. 468 

2017) or a cellulase of Trichoderma longibrachiatum active against dicofol (Wang et al. 2015). 469 
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Particular attention should be given to the use of crude enzyme extracts of ligninolytic enzymes 470 

with a lower economic impact on the process than that of purified enzymes (Matute et al. 2012; 471 

Kaur et al. 2016). A crude extract of Trametes pubescens laccases degraded up to 19 compounds in 472 

a model solution and confirmed its potential in a study on real municipal wastewater where the 473 

presence of suspended particles, colloids, solvents and xenobiotics as well as autochthonous 474 

microorganisms posed strong environmental pressure. The transformation of all the detected 475 

compounds determined also a strong reduction of the estrogenicity of the water sample (Spina et al. 476 

2015). 477 

 478 

Application of synthetic microbial communities in bioremediation 479 

Bioremediation is a crucial way to eliminate OAC pollution in agricultural ecosystems. However, 480 

many factors affect the efficiency of bioremediation in pesticide pollution, such as the microbes 481 

applied, treatment sites, rhizosphere effects and soil chemical and physical properties (Zhou and 482 

Hua 2004). Bioremediation of soil or water pollution often cannot reach expected results in practice 483 

because the target contaminant cannot be degraded completely, and sometimes intermediate 484 

products occur that are more toxic than the original pesticides. Long-term application of various 485 

pesticides results in pollution with more than one type of chemical compound, which are unlikely to 486 

be degraded by a sole microbe. Thus, attention has shifted to synthetic systems based on 487 

communication between cells, rather than on individual isolated cell functionality (Biliouris et al. 488 

2012). A promising way to overcome the difficulties is to create artificial synthetic microbial 489 

communities that contain several microbes to retain the key features of their natural counterparts 490 

(Großkopf and Soyer 2014). 491 

The so-called synthetic microbial community is created by a bottom-up approach where two or more 492 

defined microbial populations are put together in a well-characterized and controlled environment 493 

(De Roy et al. 2014). In synthetic communities, mixed populations can perform complex tasks, 494 

although in changing environmental conditions (Brenner et al. 2008). Synthetic communities have 495 

several potential advantages over monocultures or natural communityies: 1) the species in a 496 

synthetic community are known and the community structure is relatively simple and controllable, 497 

while the natural community may contain many microorganisms with unknown functions; 2) 498 

synthetic communities can perform more complicated functions than individual organisms because 499 

members of microbial consortia communicate and differentiate (Brenner et al. 2008); 3) synthetic 500 

communities are often more robust to environmental fluctuations because they can resist invasion 501 

by other species and weather periods of nutrient limitation better than  monocultures (Brenner et al. 502 

2008); 4) synthetic communities can be described through mathematical models more easily than 503 
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natural systems, and they can be used to develop and validate models of more complex systems 504 

(Liu et al. 2017). 505 

Liu et al. (2017) proposed three design principles to develop a cooperative, steady-state community 506 

that is performing a desirable biotechnological function. Firstly, safety should be prioritized by 507 

beginning with innocuous or commensal organisms (Brenner et al. 2008). Secondly, the community 508 

can converse a low-cost and/or recalcitrant waste material into a biotechnologically relevant 509 

product, partial or de-novo biosynthesize a compound via heterologous metabolic pathways, or 510 

bioconverse toxic substrates or products in a toxic milieu (Jagmann and Philipp 2014). Thirdly, the 511 

bioremediation process should be optimized and regularly monitored on the basis of the knowledge 512 

of stability and division of different microorganisms (Liu et al. 2017). 513 

Bioremediation of polluted soils and water is one field of application synthetic microbial 514 

communities. Due to the complex structure of some pollutants, such as the diuron pesticides, adding 515 

synthetic microbial communities is much more effective than adding single microorganisms. The 516 

herbicide diuron is used in the control of broad-leaved weeds on agricultural land. Several fungal-517 

bacterial consortia were investigated by combining three different diuron-degrading bacteria and 518 

two fungal strains. The fastest mineralization of diuron was obtained by the three-member 519 

consortium (Mortierella LEJ702, Variovorax SRS16, and Arthrobacter globiformis D47). As 520 

measured by evolved 14CO2 it mineralized about 32 % of the added diuron within 54 days, whereas 521 

the single strains or other consortia achieved no more than 10% mineralization. In addition, the 522 

production of diuron metabolites by the consortium was minimal. This may be due to cooperative 523 

catabolism, where the first organism transforms the pollutant to products that are then used by the 524 

other organisms. In addition, fungal hyphae may function as transport vectors for bacteria, thereby 525 

facilitating the more effective spreading of degrader organisms in the soil (Ellegaard-Jensen et al. 526 

2014). 527 

Similarly, a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-528 

dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 achieved more rapid mineralisation 529 

of BAM than did the bacteria alone, especially at lower moisture contents (Knudsen et al. 2013). 530 

Methylotrophic and hydrocarbon-utilizing yeasts and bacteria alone did not degrade PCBs 531 

significantly, but PCB degradation reached about 50% when WRFs were applied together (Šašek et 532 

al. 1993). 533 

 534 

Evaluation of bioremediation effectiveness in contaminated matrices by means of 535 

ecotoxicological and genotoxic tests  536 
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In order to improve the effectiveness and performance of bioremediation processes it is important to 537 

pursue three essential goals at the same time. Focus should be not only on reducing chemical 538 

concentrations, but also on reducing chemical mobility between the environmental compartments 539 

and eventually lowering toxicity levels while ensuring that contaminants do not get into the natural 540 

biological cycle (Loehr and Webster 1997; Chakraborty et al. 2013).  541 

Bioremediation is often monitored by following the concentration of targeted contaminants 542 

(Molina-Barahona et al. 2005). Numerous studies in recent years have shown that traditional 543 

chemical analyses are insufficient for a full assessment of the contaminated site because, for 544 

example, they do not provide any information about the interactions between chemicals and they do 545 

not consider the partition and the mobility of pollutants (Frische 2003; Molina-Barahona et al. 546 

2005; Ma et al. 2005; Molnár et al. 2007). An integrated approach that links the various fields and 547 

levels of study involving contaminated sites has proven to be an efficient way to evaluate the 548 

effectiveness of bioremediation in contaminated sites (Chapman and Anderson 2005; Wernersson et 549 

al. 2015; Marziali et al. 2017). Consequently, to achieve the desired goals and implement a 550 

successful bioremediation program, given the chemical and biological complexity of the tasks 551 

involved, close collaboration between microbiologists, chemists and engineers is required (Van 552 

Gestel et al. 2001; Chakraborty et al. 2013).  553 

Additionally, the use of ecotoxicological and genotoxic tests to evaluate the effectiveness of 554 

bioremediation may be a valid tool to partially overcome the existing gap between the reported 555 

successes of bioremediation on the laboratory scale, and that in the field.  556 

Signals that bioremediation is going on should be monitored. Two important chemical compounds 557 

produced by microorganisms during their degradation activity are CO2 and soluble phosphorus. 558 

Both increase notably in soil treated with insecticides and inoculated with fungi (Boyle 1995; Abd 559 

El-Ghany and Masmali 2016). However, it must be taken into consideration that during and after a 560 

bioremediation process the disappearance of the parent compounds or evidence of metabolic 561 

activity (e.g. CO2 production) may not indicate detoxification. Although the fate of the toxicants 562 

may be followed by chemical analyses, many reaction products resulting from the bioremediation 563 

process and their potential toxicity are not known. The elimination of mother compounds does not 564 

necessarily result in toxicity removal, and evaluating the efficiency of the process is important to 565 

assess not only the removal of a specific compound, but also potential ecotoxicity. In fact, 566 

biodegradation of pesticides can proceed partially or totally due to the structure of the molecule 567 

itself or to unfavourable environmental or test conditions, or to the lack of 'acclimatized' microbial 568 

communities (De Henau 1997).  569 
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In some instances, it has been shown that an effective process of bioremediation corresponds with a 570 

decrease in the toxicity of the analysed matrix (Baud-Grasset et al. 1993; Dorn and Salanitro 2000). 571 

To acquire complete and useful information in an ecotoxicological assessment and to determine the 572 

effectiveness of bioremediation treatments, it is suggested that a battery of tests be used (Keddy et 573 

al. 1995; Van Gestel et al. 2001; Tigini et al. 2011). The battery should include a number of 574 

reference organisms that are representative of the different trophic levels, in order to select species 575 

with different roles in ecosystems, and different exposure conditions (Van Straalen and Van Gestel 576 

1997). Moreover, environmental risk assessment must integrate chemical characterization, 577 

ecotoxicity and bioremediation data, in order to accurately assess the ecological hazard. 578 

As emphasized by Shen et al. (2016), an increased level of ecotoxicity within the various 579 

bioindicators could either indicate incomplete decomposition of the substance or could result from 580 

the formation of intermediate products generated via the bioremediation process. For this reason, 581 

chronic tests are sometimes more appropriate in evaluating the toxicity caused by by-products 582 

(Lofrano et al. 2014).  583 

In certain circumstances, there is a clear need to monitor the bioremediation process using different 584 

bioindicators. In Lizano-Fallas et al. (2017), for example, the ecotoxicity test with Daphnia magna 585 

showed clear detoxification, whilst the detoxification patterns remain unclear when applying the 586 

phytotoxicity test. Ecotoxicological tests can also be used to determine the most suitable 587 

bioremediation technique in a given case, as reported in Dudášová et al. (2016).  588 

Without worldwide-recognized guidelines for water quality assessment, literature data are difficult 589 

to compare due to the variety of model organisms, end-points, etc. Synthetic indices summarizing 590 

the findings can help monitor the effectiveness of biological treatment. Such indices have already 591 

been applied for toxicity monitoring of wastewaters (Tigini et al. 2011) but municipal effluents 592 

containing AOCs have never been taken into consideration nor has estrogenic activity been 593 

included so far. 594 

Several toxicity assays were included in treatability study protocol to measure remediation 595 

efficiency. Assessing the toxicity of complex matrixes such as soil could acquire methods from 596 

bioassays used to the test toxicity of chemical compounds, reported by the Organization for 597 

Economic Co-operation and Development (e.g. OECD 201 2006; OECD 211 2012). The OECD has 598 

published a series of standardized tests for determining the biodegradability of a given compound, 599 

based on the evaluation of overall parameters (such as COD, TOC and BOD) or metabolic tests, e.g. 600 

respirometry (OECD 209 1984) as Polo et al. (2011) used; or that reveal susceptibility of toxic 601 

compounds, comprising that of herbicides, to biological treatment. Standardized testing procedures 602 

using different organisms have been approved by various environmental organizations, including 603 
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the US Environmental Protection Agency, American Society for Testing and Materials, 604 

International Standardization Organization (Siciliano et al. 2015). Many scientists have explored the 605 

effects of polluted soil on the whole organism using various microorganisms, animals, and plants, 606 

or by means of cellular, and biochemical biomarkers, or by ecological scale up systems. Here 607 

below, tests at some different biological hierarchical levels of analysis are presented and discussed.  608 

 609 

Organismal level 610 

Concerning complex matrices such as soil, quality assessments are performed with organisms on 611 

extracts of the polluted matrix, generally applying short-term exposure periods (Van Gestel et al. 612 

2001). Experimental models have included aquatic organisms such as Daphnia magna, 613 

Raphidocelis subcapitata, Danio rerio, Myriophyllum aquaticum and Lemna minor (Feiler et al. 614 

2004). The use of freshwater and marine biota may be particularly useful in order to provide a more 615 

complete comprehension of the fate of pesticides and the environmental outcomes of agricultural 616 

activities (Guida et al. 2008). Terrestrial animals such as nematodes (Caenorhabditis elegans) 617 

(Traunspurger et al. 1997), oligochaetes (Lumbriculus variegatus) (Phipps et al. 1993), springtails 618 

such as Folsomia candida (Houx et al. 1996), and fish embryos (Hollert et al. 2003; Zielke et al. 619 

2011) are considered among the most reliable models. 620 

Among the higher plants, important experimental models include Lepidium sativum, Cucumis 621 

sativus, and Sorghum saccharatum (germination rate, inhibition of root elongation). Since assays 622 

based on animals, plants and algae are considered expensive, time consuming and require large 623 

sample volumes, recent studies have emphasized the benefits of rapid, reproducible and cost 624 

effective bacterial assays for toxicity screening and assessment. Arthrobacter globiformi 625 

(Neumann-Hensel and Melbye 2006), Bacillus cereus (Rönnpagel et al. 1995; Prokop et al. 2016), 626 

Vibrio proteolyticus (Ahlf and Heise 2005) and yeasts (Saccharomyces cerevisiae) (Weber et al. 627 

2006) are often used. Among the bacterial bioassays, the Vibrio fischeri luminescence inhibition 628 

test is the most common. The review of Parvez et al. (2006) remarks that the Vibrio fischeri 629 

inhibition test is the most sensitive, cost effective, easy to operate and requires only 5–30 min for 630 

toxicity prediction.  631 

 632 

Cellular and biomolecular level  633 

Biomarkers signal the adaptative responses of organisms to xenobiotic exposure. Various studies 634 

have highlighted the cytoxic and genotoxic effects on organisms of OACs and their metabolic 635 

products. The exposed organisms may exhibit histological, cellular, molecular, biochemical and/or 636 

physiological, or even behavioural changes (Depledge et al. 1993) that enable information to be 637 
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obtained on the biological effects of pollutants or their remains during or after a bioremediation 638 

process (Fontanetti et al. 2011).  639 

Genetic endpoints and biomarkers. The most-used biomarkers are mitotic index, chromosome 640 

aberrations, micronuclei, sister chromatid exchanges and mutations. 641 

Bacteria have been recommended for bioassays to evaluate genotoxicity in a variety of samples 642 

