2,361 research outputs found

    Optical absorption in small BN and C nanotubes

    Get PDF
    We present a theoretical study of the optical absorption spectrum of small boron-nitride and carbon nanotubes using time-dependent density-functional theory and the random phase approximation. Both for C and BN tubes, the absorption of light polarized perpendicular to the tube-axis is strongly suppressed due to local field effects. Since BN-tubes are wide band-gap insulators, they only absorb in the ultra-violet energy regime, independently of chirality and diameter. In comparison with the spectra of the single C and BN-sheets, the tubes display additional fine-structure which stems from the (quasi-) one-dimensionality of the tubes and sensitively depends on the chirality and tube diameter. This fine structure can provide additional information for the assignment of tube indices in high resolution optical absorption spectroscopy.Comment: 5 pages, 3 figure

    Inter- and intra-layer excitons in MoS2_2/WS2_2 and MoSe2_2/WSe2_2 heterobilayers

    Get PDF
    Accurately described excitonic properties of transition metal dichalcogenide heterobilayers (HBLs) are crucial to comprehend the optical response and the charge carrier dynamics of them. Excitons in multilayer systems posses inter or intralayer character whose spectral positions depend on their binding energy and the band alignment of the constituent single-layers. In this study, we report the electronic structure and the absorption spectra of MoS2_2/WS2_2 and MoSe2_2/WSe2_2 HBLs from first-principles calculations. We explore the spectral positions, binding energies and the origins of inter and intralayer excitons and compare our results with experimental observations. The absorption spectra of the systems are obtained by solving the Bethe-Salpeter equation on top of a G0_0W0_0 calculation which corrects the independent particle eigenvalues obtained from density functional theory calculations. Our calculations reveal that the lowest energy exciton in both HBLs possesses interlayer character which is decisive regarding their possible device applications. Due to the spatially separated nature of the charge carriers, the binding energy of inter-layer excitons might be expected to be considerably smaller than that of intra-layer ones. However, according to our calculations the binding energy of lowest energy interlayer excitons is only \sim 20\% lower due to the weaker screening of the Coulomb interaction between layers of the HBLs. Therefore, it can be deduced that the spectral positions of the interlayer excitons with respect to intralayer ones are mostly determined by the band offset of the constituent single-layers. By comparing oscillator strengths and thermal occupation factors, we show that in luminescence at low temperature, the interlayer exciton peak becomes dominant, while in absorption it is almost invisible.Comment: 17 pages, 4 figure

    Collective Total Synthesis of Casbane Diterpenes: One Strategy, Multiple Targets

    Get PDF
    Of the more than 100 casbane diterpenes known to date, only the eponymous parent hydrocarbon casbene itself has ever been targeted by chemical synthesis. Outlined herein is a conceptually new approach that brings not a single but a variety of casbane derivatives into reach, especially the more highly oxygenated and arguably more relevant members of this family. The key design elements are a catalyst‐controlled intramolecular cyclopropanation with or without subsequent equilibration, chain extension of the resulting stereoisomeric cyclopropane building blocks by chemoselective hydroboration/cross‐coupling, and the efficient closure of the strained macrobicyclic framework by ring‐closing alkyne metathesis. A hydroxy‐directed catalytic trans‐hydrostannation allows for late‐stage diversity. These virtues are manifested in the concise total syntheses of depressin, yuexiandajisu A, and ent‐pekinenin C. The last compound turned out to be identical to euphorhylonal A, the structure of which had clearly been misassigned

    Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene

    Full text link
    We present Raman spectroscopy measurements on single- and few-layer graphene flakes. Using a scanning confocal approach we collect spectral data with spatial resolution, which allows us to directly compare Raman images with scanning force micrographs. Single-layer graphene can be distinguished from double- and few-layer by the width of the D' line: the single peak for single-layer graphene splits into different peaks for the double-layer. These findings are explained using the double-resonant Raman model based on ab-initio calculations of the electronic structure and of the phonon dispersion. We investigate the D line intensity and find no defects within the flake. A finite D line response originating from the edges can be attributed either to defects or to the breakdown of translational symmetry