(Mortelmans and Zeiger 2000; White and Claxton 2004). The Ames test, one of the most famous 643 

and widely-used, is a short term bacterial reverse mutation assay especially designed to evaluate the 644 

mutagenic potential of a wide range of chemical substances (Mortelmans and Zeiger 2000). It was 645 

found to be very sensitive in tests with a wide range of mutagenic and carcinogenic chemicals, as 646 

reported in the review paper of Chahal et al. (2014). 647 

With regards to plant models, higher plants are recognized as excellent genetic models to detect 648 

cytogenetic and mutagenic agents and are frequently used in environmental monitoring studies. The 649 

main organisms employed are Allium cepa, Vicia faba and Tradescantia spp. as reported in a 650 

review by De Souza et al. (2016). Their protocols were standardized under the International 651 

Program on Plant Bioassays (IPPB) conducted by the United Nations Environment Programme 652 

(UNEP) (Ma 1999). In addition, the US Environmental Protection Agency (USEPA) and the World 653 

Health Organization (WHO) validated plant bioindicators as an efficient model to detect 654 

environmental genotoxicity.   655 

One of the most used higher plant models is V. faba. The main advantages are its year-round 656 

availability, that it is economical to use, and easy to grow and handle.  Its use does not require 657 

sterile conditions and rate of cell division is fast. The V. faba test, meticulously reported and 658 

discussed in the review of Iqbal (2016), enables the assessment of a variety of endpoints i.e., 659 

chromosomal aberration, mitotic index, micronuclei and nuclear aberration.  660 

Enzymatic biomarkers. Enzyme activity inhibition has been widely evaluated as a biomarker to 661 

measure the toxicity of a matrix. Dehydrogenases, for example, are directly involved in many of the 662 

vital anabolic and catabolic processes of living organisms, and their activity is inhibited by 663 

chemical toxicants. Recently, many studies have reported the use of terrestrial organisms to obtain 664 

enzymatic biomarkers in response to residual pesticides (Henson-Ramsey et al. 2011; Radwan and 665 

Mohamed 2013; Stepić et al. 2013), and among these, earthworms’ enzymes were widely used to 666 

understand the impacts of pesticides. In two earthworm species, Eisenia fetida and Lumbricus 667 

terrestris, multiple esterases, including acetylcholinesterase (AChE), butyrylcholinesterase, and 668 

carboxylesterase (CE), were assessed as biomarkers for malathion exposure (Henson-Ramsey et al. 669 

2011). Several studies have also reported AChE, catalase (CAT), and glutathione-S-transferase as 670 

biochemical biomarkers in Eisenia andrei for the insecticides endosulfan, temephos, malathion, and 671 
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pirimiphos-methyl (Stepić et al. 2013), and AChE, CAT, CE, and the efflux pump as biomarkers in 672 

E. andrei and Octolasion lacteum for dimethoa. Recently, surface-enhanced laser 673 

desorption/ionization-time-of-flight (SELDI-TOF) mass spectrometry (MS) has strongly 674 

contributed to the identification of more accurate, precise biomarkers, e.g. specific for human 675 

cancers (Silsirivanit et al. 2014), or for endosulfan exposure in Japanese rice fish (Oryzias latipes) 676 

(Lee et al. 2013). In a recent paper, selective protein biomarkers for 6 pesticides (captan, carbaryl, 677 

carbofuran, and α-endosulfan chlorpyrifos, propoxur) were found in E. fetida, by means of SELDI-678 

TOF MS technology (Park et al. 2015). 679 

Estrogen and androgen biomarkers. It is well-documented that several chemicals from agricultural, 680 

industrial, and household sources possess endocrine-disrupting properties, which provide a potential 681 

threat to human and wildlife reproduction (Colborn et al. 1993; Colborn 1995; Jensen et al. 1995). 682 

A suggested mechanism is that environmental contaminants alter the normal functioning of the 683 

endocrine and reproductive system by mimicking or inhibiting the action of endogenous hormones, 684 

by modulating the production of endogenous hormones, or by altering hormone receptor 685 

populations (Sonnenschein and Soto 1998). Several pesticides exert estrogenic and antiandrogenic 686 

activities through interaction with estrogen and androgen receptors. The risks associated with OAC 687 

exposure has been known for decades: many pesticides, such as p,p´-dichlorodiphenyl 688 

trichloroethane (DDT) (Welch et al. 1969), methoxychlor (Bulger et al. 1978; Cummings 1997), β-689 

benzene hexachloride (BHC) (Coosen and van Velsen 1989), endosulfan, toxaphene, and dieldrin 690 

(Soto et al. 1995), and fenvalerate (Garey and Wolff 1998) were the first to be signaled as 691 

estrogenic. Despite increased institutional awareness and more compelling legislation pressure, the 692 

most recent literature still reports the occurrence of pesticides in watercourses and in the trophic 693 

chains, that show conspicuous estrogen or androgen levels (Saillenfait et al. 2016; Brander et al. 694 

2016; Guo et al. 2017; Khalil et al. 2017; Scott et al. 2017; Miccoli et al. 2017; Marcoccia et al. 695 

2017). Several bioassays have been developed and standardized in order to describe the estrogenic 696 

potency of OACs. Andersen et al. (2002) indicated that several currently used OACs, such as 697 

methiocarb, fenarimol, chlorpyrifos, deltamethrin, and tolclofos-methyl, possess estrogenic activity 698 

on the basis of cell proliferation assays and transactivation assays using MCF-7 human breast 699 

cancer cells. Kojima et al. (2004) tested 200 pesticides in vitro for agonism and antagonism to two 700 

human estrogen receptor (hER) subtypes, hERα and hERβ, and a human androgen receptor (hAR) 701 

by means of highly sensitive transactivation assays, using Chinese hamster ovary cells. The results 702 

demonstrated that many pesticides possess in vitro estrogenic and antiandrogenic action through 703 

ERs and/or AR. Although it appears that various pesticides exert hormonal effects at concentrations 704 

that are orders of magnitude higher than that required for physiologic hormones, wide exposure to 705 
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large numbers of OACs may have additive and synergistic effects. Bioassay with YES (yeast 706 

estrogen screen) and YAS (yeast androgen screen) can determine hormonally active compounds 707 

still present in the environment. Since the the first papers on this subject (Purvis et al. 1991), much 708 

more sophisticated bioassays have been developed, such as that proposed by Eldridge et al. (2007) 709 

in which a bioluminescent strain of Saccharomyces cerevisiae was genetically engineered to 710 

respond to androgenic chemicals. 711 

  712 

Ecological level 713 

The risk to natural systems of pollution with the chemical residues of bioremediation processes is 714 

underestimated. The ecological scaling-up experiment illustrated by Rodea-Palomares et al. (2016) 715 

underlined how real-world exposure to chemical pollution is often dominated by low-dose complex 716 

mixtures combined with other biotic and abiotic stressors. In the paper, a novel screening method 717 

(GSA-QHTS) was reported, that coupled the computational power of global sensitivity analysis 718 

(GSA) with the experimental efficiency of quantitative high-throughput screening (QHTS). In the 719 

study, they reported that GSA-QHTS allowed for the identification of the main pharmaceutical 720 

pollutants that were driving the biological effects of low-dose complex mixtures at the microbial 721 

population level. The target complex community was a river benthic microbial community 722 

inoculum obtained from an unpolluted stream. The effects of the toxic compounds in the mixture 723 

was evaluated together with other physico-chemical stressors, on a series of community-level 724 

metabolic end points. Photosynthetic parameters, the dark-adapted basal fluorescence, the light-725 

adapted steady-state fluorescence, the maximum photosynthetic efficiency, as well as the 726 

extracellular enzymatic activities b-Glu and Phos were considered as both autotrophic and 727 

heterotrophic global fitness indicators suited to study the effects of chemical pollution on freshwater 728 

benthic microbial communities. 729 

 730 

Prospect  731 

Bioremediation is based on the idea that different organisms will work together to remove 732 

(biodegrade) the waste substances or pollutants (OACs) from the environment. Although there exist 733 

limitations to bioremediation practice, including the nature of organisms, the enzyme involved, the 734 

concentration and availability and final survival of microorganisms, as well as the cost/benefit ratio 735 

(i.e. cost versus overall environmental impact), these limitations can be solved to some extent by 736 

understanding the genetics and biochemistry of the desired microbe. The advent of synthetic 737 

communities has shown enormous potential to facilitate the bioremediation process, the degradative 738 

fungi appearing to be particularly effective. 739 
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 20 

Abstract 21 

Pesticide can help reduce yield losses caused by pests, pathogens, and weeds, but its overuse 22 

causes serious environmental pollution. They are persistent in the environment and 23 

biomagnified through the food chain resulting a serious hazard for humankind. 24 

Bioremediation by microbes to degrade the pesticides in situ is a useful technology. This 25 

review mainly summarized the fungi associated with biodegradation of chemical pesticides 26 

and their application in the soil and water bioremediation. The future studies on this field 27 

were also prospected.  28 

 29 

 30 
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Keywords: Pesticides, Agrochemicals, Antibiotics, Sustainable bioremediation, Fungi, 31 

Synthetic microbial community, Environmental risk assessment. 32 

 33 

Introduction 34 

Because of their unique functions, fungi are involved with important ecosystem services for human 35 

well-being. Among others, fungi account for provisional services also through the activity of 36 

transforming and detoxifying pollutants. For this reason, learning from nature, they represent an 37 

effective toolbox for a sustainable bioremediation of pesticides in soil and water. Many researches 38 

have unfolded the untapped potential of fungi, given that recent years have witnessed very 39 

interesting developments regarding use of fungi not only to improve the environmental quality but 40 

also human healt (e.g. Gargano et al. 2017). 41 

Pesticides are a diverse group of inorganic and organic chemicals like herbicides, insecticides, 42 

nematicides, fungicides, antibiotics and soil fumigants, all belonging to the so-called organic 43 

agrochemicals (OACs) (Verger and Boobis 2013; Verma et al. 2014). In agriculture, pesticides aim 44 

to enhance crop yield and quality, and to maximize economic returns by prevention of pest or weed 45 

attack. They are bioactive, toxic substances, capable of influencing, directly or indirectly, soil 46 

fertility and health as well as agroecosystem quality (Pinto et al. 2012; Verma et al. 2014). Given 47 

that belowground biodiversity is closely linked to land management, agricultural intensification 48 

causes many pressures that leads to loss of biodiversity. Consequently, soil pollution is one of the 49 

main threats related to the decline of taxonomic and functional biodiversity, and of agricultural soils 50 

sustainability (Harms et al. 2017). Most of the pesticides emission (99 %) in Europe is associated to 51 

agricultural practices whereas industrial and urban sources as the manufacturing of pesticides or the 52 

at-home use of insecticides have a minor impact (EEA 2016).Thus, t Tthe extensive and massive 53 

use of pesticides in agriculture activities has serious impacts on the environment, compromising soil 54 

and water quality (Pinto et al. 2012; Zhang et al. 2015; Pinto et al. 2016). Besides,  55 

LlIn addition to pesticides, largelLarge quantities of antibiotics are added to agricultural fields 56 

worldwide through the application of wastewater, manures and biosolids, resulting in antibiotic 57 

contamination and elevated environmental risks (Jechalke et al. 2014; Zhang et al. 2015; Pan and 58 

Chu 2016). ). A clear correlation between agriculture and water contamination was observed in Mar 59 

Chiquita lake (Argentina), where high amount of endosulfan residues were detected soon after 60 

application and post-application periods (Ballesteros et al. 2014). The presence of the fungicide 61 

thifluzamide in paddy water of rice fields in China was maximal after the application, and variation 62 

during time was associated to the dilution effect of rainfalls in the area (Wei et al. 2015). Preventive 63 
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measures to mitigate the impact of agriculture on the environment are required, taking into account 64 

both the use of safety pesticides and the optimization of farmer procedures. Aravinna et al. (2017) 65 

found that most of the 32 studied pesticides leached rice field following specific pathways. Since 66 

direct run off and erosion from soil were the main vehicles of dispersion, authors suggested 67 

alternative strategies (high resident time of pesticides, holding ponds of rice drainage water, delayed 68 

filling of paddies after pesticide application and use less mobile compounds) to reduce the 69 

movement of the pesticides. 70 

The intensive use of these organic agrochemicals (OACs) has posed risks to both wild lives and 71 

human health. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other 72 

than their target species, through air, water and soil (Miller 2004). Around 30% of pesticides 73 

marketed in developing countries do not meet internationally accepted quality standards, posing a 74 

serious threat to human health and environment (Popp et al. 2013). They are persistent in the 75 

environment and biomagnified through the food chain. Therefore, it has been estimated that 76 

millions of agricultural workers worldwide experience unintentional pesticide poisonings each year. 77 

The correlation between long-term exposures to pesticides in occupational settings is known but 78 

recently also non-occupational exposures have been associated to an elevated rate of chronic 79 

diseases (Parrón et al. 2014). 80 

Varieties and consumption of pesticides worldwide are dramatically increasing, up to , but literature 81 

reports conflicting data on overall use (2- 4 million ton for year). 4-fold higher than 40 years ago 82 

(Mnif et al. 2011). According to De et al. (2014), about 45 % is used by Europe, 25 % by USA, and 83 

25 % in the rest of the world. The main pesticide consumer is Spain (around 79,000 ton of active 84 

ingredients sold between 2011 and 2014), followed by France (~ 75,000), Italy (~ 64,000), 85 

Germany (~ 46,000) and United Kingdom (~ 23,000) (Eurostat 2016). The United States is also a 86 

large consumer of pesticides, applyingusually applies over 1 billion pounds annually (Alavanja 87 

2009) with dramatical consequences for human beings and environment (Carvalho 2017).  Overall, 88 

herbicides account for 47.5 %, insecticides for 29.5 %, fungicides for 17.5 % and others account for 89 

5.5 %.  90 

On the contrary, accordingaAccording to other authors (Huang McBeath and McBeath 2010), China 91 

is the world's largest pesticide user, with an output of pesticide around 3.7 million ton (National 92 

Bureau of Statistics of China - http://data.stats.gov.cn), and a consumption volume of about 1.8 93 

million ton in 2014. The average amount of pesticides used per hectare in China is roughly 1.5- to 94 

4-fold higher than the world average (Qiu 2011), thus resulting in the contamination of water bodies 95 

in the receiving areas and disturbance of ecological equilibrium (Hui et al. 2003).  96 

 Overall, herbicides account for 47.5 %, insecticides for 29.5 %, fungicides for 17.5 % and others 97 
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account for 5.5 % (De et al. 2014). More than 350 insecticides, herbicides, microbicides, 98 

nematicides and other pesticides are reported to be used (Huang McBeath and McBeath 2010). The 99 

average amount of pesticides used per hectare in China is roughly 1.5- to 4-fold higher than the 100 

world average (Qiu 2011), thus resulting in the contamination of water bodies in the receiving areas 101 

and disturbance of ecological equilibrium (Hui et al. 2003).  102 

The United States is also a large the next largest consumer of pesticides, applying over 1 billion 103 

pounds annually (Alavanja 2009) with dramatical consequences for human beings and environment  104 

(Carvalho 2017).  105 

 As regards Europe, according to the Eurostat (2016), the main pesticide consumer is Spain (around 106 

79,000 ton of active ingredients sold between 2011 and 2014), followed by France (≈ 75,000), Italy 107 

(≈ 64,000), Germany (≈ 46,000) and United Kingdom (≈ 23,000).  108 

The adverse effects of pesticide and antibioticsOACs pollution have been concerned for a long time 109 

and many highly toxic and persistent pesticides have been banned worldwide. Although relatively 110 

safer pesticides have been developed and replaced the highly toxic ones, environmental pollution 111 

resulted by the long-term application of pesticides is far from being solved. Still now 112 

oObsoleteobsolete pesticides widely used in agriculture in the past,still represent a threat to 113 

environment, biodiversity, and human health for the region of Southeast Europe and their 114 

environmental and human risk need to be assessed in order to mitigate their current risk. Many 115 

organochlorines, organophosphates and pyrethroids have been banned but this did not solved the 116 

problem yet (Aravinna et al. 2017). In Argentina, the use of hexachlorocyclohexane pesticides have 117 

been limited from the late ’90 and definitely banned in 2011, but this did not prevent to find 118 

concentration of lindane during recent samplings. Although the maximum level of lindane in saline 119 

water was fixed at 4 ng/l, in 2014 lindane exceeded this value of more than 5-fold (Ballesteros et al. 120 

2014). Although the use of organo-chlorine pesticide has been banned for over 20 years, they can 121 

still be found in the water and the sediment of main drainage area in China (Nakata et al. 2005; Xue 122 

et al. 2006; Zhou et al. 2006), due to run off from aged and weathered agricultural soils, or 123 

anaerobic sediments (Zhou et al. 2006). Except forBesides water bodies and sediment, water, soil 124 

and even air in many cities are polluted by OACs, including urban or suburban areas (Gong et al. 125 

2004; Nakata et al. 2005; Yang et al. 2008). 126 

For that matter, OACs pose pivotal environmental problems, due to their high reisstance in the 127 

environment and the consequent low natural attenuation. As an example, ; among them, 128 

organochlorine pesticides and their metabolites, are resistant towere poorly affected by 129 

photochemical, chemical and biological degradation processes,for a long time as reported by and 130 

more than 95% of them impacted on non-target organisms (Mrema et al. (2013).  The authors 131 
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highlighted the impacts of pesticides, which become widely dispersed in the environment; it was 132 

estimated that more than 95% of applied pesticides impact non-target organisms. As a consequence, 133 

rKim et al. (2017) reported a consequence, rnumber of routes pesticides might follow to meet 134 

human beings; the resulting multi-pathway direct and indirect exposure may affect human health. 135 

For instance during the last decade, one of the most studied issues is cancer occurence related to 136 

pesticide exposure. 137 

As persistent organopollutants (POPs), pesticides represent one of the major problems in both 138 

terrestrial and aquatic ecosystems. Regulatory and risk assessment procedures have to be adopted 139 

against those compounds that could be categorized as POPsOACs. Since early ’90, European Union 140 

started taking care of the problem. Driven from the carcinogenicity of pesticides, Directive 91/414/ 141 

EEC aimed to control the authorization for pesticides marketing within the EU. The particular 142 

attention given to pesticides is because recent studies confirmed that even low dose and chronic 143 

exposure might trigger adverse effects on wildlife and humans (EEA 2005). Being groundwater the 144 

primary source of drinking waters, both the Groundwater Directive 2006/118/EC and the Drinking 145 

Water Directive 98/83/EC deal with pesticides maximal exposure concentrations: 0.1 µg/l of a 146 

single pesticide and 0.5 µg/l of total pesticides load. The protract exposure to low amount of 147 

pesticides cannot be underestimated because critical exposure levels can be chronically reached. A 148 

rRiskrisk assessment has to consider the possible source of contamination but also the direct and 149 

indirect multifaceted pathways of contact with human beings. Kim et al. (2017) reported a number 150 

of routes pesticides might follow to meet human beings; the resulting multi-pathway direct and 151 

indirect exposure may affect human health. Most of the pesticides emission (99 %) in the 152 

environment in Europe is associated to agricultural practices whereas industrial and urban sources 153 

as the manufacturing of pesticides or the at-home use of insecticides have a minor impact (EEA 154 

2016).  Kim et al. (2017) reported a number of routes pesticides might follow to meet human 155 

beings; the resulting multi-pathway direct and indirect exposure may affect human health. 156 

Point discharges of pesticides used in agriculture may occur and are mainly associated to accidental 157 

causes as spillage, inappropriate storage and disposal, etc. Most of pesticides instead reach surface 158 

waters, through direct surface run-off or by leaching to groundwater and then subsequently follow 159 

different transport pathways. Once entered in the aquatic system, they could ultimately contaminate 160 

water for human consumption. 161 

A clear correlation between agriculture and water contamination was observed in Mar Chiquita lake 162 

(Argentina), since high amount of endosulfan residues were detected soon after application and 163 

post-application periods (Ballesteros et al. 2014). The presence of the fungicide thifluzamide in 164 

paddy water of rice fields in China was maximal after the application, and variation during time was 165 
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associated to the dilution effect of rainfalls in the area (Wei et al. 2015). Preventive measures to 166 

mitigate the impact of agriculture on the environment are required, taking into account both the use 167 

of safety pesticides and the optimization of farmer procedures. Aravinna et al. (2017) found that 168 

most of the 32 studied pesticides leached rice field following specific pathways. Since direct run off 169 

and erosion from soil were the main vehicles of dispersion, authors suggested alternative strategies 170 

(high resident time of pesticides, holding ponds of rice drainage water, delayed filling of paddies 171 

after pesticide application and use less mobile compounds) to reduce the movement of the 172 

pesticides. 173 

Experimental evidences of advances in natural restoration processes highlight that time is our 174 

friend, since the abandonment of disturbed/polluted agricultural land for long time could reduce 175 

their contaminatin . In fact, at a global scale, one of the most frequently used strategies is long-term 176 

remediation, which is represented by the abandonment of disturbed/polluted agricultural land 177 

(Kardol and Wardle 2010). Studies by Morriën et al. (2017) reported that nature restoration on ex-178 

arable land resulted in increased connettance of soil biota’s networks, as restoration progresses. 179 

Such results confirm that the functions played by the soil biota provide many and varied services, 180 

and detoxification of pollutants and xenobiotic is one of the included primary services. In this 181 

context, innovation is represented by the research of solutions inspired by nature, as strategy to 182 

accelerate the natural attenuation processes in contaminated sites, optimizing bioremediation in real 183 

environment. Given that OACs represent a potential risk to humans, water, ecosystems and other 184 

receptors, fungi can play a pivotal role addressing their removal from contaminated sites and thus 185 

mitigating environmental pollution. 186 

So clean and safe water is a critical step that stands between the status quo and a sustainable world. 187 

This concept is no longer idealistic and became a milestone for the United Nations, as clearly stated 188 

in the World Water Development Report of 2015 (WWAP, 2015). Human lifestyle and the 189 

increasing urbanization lead to a worsened scenario. For instance, the actual pesticides use is 4-fold 190 

higher than 40 years ago (Mnif et al. 2011). EC compiled a watch list including, among others, 191 

pharmaceuticals, pesticides and personal care products. Being groundwater the primary source of 192 

drinking waters, both the Groundwater Directive 2006/118/EC and the Drinking Water Directive 193 

98/83/EC deal with pesticides maximal exposure concentrations: 0.1 µg/l of a single pesticide and 194 

0.5 µg/l of total pesticides load. 195 

In this context, bioremediation has aroused as an is a usefulis buseful technology to degrade 196 

pesticides OACs by microbes (Singh 2008; Velázquez-Fernández et al. 2012), with several benefits 197 

over landfill disposal and incineration, such as the conversion of toxic wastes toformation of non-198 

toxic end products, a lower costscost of disposal (or no disposal at all), reduced health and 199 

Page 47 of 98

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

 

ecological effects and long-term liabilities associated with non-destructive treatment methods, and 200 

the ability to perform the treatment in situ without unduly disturbing native ecosystems (Sarkar et 201 

al. 2005). Therefore, there is a growing interest in developing bioremediation techniques to degrade 202 

OACs in polluted environments. During the past decade, numerous microorganisms capable of 203 

degrading antibiotics and pesticides have been isolated, and detoxification processes for target 204 

pollutants have been analyzed. As for many other POPs (BTEX, PHAs, PCB congeners, etc) with 205 

structural similarities with lignin, fFungifungi and especially ligninolytic fungi have been suggested 206 

as the most promising group of organisms able to transform recalcitrant compounds through a 207 

unique set of extracellular oxidative enzymes (e.g. Anastasi et al. 2013; Harms et al. 2017).  208 

Comparative genomic analysis of 49 fungi with different nutritional modes such as saprotrophic 209 

fungi, white-rot fungi (WRF), brown-rot fungi, straw soft rot fungi and symbiotic fungi indicated 210 

that there is a relationship between nutrition models and the enzymes for lignocellulose degradation. 211 

Saprotrophic fungi have greater number of enzymes than symbiotic fungi, and brown-rot fungi have 212 

smaller number than white- rot fungiWRF and straw soft rot fungi (Wu et al. 2015a). This might 213 

gain some insights into how to choose fungi in OACs degradation. 214 

Experimental evidences of advances in natural restoration processes highlight that time is our 215 

friend. In fact, at a global scale, one of the most frequently used strategies is long-term remediation, 216 

which is represented by the abandonment of disturbed/polluted agricultural land (Kardol and 217 

Wardle 2010). Studies by Morriën et al. (2017) reported that nature restoration on ex-arable land 218 

resulted in increased connettance of soil biota’s networks, as restoration progresses. Such results 219 

confirm that the functions played by the soil biota provide many and varied services, and 220 

detoxification of pollutants and xenobiotic is one of the included primary services. In this context, 221 

innovation is represented by the research of solutions inspired by nature, as strategy to accelerate 222 

the natural attenuation processes in contaminated sites, optimizing bioremediation in real 223 

environment. Given that OACs represent a potential risk to humans, water, ecosystems and other 224 

receptors, fungi can play a pivotal role addressing their removal from contaminated sites and thus 225 

mitigating environmental pollution. 226 

Finally yet importantly, metabolic activity of fungal or microbial consortia could produce not-227 

known reaction products potentially with a major toxicity than parental compounds.  228 

García-Carmona et al. (2017) highlighted the importance to carry out environmental monitoring 229 

activities ante and post operam phases, using bioassays to determine the success of the 230 

bioremediation process. Although it is substantial to assess the quality of the environment to ensure 231 

it remains free of toxic residues, most of the analytical tests available for determining the 232 

concentration of toxic chemicals do not give the biological impacts of toxicants. For this reason, 233 
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biotoxicity testing has grown steadily in recent years and is a useful tool in environmental risk 234 

assessment (Shen et al. 2016; Prokop et al. 2016).  235 

Indeed, there is a clear need to develop and define decontamination of hazardous pollutants as a 236 

concept towards sustainable remediation through a broader uptake of principles, approaches and 237 

tools to integrate environmental, social and economical dimension into the remediation processes 238 

(Ridsdale and Noble 2016). Several organizations, academia, standardization committees are 239 

currently assessing remediation process, evaluating the complexity of the concept of sustainability. 240 

Several documents have been developed by many countries across Europe and at global scale, 241 

addressing sustainable indicators of remediation activities (Harclerode et al. 2015).  242 