    Raman imaging of doping domains in graphene on SiO2

    Get PDF
    We present spatially resolved Raman images of the G and 2D lines of single-layer graphene flakes. The spatial fluctuations of G and 2D lines are correlated and are thus shown to be affiliated with local doping domains. We investigate the position of the 2D line -- the most significant Raman peak to identify single-layer graphene -- as a function of charging up to |n|~4 10^12 cm^-2. Contrary to the G line which exhibits a strong and symmetric stiffening with respect to electron and hole-doping, the 2D line shows a weak and slightly asymmetric stiffening for low doping. Additionally, the line width of the 2D line is, in contrast to the G line, doping-independent making this quantity a reliable measure for identifying single-layer graphene

    Phonon surface mapping of graphite: disentangling quasi--degenerate phonon dispersions

    Get PDF
    The two-dimensional mapping of the phonon dispersions around the KK point of graphite by inelastic x-ray scattering is provided. The present work resolves the longstanding issue related to the correct assignment of transverse and longitudinal phonon branches at KK. We observe an almost degeneracy of the three TO, LA and LO derived phonon branches and a strong phonon trigonal warping. Correlation effects renormalize the Kohn anomaly of the TO mode, which exhibits a trigonal warping effect opposite to that of the electronic band structure. We determined the electron--phonon coupling constant to be 166(eV/A˚)2\rm(eV/\AA)^2 in excellent agreement to GWGW calculations. These results are fundamental for understanding angle-resolved photoemission, double--resonance Raman and transport measurements of graphene based systems

    Anisotropic excitonic effects in the energy loss function of hexagonal boron nitride

    Get PDF
    We demonstrate that the valence energy-loss function of hexagonal boron nitride (hBN) displays a strong anisotropy in shape, excitation energy and dispersion for momentum transfer q parallel or perpendicular to the hBN layers. This is manifested by e.g. an energy shift of 0.7 eV that cannot be captured by single-particle approaches and is a demonstration of a strong anisotropy in the two-body electron-hole interaction. Furthermore, for in-plane directions of q we observe a splitting of the -plasmon in the M direction that is absent in the K direction and this can be traced back to band-structure effects.Comment: 10 pages, 4 figure

    Tight--binding description of the quasiparticle dispersion of graphite and few--layer graphene

    Get PDF
    A universal set of third--nearest neighbour tight--binding (TB) parameters is presented for calculation of the quasiparticle (QP) dispersion of NN stacked sp2sp^2 graphene layers (N=1...N=1... \infty) with ABAB stacking sequence. The QP bands are strongly renormalized by electron--electron interactions which results in a 20% increase of the nearest neighbour in--plane and out--of--plane TB parameters when compared to band structure from density functional theory. With the new set of TB parameters we determine the Fermi surface and evaluate exciton energies, charge carrier plasmon frequencies and the conductivities which are relevant for recent angle--resolved photoemission, optical, electron energy loss and transport measurements. A comparision of these quantitities to experiments yields an excellent agreement. Furthermore we discuss the transition from few layer graphene to graphite and a semimetal to metal transition in a TB framework.Comment: Corresponding author: A. Gr\"uneis Tel.: +49 351 4659 519 e--mail: [email protected]

    What drives the active involvement in business angel groups? The role of angels' decision-making style, investment-specific human capital and motivations

    Get PDF
    This paper sheds light over the operations and internal structure of business angel groups (BAGs), a leading actor inside the informal venture capital industry, due to its capability to build cognitive resources and shared competencies that are eventually provided to funded ventures alongside equity capital. We develop a framework based on the role of business angels' decision-making style, human capital and motivation as major determinants of their active involvement in the many different activities performed by angel groups, either investment related activities or group management activities. Our empirical analysis relies on a novel survey-based dataset containing qualitative and quantitative information provided by the members of two large and rather homogeneous business angel groups located in France and in Italy. Results show that business angels with a control-oriented decision-making style tend to be more actively involved in key angel group activities. Human capital built through investment experience, retirement status, as well as initial motivation to join an angel group are also significant drivers of angel involvement in several key BAG activities
    corecore