The present review article summarizes the current state of scientific knowledge on research and 243 

application of fungi as effective bioresources, considering the recent advances in understanding 244 

their capacity to handle pesticide contamination. 245 

 246 

Bioremediation of OACs by fungi in soil system 247 

Large quantities of OACsantibiotics are being added to agricultural fields worldwide through the 248 

application of wastewater, manures and biosolids, resulting in pesticide and antibiotic 249 

contamination and elevated environmental risks in terrestrial environments (Jechalke et al. 2014; 250 

Zhang et al. 2015; Pan and Chu 2016). The largest fraction of  antibiotics OACs applied to soils 251 

with manure or biosolids is usually retained in surface soil whereas the part added through irrigation 252 

with wastewater can diffuse easily deep or by surface run-off. Once added to soil, antibiotics OACs 253 

interact with soil solid phase and are prone to microbial transformation (Hammesfahr et al. 2008; 254 

Jechalke et al. 2014). In particular, veterinary antibiotics interact with soil solid phase in sorption 255 

and desorption reactions. Sorption and desorption control not only their mobility and uptake by 256 

plants but also their biotransformation and biological effects. Antibiotics OACs as well as 257 

microorganisms are not distributed homogeneously in soil but are concentrated in hotspots. The 258 

different surfaces, voids, and pores provided by soil aggregates harbor a vast amount of biological 259 

diversity and chemical variability, and cause a patchy distribution of natural organic matter, oxides, 260 

nutrients, and microorganisms on soil particle surfaces (Hammesfahr et al. 2008; Jones et al. 2012). 261 

Sorption, sequestration, and subsequent release of antibiotics OACs likely also occur at and from 262 

hotspots, and little is known about the behavior of antibiotics OACs at environmentally relevant 263 

concentrations in agricultural soil. 264 

Recently, many studies highlighted the fungal capability to transform and degrade recalcitrant 265 

OACs. In particular, one of a promising group is the ligninolytic fungi that possess a unique set of 266 

extracellular enzymes suitable to degrade lignin and are able to transform recalcitrant compounds, 267 
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In particular, a promising group of fungi that are able to transform recalcitrant compounds and 268 

possess a unique set of extracellular ligninolytic enzymes are ligninolytic fungi (Čvančarová et al. 269 

2015)), (Supplemental data Table I; Table I References).2015). Nguyen et al. (2014) reported the 270 

removal of diverse trace organic contaminants (i. e. trichloroethyl chloroformate (TrOC), phenolic 271 

and non phenolic, pharmaceuticals, pesticides, steroid hormones, industrial precursors and products, 272 

phytoestrogens) by live (biosorption + biodegradation), intracellular enzyme-inhibited, and 273 

chemically inactivated (biosorption only) whole-cell preparations and the fungal extracellular 274 

enzyme extract (predominantly laccases) from Trametes versicolor (strain ATCC 7731). They 275 

showed how non-phenolic TrOC were readily biodegraded while the removal of hydrophilic TrOC 276 

was negligible. The whole-cell culture showed considerably higher degradation of the major 277 

compounds, indicating the importance of biosorption and subsequent degradation by intracellular 278 

and/or mycelium associated enzymes. However, studies that examined both adsorption and 279 

degradation of antibiotics in agricultural soil are too few, with most of them using unrealistically 280 

high concentrations (in mg/kg levels) to overcome limitations in measurement. In addition, no 281 

model has been developed for speculating the adsorption and degradation of different types of 282 

antibiotics in agricultural soil and the environmental risks they may pose. Pan and Chu (2016) 283 

evaluated the adsorption and degradation of five antibiotics (tetracycline, sulfamethazine, 284 

norfloxacin, erythromycin, and chloramphenicol) by native microorganisms (bacteria and fungi) in 285 

non sterilized (test) and sterilized (control) agricultural soils under aerobic and anaerobic 286 

conditions. They showed that all antibiotics were susceptible to microbial degradation under aerobic 287 

conditions, and most antibiotics were degraded by more than 92% in non-sterilized soil after 28 288 

days of incubation. For all the antibiotics, a higher initial concentration was found to slow down 289 

degradation and prolong persistence in soil. The degradation pathway of antibiotics, in fact, varied 290 

in relation to their physicochemical properties as well as the microbial activities and aeration of the 291 

recipient soil. The authors were the first to develop a model for the prediction of antibiotic 292 

persistence in soil, which was valuable for the investigation of the fate of antibiotics in the 293 

terrestrial environment. 294 

Given the public concern for environmental pollution by OACs, there is increasing attention 295 

towards the development of biopurification systems for reducing the risk from the point source 296 

contamination of soil resources. Various treatment methods (e.g. land filling of contaminated sites, 297 

recycling, pyrolysis and incineration) have been used for the removal and remediation of these 298 

chemicals from the contaminated sites, but for example microbial degradation of pesticides is 299 

results the most important and effective way to remove these compounds from the environment 300 

(Hai et al. 2012; Verma et al. 2014), (Supplemental data Table I; Table I References).2014). 301 
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Microorganisms have the ability to interact, both chemically and physically, with substances leading 302 

to structural changes or complete degradation of the target molecule. In particular, fungi may 303 

transform pesticides and other xenobiotics by introducing minor structural changes to the molecule, 304 

producing nontoxic molecules that could be released into the soil for further degradation by 305 

microflora (Hai et al. 2012), (Supplemental data Table I; Table I References).  306 

In this context, Mir-Tutusaus et al. (2014) investigated the degradation of the insecticides 307 

imiprothrin and cypermethrin, the insecticide/nematicide carbofuran using the white-rot fungus T. 308 

versicolor. Their experiments with fungal pellets demonstrated extensive degradation of the tested 309 

agrochemicals. In vivo studies with inhibitors of cytochrome P450 revealed that this intracellular 310 

system plays an important role in the degradation of imiprothrin and carbofuran, but not for 311 

cypermethrin. The simultaneous degradation of the compounds successfully took place with 312 

minimal inhibition of fungal activity and resulted in the reduction of the global toxicity, thus 313 

supporting the potential use of T. versicolor for the treatment of several OACs. 314 

To date, the number of studies investigating novel treatment techniques for the removal of 315 

pesticides OACs from contaminated agricultural soils is limited. The bacteria-dominated 316 

conventional activated sludge process has been proved to be ineffective for pesticide removal. 317 

While the importance of a mixed microbial community to initiate and complete pesticide OACs 318 

removal in the soil environment has been convincingly demonstrated by several researchers, studies 319 

concerning the removal of pesticides OACs from soils have been predominantly focused on 320 

selected bacterial or fungal species separately. Few studies have explored the bioaugmentation 321 

synergy of fungi and bacteria (Hai et al. 2012; Zhang et al. 2015; Madrigal-Zúñiga et al. 2016). 322 

Combining culture of bacteria and fungi could constitute a relevant process for the removal of toxic 323 

and recalcitrant organic substances from contaminated agricultural soils. On-farm biopurification 324 

systems represent a biotechnological approach for the mitigation of point source contamination by 325 

pesticidesOACs. The main component of the biopurification systems is the biomixture, which acts 326 

as the biologically active core that accelerates the degradation of OACs.pesticidesOACs Madrigal-327 

Zúñiga et al. (2016) studied the employment possibility of the ligninolytic fungus T. versicolor in 328 

the bioaugmentation of compost- (GCS) and peat-based (GTS) biomixtures for the removal of the 329 

insecticide-nematicide carbofuran (CFN). The CFN transformation products were detected at the 330 

moment of CFN application, but their concentration continuously decreased to complete removal in 331 

both biomixtures. Mineralization of 14C radiolabeled CFN was faster in GTS than in GCS. The 332 

authors demonstrated the complete elimination of toxicity in the matrices after 48 days. Overall data 333 

suggested that the bioaugmentation improved the performance of the GTS rather than the GCS 334 

biomixture. 335 
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Moreover, Pinto et al. (2016) studied the potential use of different substrates in biomixtures as cork, 336 

cork and straw, coat pine and LECA (Light Expanded Clay Aggregates) on the degradation of 337 

terbuthylazine, difenoconazole, diflufenican and pendimethalin pesticides. Bioaugmentation 338 

strategies using the WRF Lentinula edodes inoculated into the CBX was also assessed. The results 339 

obtained from this study clearly demonstrated the relevance of using natural biosorbents as cork 340 

residues to increase the capacity of pesticide dissipation in biomixtures for establishing biobeds. 341 

Furthermore, higher degradation of all the pesticides was achieved by the use of bioaugmented 342 

biomixtures. Indeed, biomixtures inoculated with L. edodes EL1 were able to mineralize the 343 

selected xenobiotics, revealing that this WRF might be a suitable fungus for being used as inoculum 344 

sources in on-farm sustainable biopurification systems, in order to increase its degradation 345 

efficiency.  346 

Fungi isolated from biomixture represents a biological source of potentially active bioremediation 347 

agents; the adaptation skills developed by these microorganisms could make the difference for 348 

OACs removal (Supplemental data Table I; Table I References).).. This challenging strategy was 349 

assessed by Pinto et al. (2012), who isolated fungi from a loamy sand soil and a biomixture 350 

contaminated with terbuthylazine, difenoconazole and pendimethalin. The capability of degrading 351 

xenobiotics by autochthonous fungi (Penicillium brevicompactum and Lecanicillium saksenae) was 352 

compared with allochthonous strains taken from a Culture Collection (Fusarium oxysporum, 353 

Aspergillus oryzae and L. edodes). The major biodegradation yield was reached with P. 354 

brevicompactum: its higher ability to metabolize terbuthylazine was presumably acquired through 355 

chronic exposure to contamination with the herbicide. 356 

 357 

Bioremediation of OACs by fungi in aquatic ecosystem 358 

Many OACs are common contaminant of freshwater due to their high water solubility associated to 359 

a low soil adsorption, and their high stability that assure them a long half-life. These properties 360 

explain the recurring evidences of pesticides found in real water samples. The contamination is not 361 

heterogeneously distributed along watercourses as evidenced in several studies where and extensive 362 

studies are necessary.These properties explain the recurring evidences of pesticides were 363 

recurringly found in real water samples. For instance, an 364 

An accurate survey took into consideration 23 European countries with more than 160 water 365 

samplings studying mainly pharmaceuticals, pesticides and known recognised endocrine 366 

disruptingchemiclasdisrupting chemiclas chemicals (Loos et al. 2010). Among the 59 compounds 367 

under study, the most frequently detected compound was 1 insecticide (DEET), and 7 pesticides 368 

(chloridazon-desphenyl, DMS, desethylatrazine, chloridazon-methyldesphenyl, bentazone, 369 
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desethylterbutylazine, dichlorprop) exceeded the European threshold of 0.1 µg/l. On the whole, 370 

29Overall, 29% of the water samples could not be considered safe (Loos et al. 2010) .accordingly to 371 

this value. SimilarlySimilarly, in US, 18 states were monitored, focusing the attention of 65 organic 372 

contaminants: along with plasticizers and detergent metabolites, 66% of the total pollutants load 373 

was ascribable to insect repellant (Barnes et al. 2008). 374 

The extent of the freshwaters contamination and the actual risk for human life depend on several 375 

factors concerning the hydrogeological characteristics of the soil, the weather conditions and the 376 

chemical-physical properties of the pesticideOACs. The environmental fate of a certain compound 377 

is a critical issue in which the water/soil surface is the first barrier. For instance, the sorption 378 

kinetics of three widely used pesticides (simazine, imidacloprid, and boscalid) have been correlated 379 

to the soil organic carbon content and the hydrophobicity of the pesticide, ultimately affecting their 380 

soil retention behavior and the actual bioavailability in waters (Salvestrini et al. 2014). The flow of 381 

the leaching into surface waters is also a matter of season, in which opposite phenomena draw a 382 

complex scenario to be predict. A rainy period could cause a massive run-off of OACsthe pesticides 383 

from the soil contaminating the receiving basin (Sandin et al. 2018), but during dry season, the high 384 

load of contaminants could be associated to evaporation and low water flow. Besides the detection 385 

of high levels of pesticidespesticideOACs is not exclusively coincident to their recent and massive 386 

use., but it is ascribable to their  . Due to their persistency, their slow natural deagradtion, their 387 

accumulation and the various diffusion pathways, they (Aguilar et al. 2017), . tThey could then 388 

tread long distances in surface or groundwater waters and the contamination can last for several 389 

decades (Ballesteros et al. 2014; Aravinna et al. 2017)..   390 

The so-called ecological services could help to contain the pesticidespesticideOACs diffusion. 391 

Adapted microflora (fungi, Gram-positive and -negative bacteria, actinobacteria, and sulfate-392 

reducing bacteria) to the soil environmental conditions may reduce the pesticides released in 393 

groundwater sources (Mattsson et al. 2015). Several factors as soil composition, temperature, 394 

aeration due to soil weaving and depth influence the autochthonous microbial community activity; 395 

if this balance fails, pesticidespesticideOACs are free to move among different ecological niches 396 

(i.e. sediment and water)),  and alter their functioning.  and ultimately directly affecting their animal 397 

inhabitants. For instance, sSignificant ecological risk was associated to the presence of the 398 

insecticide fipronil and its metabolites in three water ponds: concentration up to 200 ng/l affected 399 

the proper development of larval insects and crustaceans (Wu et al. 2015b). Evidences of the 400 

pesticides toxicity against fish has been already reported, demonstrating their interference with 401 

different metabolic pathways (Odukkathil and Vasudevan 2013; Ballesteros et al. 2014; Guerreño et 402 

al. 2016).  403 
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The preservation of water quality is a priority but OACs removal could not be based only on natural 404 

attenuation. Water treatment plants (WTPs) are the major barrages where OACs should be 405 

removed. Not being specifically designed for micropollutants removal, they are often only partially 406 

effective, with a strong impact on the receiving ecosystem. Pesticides as atrazine, fluconazole, 407 

tebuconazole, diazinon and diuron are particularly resistant to commonly in use treatments (Köck-408 

Schulmeyer et al. 2013; Luo et al. 2014). A number of evidences confirmed the presence of OACs 409 

in WTPs effluents at toxicologically and estrogenically relevant concentration, becoming one of the 410 

most effecting source of contamination (Bicchi et al. 2009; Campo et al. 2013; Jarošová et al. 411 

2014).  412 

Particular attention has been given to advanced biological oxidation. Novel cost-effective and eco-413 

friendly processes based on fungi are an attractive option. They Fungi are well-known for to their 414 

physiological adaption skills, including the natural activation of tolerance mechanisms against 415 

pesticides (Talk et al. 2016). In comparison with bacteria, Some reports already demonstrated that 416 

in comparison with bacteria, fungi can better tolerate the presence of organic contaminants. 417 

Although the insecticide endosulfan inhibited both fungi and bacteria, bacterial community 418 

structure significantly changed already at 0.1 mg/kg while modifications on the fungal community 419 

structures required 1 mg/kg of pollutant (Zhang et al. 2015). Linuron reduced bacterial count, and 420 

especially total bacteria, N2-fixing bacteria and nitrifiers, but not fungal numbers (Cycoń et al. 421 

2010). 422 

The importance of the isolation origin of fungi is out of discussion. Strains isolated from 423 

contaminated niches could have indeed developed specific adaptation skills due to the chronically 424 

exposure over time. Carles et al. (2017) demonstrated that the aquatic microflora associated to 425 

submerged leaves exposed to nicosulfuron is more efficient in its degradation than communities 426 

belonging to a less polluted site. The authors indicated fungi as the main constituents of this active 427 

microflora and as responsible of the herbicide degradation. In literature, several fungi isolated from 428 

contaminated areas or WTPs have been identified as degraders of nicosulfuron, diuron, isoproturon, 429 

glyphosate, chlorpyrifos, chlorfenvinphos and atrazine (Song et al. 2013; Carranza et al. 2014; 430 

Oliveira et al. 2015). 431 

Exploiting this oxidative cascade, fungi may transform a broad range of recalcitrant organic 432 

compounds, including OACs (Gao et al. 2010). A number of fungi are pesticidespesticideOACs 433 

degraders, mostly belonging to Basydiomycetes as Trametes, Pleurotus, Phlebia, Cerrena, 434 

Coriolopsis, etc. have been already investigated (Koroleva et al. 2002; Marco-Urrea et al. 2009; 435 

Xiao et al. 2011; Ulčnik et al. 2013; Chan-Cupul et al. 2014; Ceci et al. 2015) (Table II2, 436 

Supplementary Materials).). Several  classes of pesticides as lindane, atrazine, diuron, 437 
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terbuthylazine, metalaxyl, DDT, gamma-hexachlorocyclohexane (g-HCH), dieldrin, aldrin, 438 

heptachlor, chlordane, lindane, mirex, etc. were effectively transformed by fungal treatment. based 439 

on mycelium or enzymes (Table II2, Supplementary Materials). 440 

A bioremediation approach based on fungi may involve both biosorption and biodegradation 441 

processes; the latter one combines biosorption where the molecule binds to the fungal wall, and 442 

bioaccumulation with the pollutant being transported inside the cell in contact with intracellular 443 

enzymes (Kulshreshtha et al. 2014). Concentration of insecticide lindane decrased during time in 444 

the presence of two WRF (T. versicolor and Pleurotus ostreatus) and one brown-rot fungus 445 

(Gloeophyllum trabeum), but the lack of any change in the chromatogram profile indicated the main 446 

involvement of a fast adsorption process (Ulčnik et al. 2013). However, this phenomenon is often 447 

strains dependent, and expecially related to metabolic differences between Ascomycetes and 448 

Basidiomycetes. Belonging to brown-rot fungi, G. trabeum lacks the ligninolytic enzymes, 449 

responsible for lignin degradation and likely for OACs as well: adsorption onto fungal mycelium 450 

was mainly involved for removal of endosulfan. On the contrary, the WRF actively degraded 451 

producing endosulfan sulphate via oxidative pathways (Ulčnik et al. 2013). Although biosorption is 452 

a phenomenon that could be not ignored, it is often secondary or at least negligible respect to 453 

biodegradation (Carles et al. 2017). For instance, the removal of clofibric acid associated to heat-454 

killed mycelium was less than 10 %, but more than 97 % in the presence of active T. versicolor 455 

(Marco-Urrea et al. 2009).  456 

Fungi have developed a specific mechanism that employs few enzymes and molecules with high 457 

oxidizing power, physiologically aimed to transform ligninocellulose structure. The same enzymatic 458 

pathway may play a pivotal role in transforming other aromatic molecules. White-rot fungi usually 459 

involve ligninocellulosic extracellular enzymes as peroxidases (EC 1.11.1.x) and laccases (EC 460 

1.10.3.2). The involvement of redox enzymes in the fungal-mediated oxidation is confirmed by the 461 

direct induction of enzyme production due to the presence of pesticides.pesticideOACs. The fungus 462 

T. versicolor responded to 17 pesticides by increasing laccases production in comparison with the 463 

control: particular attention was given to transformation products of the herbicides diquat and 464 

monuron, capable of increasing the activity of 10- and 17-fold, respectively (Mougin et al. 2002). 465 

Laccase production of Pycnoporus sanguineus, Trametes maxima, Pleurotus spp1, Pleurotus spp2, 466 

Cymatoderma elegans, Daedalea elegans was stimulated by the presence of atrazine even at high 467 

concentration 3750 mg/l. Likewise the pesticide positively affected the manganese peroxidase 468 

activity of Pleurotus spp1 and C. elegans (Chan-Cupul et al. 2014).  Oxidoreductases stimulation 469 

was also observed with picloram (Maciel et al. 2013), bentazon (Da Silva Coelho et al. 2010), 470 

carbofuran (Mir-Tutusaus et al. 2014). 471 
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Although these oxidoreductases are probably the most known enzymes for aromatic compounds 472 

degradation, alternative pathways can be promoted by the presence of pesticides.pesticideOACs. 473 

Two clones (laccase positive and negative producers) of Mycelia sterilia were used to treat atrazine 474 

(20 µg/ml): even though one clone was defective for laccase production, comparable transformation 475 

yields (70-80%) were reached indicating their minor role in the degradation process (Vasil’Chenko 476 

et al. 2002). This behavior is commonly found in brown-rot fungi that may trigger both on 477 

nonenzymatic and enzymatic mechanisms, i.e. Fenton mechanism or cellobiose dehydrogenase 478 

(CDH) reactions (Fan and Song 2014). The degradation of atrazine (20 µg/l) by an unidentified 479 

mycelial fungus was associated to the presence in the liquid medium of OH radicals and CDH. 480 

Moreover, the CDH secretion was induced by the presence of the herbicide itself (Khromonygina et 481 

al. 2004). In addition, some fungi could associate extracellular oxidoreductases with intracellular 482 

enzymes such as the cytochrome P450 system (cyt450). In the effort to better characterize the 483 

degradation skills of T. versicolor, cyt450 inhibitors were used: fungal performances against 484 

clofibric acid and fipronil decreased (Marco-Urrea et al. 2009; Wolfand et al. 2016). Mori et al. 485 

(2017) suggested that cyt450 of Phanerochaete sordida is involved in the first reduction of the 486 

clothianidin N-nitro group but the enzymes responsible of the further urea derivatives production 487 

are unknown. 488 

The intra- and interspecies variability has long been recognized and found confirmation 489 

alsoconfirmation for pesticidespesticideOACs treatment. Literature data about a certain specie 490 

could not be taken for granted and the set-up of a preliminary screening is often required. Despite 491 

Phanerochaete chrysosporium is often indicated as fungal model for organic degradation including 492 

pesticides (Wang et al. 2014), it was almost ineffective against clofibric acid. Among five 493 

Basidiomycetes, only T. versicolor extensively degraded the herbicide (Marco-Urrea et al. 2009). 494 

Alvarenga et al. (2014) treated methyl parathion with several fungi, including 3 Aspergillus sydowii. 495 

Based on the growth capability in the presence of the pesticide, only the isolate A. sydowii CBMAI 496 

935 was selected for further studies. It indeed grew almost 4-fold more than the other A. sydowii. 497 

The bioremediation potential is often substrate targeted, and the choice of fungus cannot be taken 498 

for granted. For instance, the exact same isolate (A. sydowii CBMAI 935) that totally converted 499 

methyl parathion (Alvarenga et al. 2014) was not the best performing one against the insecticide 500 

esfenvalerate. Among 6 fungi, Microsphaeropsis sp. Acremonium sp. and Westerdykella sp. gave 501 

better results than the Aspergillus strain (Birolli et al. 2016). 502 

Although the majority of these strains are effective in pesticidespesticideOACs removal in model 503 

solution, only few researchers have made a step forward, assessing the bioremediation potential of 504 

contaminated waters. The acquired information using model solutions (single-compound solution, 505 
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high concentration, no interfering molecules, etc.) is the unique way to acquire information about 506 

the degradation pathway (Masaphy et al. 1993; Birolli et al. 2016), but is less predictive of the 507 

fungal performances on real environmental water samples. Each wastewater has its own critical 508 

issues, making difficult to predict the fungal behavior. Some data highlighted the robustness of a 509 

fungal system, although this needs detailed investigation case-by-case. A partially diluted leachate 510 

showed to disturb the growth of T. versicolor and Stereum hirsutum, but this did not prevent them 511 

to totally degrade linuron and dimethoate at 10 mg/l. As regards dimethoate, the presence of 512 

adsorbents enhance the final process yields (from 50% to 97%), combining and exalting the action 513 

of adsorption and biodegradation processes (Castellana and Loffredo 2014). The immobilization of 514 

Bjerkandera adusta and Irpex lacteus on coffee grounds, almond shells, a biochar  favored the 515 

removal of non-phenolic herbicides as fenuron and carbaryl from a municipal landfill leachate 516 

(Loffredo et al. 2016). Surface waters, ground waters or municipal wastewaters represent a very 517 

unique environment, characterized by extreme chemical and physical conditions, the presence of 518 

heterogeneous and variable micropollutant mixture and an active autochthonous microflora. When 519 

inoculated in real surface water, a fungal consortium (Aspergillus fumigatus, Aspergillus terreus, 520 

Cladosporium tenuissimum, Cladosporium cladosporioides, Fusarium begoniae, Penicillium 521 

citrinum, Penicillium melanoconidium and Phoma glomerata) was not stable in time due probably 522 

to the presence of toxic pesticides and the interaction with the natural microbial population: P. 523 

citrinum, A. fumigatus and A. terreus were the most robust to the environmental conditions and 524 

actually capable of degrading the spiked chlorfenvinphos  (Oliveira et al. 2015).  525 

The set-up of active microbial consortia is an intriguing solution to strengthen and combine the 526 

bioremediation potential of different organisms. Interestingly the combination of Bacillus subtilis 527 

and A. niger led to higher degradation rate of nicosulfuron than those obtained by using singly each 528 

strain (Lu et al. 2012). The biodegradation of aldicarb, atrazine and alachlor by Coriolus versicolor 529 

was strongly enhanced by the combination with activated sludge. Along with modifications in the 530 

fungal morphology, when the bacterial-fungal consortium was established, the bio-absorbed 531 

fraction of especially atrazine was reduced: over 98% of atrazine was removed by degradation 532 

processes in two weeks (Hai et al. 2012).  533 

The fate of the treated pesticidespesticideOACs is major issue that has to be carefully considered. 534 

The residual toxicity is a critical issue. Interestingly fenuron and carbaryl (up to 70%) degradation 535 

(up to 70%) catalyzed by B. adusta and I. lacteus led to significant abatement of the phytotoxicity 536 

(rapeseed and flax tests) (Loffredo et al. 2016). Mori et al. (2017) followed the neurotoxicity of 537 

clothianidin and its main metabolite produced by P. sordida treatment: the insecticide altered the 538 

cell viability of the neuronal cell line, but the metabolite was no longer neurotoxic. 539 
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Despite the well demonstrated properties, the application of whole cell system has some drawbacks 540 

including the fact that a living organism needs controlled growing conditions, in terms of nutrients, 541 

pH, O2, etc. (Majeau et al. 2010). The addition of synthetic nutrients can strengthen fungal 542 

mycelium activity, but it should be carefully balanced for a further scale-up of the process. The fact 543 

that T. versicolor need 1% of glucose as carbon source to degrade atrazine would ultimately 544 

interfere with its potential use in real WTPs (Khromonygina et al. 2004). Likewise several fungi as 545 

A. niger and Dacryopinax elegans, etc. required both easily available carbon and nitrogen sources 546 

to efficiently act against nicosulfuron and diuron, respectively (Lu et al. 2012; Arakaki et al. 2013). 547 

Particular attention should be instead given to those fungi as A. sydowii and Penicillium 548 

decaturense that maintained the same performances without glucose addition, indicating the 549 

potential of using methyl parathion or triclosan as sole carbon source (Alvarenga et al. 2014; Tian et 550 

al. 2016). 551 

A promising alternative could be given by the direct use of fungal enzymes, capable of catalyzing 552 

strong and fast oxidation reactions, with less technical drawbacks in comparison with fungal 553 

cultures. The potential of enzymes-based methods has been worldwide recognized; the Swiss 554 

Industrial Biocatalysis Consortium defined oxidative enzymes as the biocatalysts displaying the 555 

highest development potential in the next decades (Meyer and Munch 2005). Great importance is 556 

given to the discovery of novel enzymes with wide substrate specificity, stable and applicable to 557 

industrial uses. A number of articles have reported the ability of fungal enzymes to degrade 558 

pesticides.pesticideOACs. The potential of laccase-mediator systems have been assessed for the 559 

degradation of isoproturon (Margot et al. 2015), imiprothrin (Mir-Tutusaus et al. 2014), 560 

chloroxuron (Palvannan et al. 2014), isoproturon (Zeng et al. 2017), atrazine (Chan-Cupul et al. 561 

2016). Laccases cannot be consider a novelty, as instead a phytase of A. niger capable of degrading 562 

organophosphorus pesticides (Shah et al. 2017) or a cellulase of Trichoderma longibrachiatum 563 

active against dicofol (Wang et al. 2015). Particular attention should be given to the use of crude 564 

enzyme extracts of ligninolytic enzymes with a minor economic impact on the process than purified 565 

enzymes (Matute et al. 2012; Kaur et al. 2016). A crude extract of Trametes pubescens laccases 566 

degraded up to 19 compounds in model solution and confirmed its potential alsopotential  with a 567 

real municipal wastewater where the presence of suspended particles, colloids, solvents and 568 

xenobiotics as well as autochthonous microorganisms posed a strong environmental pressure. The 569 

transformation of all the detected compounds determined also a strong reduction of the 570 

estrogenicity of the water sample (Spina et al. 2015). 571 

 572 

Application of synthetic microbial community on bioremediation 573 Formatted: Level 1
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Bioremediation is crucial way to eliminate the OACs pollution in agriculture ecosystem. However, 574 

many factors effect bioremediation efficiency for pesticide pollution, such as microbes applied, 575 

treatment sites, rhizosphere effects, soil chemical and physical properties (Zhou and Hua 2004). The 576 

practice in the bioremediation of soil or water pollution often cannot reach expected results because 577 

the target contaminant could not be degraded completely in most cases, and sometimes intermediate 578 

products were occurred with more toxin than original pesticides. Long-term application of various 579 

pesticides resulted in the pollution of more than one type of chemical compounds, which is hard to 580 

be degraded by a sole microbe. Thus, attention has been shifted to synthetic systems based on 581 

communication between cells, rather than individual isolated cell functionality (Biliouris et al. 582 

2012). A promising way to overcome the difficulties is to create artificial synthetic microbial 583 

communities that contain several microbes to retain the key features of their natural counterparts 584 

(Großkopf and Soyer 2014). 585 

Synthetic microbial community is a collective term that is created by a bottom-up approach where 586 

two or more defined microbial populations are assembled in a well-characterized and controlled 587 

environment (De Roy et al. 2014). In synthetic communities, mixed populations can perform 588 

complex tasks, although in changing environmental conditions to be robust to changes in 589 

environment (Brenner et al. 2008). There are several potential advantages of synthetic community 590 

compared to monocultures or natural community: 1) the species in a synthetic community are 591 

identified and the community structure is relatively simple and controllable, while the natural 592 

community is mixed up by many microorganisms with unknown functions; 2) synthetic community 593 

can perform more complicated functions than individual organism because members of microbial 594 

consortia communicate and differentiate (Brenner et al. 2008); 3) synthetic community can be more 595 

robust to environmental fluctuations because communities might be more capable of better resisting 596 

invasion by other species and weather periods of nutrient limitation compared with monocultures 597 

(Brenner et al. 2008); 4) synthetic community might be described through mathematical models 598 

more easily than natural systems, and they can be used to develop and validate models of more 599 

complex systems (Liu et al. 2017). 600 

To develop a cooperative and steady-state community that is performing a desirable 601 

biotechnological function, Liu et al. (2017) concluded three design principles for the construction of 602 

synthetic community. Firstly, safety should be prioritized by beginning with innocuous or 603 

commensal organisms (Brenner et al. 2008). Secondly, the community can converse a low-cost 604 

and/or recalcitrant waste material into a biotechnologically relevant product, partial or de-novo 605 

biosynthesize a compound via heterologous metabolic pathways, or bioconverse toxic substrates or 606 

products in a toxic milieu process with toxic substrates or products or substrate conversion in a 607 
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toxic milieu (Jagmann and Philipp 2014). Thirdly, the bioremediation process should be optimized 608 

and regularly controlled based on the knowledge of stability and division of different 609 

microorganisms (Liu et al. 2017). 610 

Bioremediation of polluted soils and water is one application field of synthetic microbial 611 

community. As the complex structure of some pollutants, the effect of adding synthetic microbial 612 

community is much higher than single microorganism, such as the biodegradation of pesticides 613 

diuron. The herbicide diuron is used for control of broad-leaved weeds on agricultural land. Several 614 

fungal-bacterial consortia were investigated by combining three different diuron-degrading bacteria 615 

and two fungal strains. The fastest mineralization of diuron was obtained by the three member 616 

consortium (Mortierella LEJ702, Variovorax SRS16, and Arthrobacter globiformis D47) as 617 

measured by evolved 14CO2, mineralizing about 32 % of the added diuron within 54 days, whereas 618 

the single strains or other consortia reached no more than 10% mineralization. In addition, the 619 

production of diuron metabolites by consortium was minimal. This may be due to cooperative 620 

catabolism, where the first organism transforms the pollutant to products that are then used by other 621 

organisms. In addition, fungal hyphae may function as transport vectors for bacteria, thereby 622 

facilitating a more effective spreading of degrader organisms in the soil (Ellegaard-Jensen et al. 623 

2014). 624 

Similarly, a fungal-bacterial consortium consisting of Mortierella sp. LEJ702 and the 2,6-625 

dichlorobenzamide (BAM)-degrading Aminobacter sp. MSH1 reached a more rapid mineralisation 626 

of BAM than the bacterial alone, especially at lower moisture contents (Knudsen et al. 2013). 627 

Methylotrophic and hydrocarbon utilizing yeasts and bacteria alone did not degrade PCBs 628 

significantly, but PCB degradation achieved about 50% when WRF were applied together (Šašek et 629 

al. 1993). 630 

 631 

Evaluation of bioremediation effectiveness in contaminated matrices by performing 632 

ecotoxicological and genotoxic tests  633 

In order to improve the effectiveness and performance of bioremediation processes it is important to 634 

pursue three essential goals at the same time. Focus should be not only on reducing chemical 635 

concentrations, but also on reducing chemical mobility between in  the environmental 636 

compartments and eventually lowering toxicity levels ensuring that contaminants do not get into the 637 

natural biological cycle (Loehr and Webster 1997; Chakraborty et al. 2013).  638 

Bioremediation is often monitored by following the concentration of targeted contaminants 639 

(Molina-Barahona et al. 2005). Numerous studies in recent years showed that traditional chemical 640 

analyses are insufficient for a full assessment of the contaminated site as they, for example, does not 641 
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provide any information about the interaction of chemicals and does not consider the partition and 642 

the mobility of pollutants (Frische 2003; Molina-Barahona et al. 2005; Ma et al. 2005; Molnár et al. 643 

2007). An integrated approach linking the various fields and levels of study involving contaminated 644 

sites has proven to be an efficient system of evaluating bioremediation effectiveness in 645 

contaminated sites (Chapman and Anderson 2005; Wernersson et al. 2015; Marziali et al. 2017). 646 

Consequently, to achieve the desired goals and implement a successful bioremediation program a 647 

close collaboration of microbiologists, chemists and engineers is requested by the chemical and 648 

biological complexity of the tasks (Van Gestel et al. 2001; Chakraborty et al. 2013).  649 

Additionally, the use of ecotoxicological and genotoxic tests in order to evaluate the bioremediation 650 

effectiveness can be a valid tool to partially overcome the existing gap between the reported 651 

successes of bioremediation on the laboratory scale and the field scale.  652 

Signals that bioremediation is going on could be important to be monitored. Two important 653 

chemical compounds produced by microorganisms during their degradation activity are CO2 and 654 

soluble phosphorus. Both increase distinctly in the soil treated with insecticides and inoculated with 655 

fungi (Boyle 1995; Abd El-Ghany and Masmali 2016). However, it must be taken into 656 

consideration that during and after a bioremediation process the disappearance of the parent 657 

compounds or evidence of the metabolic activity (e.g. CO2 production) may not indicate 658 

detoxification. Beside the fact that the fate of the toxicants may be followed by chemical analyses, 659 

many reaction products resulting from a bioremediation process are not known and their potential 660 

toxicity, as well. The elimination of mother compounds does not necessarily result in toxicity 661 

removal, and evaluating the efficiency of the process is important to assess not only the removal of 662 

a specific compound, but also the potential ecotoxicity. In fact, biodegradation of pesticides can 663 

proceed partially or totally due to the molecular structure itself or unfavourable environmental or 664 

test conditions and the lack of 'acclimatized' microbial communities (De Henau 1997). In some 665 

instances, it has been shown that to an effective process of bioremediation corresponds to a decrease 666 

in the toxicity of the analysed matrix (Baud-Grasset et al. 1993; Dorn and Salanitro 2000). To 667 

acquire complete and useful information in an ecotoxicological assessment and to determine the 668 

effectiveness of bioremediation treatments, it is suggested to use a battery of tests (Keddy et al. 669 

1995; Van Gestel et al. 2001; Tigini et al. 2011). The battery should include a number of biological 670 

reference organismstest species that are representative of the different trophic levels, in order to 671 

select species with different roles in ecosystems, and different routes of exposure conditions (Van 672 

Straalen and Van Gestel 1997). Moreover, the environmental risk assessment must integrate 673 

chemical characterization, ecotoxicity and bioremediation data, in order to accurately assess the 674 

ecological hazard. 675 
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As emphasized by Shen et al. (2016), an increased level of ecotoxicity within the various 676 

bioindicators either could indicate an incomplete decomposition of the substance or could result 677 

from the formation of intermediate products generated via the bioremediation process. For this 678 

reason, sometimes chronic tests are more appropriate in evaluating the toxicity caused by by-679 

products (Lofrano et al. 2014). In other cases, however, also the toxicity of the by-products is 680 

effectively removed (Lofrano et al. 2016). 681 

In certain circumstances, there is a clear need to monitor the bioremediation process using different 682 

bioindicators. In Lizano-Fallas et al. (2017), for example, the ecotoxicity test with Daphnia magna 683 

shows a clear detoxification, whilst the detoxification patterns remain unclear when applying the 684 

phytotoxicity test. Ecotoxicological tests can also be used to determine the most suitable 685 

bioremediation technique in relation to the examined case study as reported in Dudášová et al. 686 

(2016). Without worldwide-recognized unique guidelines for water quality assessment, literature 687 

data are difficult to compare due to the variety of model organisms, end-points, etc. Synthetic 688 

indices capable of summarizing these findings could help to have an objective advice about the 689 

effectiveness of the biological treatment. They have been already applied for toxicity monitoring of 690 

wastewaters (Tigini et al. 2011) but municipal effluents containing AOCs have never been taken 691 

into consideration nor estrogenic activity has been included so far. 692 

Several toxicity assays were included in the treatability study protocol to measure remediation 693 

efficiency. Assessing the toxicity of complex matrixes such soil could acquire methods from 694 

bioassays used to test toxicity of chemical compounds reported by the Organization for Economic 695 

Co-operation and Development (e.g. OECD 201 2006; OECD 211 2012). OECD has published a 696 

series of standardized tests for determining the biodegradability of a given compound, based on the 697 

evaluation of overall parameters (such as COD, TOC and BOD) or methabolic tests, e.g. 698 

respirometric (OECD 209 1984) as Polo et al. (2011) used for revealing susceptibility to  of toxic 699 

compound comprising herbicide to biological treatment. Standardized testing procedures using 700 

different organisms have been approved by various environmental organizations, including the US 701 

Environmental Protection Agency, American Society for Testing and Materials, International 702 

Standardization Organization (Siciliano et al. 2015). Many scientists have explored the effects of 703 

polluted soil on the whole organism using various microorganisms, animals, and plants, or by 704 

means of cellular, and biochemical biomarkers, or by ecological scale up systems. Here below, tests 705 

at some different biological hierarchical levels of analyses are reported and discussed.  706 

 707 

Organismal level 708 
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Concerning complex matrixes as soil, quality assessments are performed with organisms on extracts 709 

of the polluted matrix, generally applying short-term exposure periods (Van Gestel et al. 2001). 710 

Experimental models are aquatic organisms such as Daphnia magna, Raphidocelis subcapitata, 711 

Danio rerio, Myriophyllum aquaticum or Lemna minor (Feiler et al. 2004). The use of freshwater 712 

and marine biota may be particular useful in order to provide a more complete comprehension on 713 

the environmental outcomes of agricultural activities evaluating the fate of pesticides (Guida et al. 714 

2008). Terrestrial animals such as nematodes (Caenorhabditis elegans) (Traunspurger et al. 1997), 715 

oligochaetes (Lumbriculus variegatus) (Phipps et al. 1993),  springtails), springtails as  Folsomia 716 

candida (Houx et al. 1996), and fish embryos (Hollert et al. 2003; Zielke et al. 2011) are well 717 

considered among the most reliable models. 718 

Among higher plants important experimental models are Lepidium sativum, Cucumis sativus, and 719 

Sorghum saccharatum (germination rate, inhibition of root elongation). Since assays based on 720 

animals, plants and algae are considered expensive, time consuming and require large sample 721 

volume, recent studies have emphasized the benefits of rapid, reproducible and cost effective 722 

bacterial assays for toxicity screening and assessment. Arthrobacter globiformi (Neumann-Hensel 723 

and Melbye 2006), Bacillus cereus (Rönnpagel et al. 1995; Prokop et al. 2016), Vibrio proteolyticus 724 

(Ahlf and Heise 2005) yeasts (Saccharomyces cerevisiae) (Weber et al. 2006) are often used; 725 

otherwise, among bacterial bioassays, Vibrio fischeri luminescence inhibition test is the most 726 

common. The review of Parvez et al. (2006) remarks that Vibrio fischeri inhibition test is the most 727 

sensitive test, cost effective, easy to operate and requires only 5–30 min for toxicity prediction.  728 

 729 

Cellular and biomolecular level  730 

Biomarkers are adaptive responses by the organisms after exposure to xenobiotics. Various studies 731 

highlighted the cytoxicity and genotoxicity effect of OACs and their metabolic products on the 732 

organisms. The exposed organisms may exhibit histological, cellular, molecular, biochemical and/or 733 

physiological, or even by behavioural changes (Depledge et al. 1993) that enable the obtaining of 734 

information on the biological effects of pollutants or their remains during or after a bioremediation 735 

process (Fontanetti et al. 2011).  736 

Genetic endpoints and biomarkers. The most used biomarkers are mitotic index, chromosome 737 

aberrations, micronuclei, sister chromatid exchange and mutations. 738 

Various scientists have recommended bacteria for bioassays evaluating genotoxicity in different 739 

samples (Mortelmans and Zeiger 2000; White and Claxton 2004). Ames test, one of the most 740 

famous and used, is a short term bacterial reverse mutation assay especially designed to evaluate the 741 

mutagenic potential of wide range of chemical substances (Mortelmans and Zeiger 2000) and was 742 
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found to be very sensitive to wide range of mutagenic and carcinogenic chemicals as reported in the 743 

review paper of Chahal et al. (2014). 744 

On the side of plant models, higher plants are recognized as excellent genetic models to detect 745 

cytogenetic and mutagenic agents and are frequently used in environmental monitoring studies. The 746 

main organisms are Allium cepa, Vicia faba and Tradescantia spp. as reported in a review by De 747 

Souza et al. (2016). Their protocols are standardized through a program under the International 748 

Program on Plant Bioassays (IPPB) conducted by the United Nations Environment Programme 749 

(UNEP) (Ma 1999). In addition, the US Environmental Protection Agency (USEPA) and the World 750 

Health Organization (WHO) validated the results obtained with plant bioindicators as an efficient 751 

model to detect environmental genotoxicity.   752 

One of the most used higher plant model is V. faba. The main advantages are its availability round 753 

the year, economical to use, easy to grow and handle; its use does not require sterile conditions and 754 

rate of cell division is fast. The V. faba test, deeply reported and discussed in the review of Iqbal 755 

(2016), enables the assessment of different endpoints i.e., chromosomal aberration, mitotic index, 756 

micronuclei and nuclear aberration.  757 

Enzymatic biomarkers. Enzymatic activity inhibition as biomarker has been widely evaluated to 758 

measure toxicity of a matrix. Dehydrogenases, for example, are directly involved in many of the 759 

vital anabolic and catabolic processes of living organisms, and their activity is inhibited by 760 

chemical toxicants. Recently, many studies have reported the use of terrestrial organisms for 761 

developing enzymatic biomarkers in response to residual pesticides (Henson-Ramsey et al. 2011; 762 

Radwan and Mohamed 2013; Stepić et al. 2013), and among these, earthworms were widely used to 763 

understand the impacts of pesticides. In two earthworm species, Eisenia fetida and Lumbricus 764 

terrestris, multiple esterases, including acetylcholinesterase (AChE), butyrylcholinesterase, and 765 

carboxylesterase (CE), have been assessed as biomarkers for malathion exposure (Henson-Ramsey 766 

et al. 2011). Several studies have also reported AChE, catalase (CAT), and glutathione-S-767 

transferase as bio-chemical biomarkers in Eisenia andrei for the insecticides endosulfan, temephos, 768 

malathion, and pirimiphos-methyl (Stepić et al. 2013), and AChE, CAT, CE, and the efflux pump as 769 

biomarkers in E. andrei and Octolasion lacteum for dimethoa. Recently, surface-enhanced laser 770 

desorption/ionization-time-of-flight (SELDI-TOF) mass spectrometry (MS) has strongly 771 

contributed to the identification of more accurate, precise biomarkers e.g. specific for human 772 

cancers (Silsirivanit et al. 2014), or for endosulfan exposure in Japanese rice fish (Oryzias latipes) 773 

(Lee et al. 2013). In a recent paper, selective protein biomarkers for 6 pesticides (captan, carbaryl, 774 

carbofuran, and α-endosulfan chlorpyrifos, propoxur) were found in E. fetida, by means of SELDI-775 

TOF MS technology (Park et al. 2015). 776 
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Estrogenic and androgenic biomarkers. It has been well documented that several chemicals from 777 

agricultural, industrial, and household sources possess endocrine-disrupting properties, which 778 

provide a potential threat to human and wildlife reproduction (Colborn et al. 1993; Colborn 1995; 779 

Jensen et al. 1995). A suggested mechanism is that environmental contaminants alter the normal 780 

functioning of the endocrine and reproductive system by mimicking or inhibiting endogenous 781 

hormone action, modulating the production of endogenous hormones, or altering hormone receptor 782 

populations (Sonnenschein and Soto 1998). Besides several pesticides exert estrogenic and 783 

antiandrogenic activities through interaction with estrogen and androgen receptors. The risk 784 

associated to OACs exposure has been known for decades: many pesticides, such as p,p´-785 

dichlorodiphenyl trichloroethane (DDT) (Welch et al. 1969), methoxychlor (Bulger et al. 1978; 786 

Cummings 1997), β-benzene hexachloride (BHC) (Coosen and van Velsen 1989), endosulfan, 787 

toxaphene, and dieldrin (Soto et al. 1995), and fenvalerate (Garey and Wolff 1998) have been firstly 788 

signaled as estrogenic. Despite increased institutional awareness and more compelling legislation 789 

pressure, the most recent literature still reports the occurrence of pesticides in watercourses and in 790 

passing through the trophic chains, ing showing remarkable estrogenic or androgenic (Saillenfait et 791 

al. 2016; Brander et al. 2016; Guo et al. 2017; Khalil et al. 2017; Scott et al. 2017; Miccoli et al. 792 

2017; Marcoccia et al. 2017). Several bioassays have been developed and standardized in order to 793 

describe the estrogenic potency of OACs. Andersen et al. (2002) indicated that several currently 794 

used OACs, such as methiocarb, fenarimol, chlorpyrifos, deltamethrin, and tolclofos-methyl, 795 

possess estrogenic activity on the basis of cell proliferation assay and transactivation assay using 796 

MCF-7 human breast cancer cells. Kojima et al. (2004) tested 200 pesticides in vitro for agonism 797 

and antagonism to two human estrogen receptor (hER) subtypes, hERα and hERβ, and a human 798 

androgen receptor (hAR) by highly sensitive transactivation assays, using Chinese hamster ovary 799 

cells. The results demonstrated that many pesticides possess in vitro estrogenic and antiandrogenic 800 

activities through ERs and/or AR. Although it appears that various pesticides exert hormonal effects 801 

at concentration orders of magnitude higher than that required for physiologic hormones, wide 802 

exposure to large numbers of OACs may have additive and synergistic effects. Bioassay with YES 803 

(yeast estrogen screen) and YAS (yeast androgen screen) can determine hormonally active 804 

compounds still present in the environment. By the the first papers about this subject (Purvis et al. 805 

1991), much more sophisticated bioassays have been developed such as that proposed by Eldridge 806 

et al. (2007) in which a bioluminescence strain of Saccharomyces cerevisiae was genetically 807 

engineered to respond to androgenic chemicals. 808 

  809 

Ecological level 810 

Page 65 of 98

URL: http://mc.manuscriptcentral.com/tplb

Plant Biosystems

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

 

 

The actual risk of chemical residues pollution from bioremediation process is underestimated at the 811 

ecological level in natural systems. The ecological scaling-up experiment illustrated by Rodea-812 

Palomares et al. (2016) underlined how real-world exposure to chemical pollution is often 813 

dominated by low-dose complex combined with other biotic and abiotic stressors. In the paper, a 814 

novel screening method (GSA-QHTS) was reported, that coupled the computational power of 815 

global sensitivity analysis (GSA) with the experimental efficiency of quantitative high-throughput 816 

screening (QHTS). In the case of study, they reported GSA-QHTS allowed for the identification of 817 

the main pharmaceutical pollutants, driving biological effects of low-dose complex mixtures at the 818 

microbial population level. The target complex community was a river benthic microbial 819 

community inocula obtained from an unpolluted stream. The effect of the toxic compounds in a 820 

mixture was evaluated together with other physico-chemical stressors, on a series of community 821 

level metabolic end points. Photosynthetic parameters, the dark-adapted basal fluorescence, the 822 

light-adapted steady-state fluorescence, the maximum photosynthetic efficiency, as well as the 823 

extracellular enzymatic activities b-Glu and Phos were considered as both autotrophic and 824 

heterotrophic global fitness indicators suited to study the effects of chemical pollution on freshwater 825 

benthic microbial communities. 826 

 827 

Prospect  828 

Bioremediation is based on the idea that different organisms will work together to remove 829 

(biodegrade) the waste substances or pollutants (OACs) from environment. Although limitations for 830 

bioremediation practice might be occurred, including the nature of organisms, the enzyme involved, 831 

the concentration and availability and finally survival of microorganisms, as well as cost/benefit 832 

ratio (i.e. cost versus overall environmental impact), to some extent, these limitations can be solved 833 

by understanding the genetics and biochemistry of desired microbe. The advent of synthetic 834 

community showed giant potential ability in facilitating the bioremediation process, especially the 835 

effective utility of degradative fungi. 836 

 837 
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Supplemental material: Table I  

 

Table I. Fungal species list for biodegradation of pesticide pollutants 

 

Pesticide types target pesticide Fungal species 

Fungal 

habitats Origin  Literature 

organochlorine aldrin 
Phanerochete 

chrysosporium  white-rot  

 

Kennedy et al 1990 

 

chlordane 
Phanerochete 

chrysosporium  white-rot  

 

Kennedy et al 1990 

 

DDT 
Phanerochete 

chrysosporium  white-rot  

 

Arisoy 1998 

      

 

DDT Pleurotus sajor-caju white-rot  

 

Arisoy 1998 

 

DDT Pleurotus florida white-rot  

 

Arisoy 1998 

 

DDT Pleurotus eryngi white-rot  

 

Arisoy 1998 

 

DDT Gloeophyllum trabeum brown-rot  

 

Purnomo et al 2008 

 

DDT Gloeophyllum sepiarium brown-rot  

 

Purnomo et al 2008 

 

DDT Gloeophyllum ungulatum brown-rot  

 

Purnomo et al 2008 

 

DDT Gloeophyllum striatum brown-rot  

 

Purnomo et al 2008 

 

DDT Daedalea malicola brown-rot  

 

Purnomo et al 2008 

 

DDT Daedalea albida brown-rot  

 

Purnomo et al 2008 

 

DDT Daedalea serialis brown-rot  

 

Purnomo et al 2008 

 

DDT Daedalea dickinsii brown-rot  

 

Purnomo et al 2008 

 

DDT Fomitopsis palustris brown-rot  

 

Purnomo et al 2008 

 

DDT Fomitopsis annosa brown-rot  

 

Purnomo et al 2008 

 

DDT Fomitopsis insularis brown-rot  

 

Purnomo et al 2008 

 

DDT Fomitopsis pinicola brown-rot  

 

Purnomo et al 2008 

 

DDT Boletus edulis ectomycorrhizal  

 

Huang et al 2007 

 

DDT Gomphidius viscidus ectomycorrhizal  

 

Huang et al 2007 

 

DDT Laccaria bicolor ectomycorrhizal  

 

Huang et al 2007 

 

DDT Leccinum scabrum ectomycorrhizal  

 

Huang et al 2007 

 

DDT Trichoderma harzianum saprotrophic field soil 
Katayama and 
Matsumura 1993 

 

DDD Trichoderma sp.  saprotrophic 
marine 
sponges Ortega et al 2011 

 

DDD Penicillium miczynskii saprotrophic 
marine 
sponges Ortega et al 2011 

 

dieldrin Trichoderma harzianum saprotrophic field soil 
Katayama and 
Matsumura 1993 
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dieldrin 
Phanerochete 

chrysosporium  white-rot  

 

Kennedy et al 1990 

 

endosulfan Trichoderma harzianum saprotrophic field soil 
Katayama and 
Matsumura 1993 

 

endosulfan 
Phanerochaete 

chrysosporium white-rot 

 

Kullman and 
Matsumura 1996 

 

heptachlor 
Phanerochete 

chrysosporium  white-rot  

 

Arisoy 1998 

 

heptachlor Pleurotus sajor-caju white-rot  

 

Arisoy 1998 

 

heptachlor Pleurotus florida white-rot  

 

Arisoy 1998 

 

heptachlor Pleurotus eryngi white-rot  

 

Arisoy 1998 

 

pentachloronitrobenzene Trichoderma harzianum saprotrophic field soil 
Katayama and 
Matsumura 1993 

 

pentachlorophenol(PCP) Trichoderma harzianum saprotrophic field soil 
Katayama and 
Matsumura 1993 

 

pentachlorophenol(PCP) 
Phanerochaete 

chrysosporium white-rot  

 

Kang and Stevens 
1994 

 

pentachlorophenol(PCP) Pleurotus ostreatus white-rot  

 

Rüttimann-Johnson 
and 
Lamar 1997 

 

pentachlorophenol(PCP) Irpex lacteus white-rot  

 

Rüttimann-Johnson 
and 
Lamar 1997 

 

pentachlorophenol(PCP) Trametes versicolor white-rot  

 

Rüttimann-Johnson 
and 
Lamar 1997 

 

pentachlorophenol(PCP) Bjerkandera adusta white-rot  

 

Rüttimann-Johnson 
and 
Lamar 1997 

 

pendimethalin Fusarium oxysporum saprotrophic soil 
Singh and Kulshreyha 
1991 

 

pendimethalin Paecilomyces varioti saprotrophic soil 
Singh and Kulshreyha 
1991 

 

pendimethalin Rhizoctonia bataticola saprotrophic soil 
Singh and Kulshreyha 
1991 

 

lindane  Rhizopus oryzae  saprotrophic 

 

Young and Banks 
1998 

 

lindane 
Phanerochete 

chrysosporium  white-rot  

 

Arisoy 1998 

 

lindane Pleurotus sajor-caju white-rot  

 

Arisoy 1998 

 

lindane Pleurotus florida white-rot  

 

Arisoy 1998 

 

lindane Pleurotus eryngi white-rot  

 

Arisoy 1998 

 

mirex 
Phanerochete 

chrysosporium  white-rot  

 

Kennedy et al 1990 

 

PCB 77 
Phanerochaete 

chrysosporium white-rot  

 

Vyas et al 1994 
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PCB 77 Trametes versicolor white-rot  

 

Vyas et al 1994 

 

PCB 77 Coriolopsis polysona white-rot  

 

Vyas et al 1994 

 

Delor 106 (PCB) 
Phanerochaete 

chrysosporium white-rot  

 

Novotný et al 1997 

 

Delor 106 (PCB) Trametes versicolor white-rot  

 

Novotný et al 1997 

 

Delor 106 (PCB) Coriolopsis polyzona white-rot  

 

Novotný et al 1997 

 

Six PCB congeners Trametes versicolor white-rot  

 

Beaudette et al 2000 

 

Six PCB congeners Bjerkandera adusta white-rot  

 

Beaudette et al 2000 

 

Six PCB congeners 
Phanerochaete 

chrysosporium white-rot  

 

Beaudette et al 2000 

organophosphate chlorpyrifos 
Phanerochaete 

chrysosporium white-rot 

 

Bumpus et al 1993 

 

chlorpyrifos Hypholoma fasciculare  white-rot  

 

Bending et al 2002 

 

chlorpyrifos Coriolus versicolor  white-rot  

 

Bending et al 2002 

 

chlorpyrifos Trichoderma harzianum  saprotrophic soil Omar 1998  

 

chlorpyrifos 
Pencillium 

brevicompactum  saprotrophic soil Omar 1998  

 

fonofos 
Phanerochaete 

chrysosporium white-rot 

 

Bumpus et al 1993 

 

glyphosate Penicillium citrium  saprotrophic 

 

Zboinska et al 1992 

 

methyl parathion Aspergillus sydowii saprotrophic marine Alvarenga et al 2014 

 

methyl parathion Penicillium decaturense saprotrophic marine Alvarenga et al 2014 

 

terbufos 
Phanerochaete 

chrysosporium white-rot 

 

Bumpus et al 1993 

herbicide alachlor 
Phanerochaete 

chrysosporium white-rot  

 

Ferrey et al 1994 

 

alachlor 
Ceriporiopsis 

subvermispora white-rot  

 

Ferrey et al 1994 

 

alachlor Phlebia tremellosa white-rot  

 

Ferrey et al 1994 

 

alachlor Cunninghamella elegans 

  

Pothuluri et al 1993 

 

arochlor Pleurotus ostreatus white-rot  

 

Zeddel et al 1993 

 

arochlor Trametes versicolor white-rot  

 

Zeddel et al 1993 

 

three aroclors 
Phanerochaete 

chrysosporium white-rot  

 

Yadav et al 1995 

 

atrazine 
Phanerochaete 

chrysosporium white-rot  

 

Mougin et al 1994 

 

atrazine Pleurotus pulmonarius white-rot  

 

Masaphy 1993 

 

atrazine 
Agrocybe 

semiorbicularis  white-rot  

 

Bending et al 2002 

 

atrazine Auricularia auricola  white-rot  

 

Bending et al 2002 

 

atrazine Coriolus versicolor  white-rot  

 

Bending et al 2002 
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atrazine Dichotomitus squalens  white-rot  

 

Bending et al 2002 

 

atrazine Flammulina velupites  white-rot  

 

Bending et al 2002 

 

atrazine Hypholoma fasciculare  white-rot  

 

Bending et al 2002 

 

atrazine Phanerochaete velutina  white-rot  

 

Bending et al 2002 

 

atrazine Pleurotus ostreatus  white-rot  

 

Bending et al 2002 

 

atrazine Stereum hirsutum  white-rot  

 

Bending et al 2002 

 

diuron  
Agrocybe 

semiorbicularis  white-rot  

 

Bending et al 2002 

 

diuron  Hypholoma fasciculare  white-rot  

 

Bending et al 2002 

 

diuron  Stereum hirsutum  white-rot  

 

Bending et al 2002 

 

diuron  Coriolus versicolor  white-rot  

 

Bending et al 2002 

fungicide carbendazim Trichoderma sp. saprotrophic mutant strain Tian and Chen 2009 

 

metalaxyl  Coriolus versicolor  white-rot  

 

Bending et al 2002 

 

metalaxyl  Stereum hirsutum  white-rot  

 

Bending et al 2002 

 

iprodione Hypholoma fasciculare  white-rot  

 

Bending et al 2002 

 

iprodione Stereum hirsutum  white-rot  

 

Bending et al 2002 

 

iprodione Coriolus versicolor  white-rot  

 

Bending et al 2002 

PAH five PAHs Bjerkandera adusta white-rot  
soil and 
lignite Gramss et al 1995 

 

five PAHs Gymnophilus sapineus 

Wood-
degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Hypholoma fasciculare 

Wood-
degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Hypholoma frowardii 

Wood-
degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Hypholoma sublateritium 

Wood-
degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Kuehneromyces mutabilis 

Wood-
degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Lenzites betulina 

Wood-
degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Pleurotus ostreatus white-rot  
soil and 
lignite Gramss et al 1995 

 

five PAHs Agrocybe praecox 

Wood- and 
straw-degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Stropharia coronilla 

Wood- and 
straw-degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs 
Stropharia rugoso-

annulata 

Wood- and 
straw-degrading 

soil and 
lignite Gramss et al 1995 

 

five PAHs Agaricus aestivalis Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Agaricus arvensis Terricolous 
soil and 
lignite Gramss et al 1995 
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five PAHs Agaricus bisporus Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Agaricus campestris Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Agaricus porphyrizon Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Agrocybe dura Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Bovisa nigrescens Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Clitocybe odora Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Collybia dyophila Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Collybia maculata Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Coprinus comatus Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Lepista nebularis Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Lepista nuda Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Lepista saeva Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Lycoperdon perlatum Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Marasmius oreades Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Megacollybia platyphylla Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Phallus impudicus Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Psathyrella velutina Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Stropharia aeruginosa Terricolous 
soil and 
lignite Gramss et al 1995 

 

five PAHs Amanita muscaria Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Amanita rubescens Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Amanita spissa Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Hebeloma crustuliniforme Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Hebeloma hiemale Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 
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five PAHs Hebeloma sinapizans Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Laccaria amethystina Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Lactarius deliciosus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Lactarius deterrimus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Lactarius rufus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Lactarius torminosus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Morchella conica Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Morchella elata Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Morchella esculenta Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Paxillus involutus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Russula aeruginea Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Russula foetens Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Suillus granulatus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Suillus variegatus Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Tricholoma lascivum Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Tricholoma terreum Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Xerocomus badius Ectomycorrhizal  
soil and 
lignite Gramss et al 1995 

 

five PAHs Botrytis cinerea Mitosporic  
soil and 
lignite Gramss et al 1995 

 

five PAHs Scytalidium lignicola saprotrophic 
soil and 
lignite Gramss et al 1995 

  five PAHs Trichoderma sp. saprotrophic 
soil and 
lignite Gramss et al 1995 
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Supplemental material: Table II  

 

Table II. Fungi and their enzymes capable of transforming OACs; whole-cell and enzymatic 
treatments are reported 

 

 

Whole-cell treatment 

Fungal species Pesticide Enzymes involved Literature 

Aspergillus niger nicosulfuron  Lu et al. 2012 

Auricularia fuscosuccinea endosulfan 
laccase, phenol oxidase Yanez-Montalvo et al. 

2016 

Aspergillus sydowii, 

Penicillium decaturense methyl parathion 
 

Alvarenga et al. 2014 

Aspergillus sydowii, 

Penicillium raistrickii, 

Cladosporium sp., 

Microsphaeropsis sp., 

Acremonium sp., 

Westerdykella sp, 

Cladosporium sp. esfenvalerate 

 

Birolli et al. 2016 

Aspergillus fumigatus, 

Aspergillus terreus, 

Penicillium citrinum, 

Trichoderma harzianum chlorfenvinphos 

 

Oliveira et al. 2015 

Aspergillus oryzae 3-phenoxybenzoic acid  Zhu et al. 2016 
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Aspergillus oryzae, 

Fusarium oxysporum, 

Lentinula edodes, 

Penicillium 

brevicompactum, 

Lecanicillium saksenae 

terbuthylazine, 
difenoconazole and 

pendimethalin 

 

Pinto et al. 2012 

Aspergillus sydowii trichlorfon  Tian et al. 2016 

Aspergillus versicolor triclosan 
 Taştan and Dönmez 

2015 

Coriolus versicolor aldicarb, atrazine, alachlor  Hai et al. 2012 

Dacryopinax elegans diuron 

laccase, manganese 
peroxidase, lignin 

peroxidase Arakaki et al. 2013 

Ganoderma lucidum lindane 

laccase, manganese 
peroxidase, lignin 

peroxidase Kaur et al. 2016 

Ganoderma lucidum bentazon 
laccase, manganese 

peroxidase 
Da Silva Coelho et al. 

2010 

Ganoderma lucidum, 

Trametes sp picloram 
laccase 

Maciel et al. 2013 

Gloeophyllum trabeum, 

Trametes versicolor, 

Pleurotus ostreatus lindane, endosulfan 

 

Ulčnik et al. 2013 

Mycelia sterilia atrazine laccase Vasil’chenko et al. 2002 

Penicillium citrinum, 

P.citrinum, Fusarium 

proliferatum  methylparathion 

 

Rodrigues et al. 2016 

Penicillium griseofulvum b-hexachlorocyclohexane  Ceci et al. 2015 

Phanerochaete sordida clothianidin 
cytochrome P450, 

manganese peroxidase Mori et al. 2017 

Pleurotus pulmonarius atrazine  Masaphy et al. 1993 

Phlebia tremellosa, Phlebia 

brevispora, Phlebia 

acanthocystis 

Heptachlor, heptachlor 
epoxide 

 

Xiao et al. 2011 

Saccharomyces cerevisiae diazinon  Ehrampoush et al. 2017 

Talaromyces flavus nicosulfuron  Song et al. 2013 

Trametes versicolor 

imiprothrin, cypermethrin, 
carbofuran, 

oxytetracycline 

laccase, cytochrome 
P450 

Mir-Tutusaus et al. 
2014 

Trametes versicolor fipronil cytochrome P450 Wolfand et al. 2016 

Trametes versicolor 

6 pesticides, 2 
phytoestrogens 

 
Nguyen et al. 2014 

Trametes versicolor, 

Stereum hirsutum linuron, dimethoate 
 

Castellana and Loffredo 
2014 

nonsporulating mycelial 
fungus atrazine 

cellobiose 
dehydrogenase 

Khromonygina et al. 
2004 

 Enzymatic treatment   
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Enzymes involved Pesticide  Literature 

laccases of Agaricus blazei metsulfuron 
 González Matute et al. 

2012 

phytase of Aspergillus niger chlorpyrifos  Shah et al. 2017 

extracellular extract of 
Auricularia fuscosuccinea endosulfan 

 Yanez-Montalvo et al. 
2016 

laccase of Trametes 

versicolor 
sulfamethoxazole, 

isoproturon 
 

Margot et al. 2015 

laccase of Trametes 

versicolor chloroxuron 
 

Palvannan et al. 2014 

laccase of Trametes 

versicolor lindane, endosulfan 
 

Ulčnik et al. 2013 

cellulose of Trichoderma 

longbrachiatum dicofol 
 

Wang et al. 2015 

laccase of Trametes 

versicolor isoproturon 
 

Zeng et al. 2017 
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