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A universal set of third-nearest-neighbor tight-binding �TB� parameters is presented for calculation of the
quasiparticle �QP� dispersion of N stacked sp2 graphene layers �N=1. . .�� with AB stacking sequence. The
present TB parameters are fit to ab initio calculations on the GW level and are universal, allowing to describe
the whole � “experimental” band structure with one set of parameters. This is important for describing both
low-energy electronic transport and high-energy optical properties of graphene layers. The QP bands are
strongly renormalized by electron-electron interactions, which results in a 20% increase in the nearest-neighbor
in-plane and out-of-plane TB parameters when compared to band structure from density-functional theory.
With the new set of TB parameters we determine the Fermi surface and evaluate exciton energies, charge
carrier plasmon frequencies, and the conductivities which are relevant for recent angle-resolved photoemission,
optical, electron energy loss, and transport measurements. A comparision of these quantitities to experiments
yields an excellent agreement. Furthermore we discuss the transition from few-layer graphene to graphite and
a semimetal to metal transition in a TB framework.
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I. INTRODUCTION

Recently mono- and few-layer graphene �FLG� in an AB
�or Bernal� stacking is made with high crystallinity by the
following methods: epitaxial growth on SiC,1,2 chemical va-
por deposition on Ni�111�,3 mechanical cleavage on SiO2
�Refs. 4 and 5�, and exfoliation.6 Graphene is a novel two-
dimensional �2D� and metastable material, which has
sparked interest from both basic science and application
point of view.7 A monolayer of graphene allows one to treat
basic questions of quantum mechanics such as Dirac fermi-
ons or the Klein paradox8 in a simple condensed-matter ex-
periment. The existence of a tunable gap in a graphene bi-
layer was shown by angle-resolved photoemission
�ARPES�,9 which offers a possibility of using these materials
as transistors in future nanoelectronic devices that can be
lithographically patterned.10 Furthermore a graphene layer
that is grown epitaxially on a Ni�111� surface is a perfect
spin filter device11 that might find applications in organic
spintronics.

It was shown recently by ARPES that the electronic struc-
ture of graphene12 and its three-dimensional �3D� parent ma-
terial, graphite,13–15 is strongly renormalized by correlation
effects. To date the best agreement between ARPES and ab
initio calculations is obtained for GW �Greens function G of
the Coulomb interaction W� calculations of the quasiparticle
�QP� dispersion.16–19 The band structure in the local-density
approximation �LDA� is not in good agreement with the
ARPES spectra because it does not include the long-range
electron correlation effects. The self-energy correction of the
Coulomb interaction to the bare energy-band structure is cru-

cial for determining the transport and optical properties �ex-
citons� and related condensed-matter phenomena. For graph-
ite, a semimetal with a tiny Fermi surface, the number of free
electrons to screen the Coulomb interaction is very low
��1019 carriers cm−3�, and thus the electron-electron corre-
lation is a major contribution to the self-energy correction.13

Theoretically, the interacting QP dispersion is obtained by
the GW approximation. The GW calculations are computa-
tionally expensive and, thus, only selected k points have been
calculated.13 Therefore a tight-binding �TB� Hamiltonian
with a transferable set of TB parameters that reproduces the
QP dispersion in sp2 stacked graphene sheets is needed for
analysis of ARPES, optical spectroscopies, and transport
properties for pristine and doped graphite and FLGs. So far
there are already several sets of TB parameters published for
graphene, FLG, and graphite. For graphene a third-nearest-
neighbor �3NN� fit to LDA has been performed.20 Recently,
however it has been shown by ARPES that the LDA under-
estimates the slope of the electronic bands and also the trigo-
nal warping effect.13 For bilayer graphene the parameters of
the Slonzcewski-Weiss-McClure �SWMC� Hamiltonian have
been fitted to reproduce double resonance Raman data.21 A
direct observation of the QP band structure is possible by
ARPES, and a set of TB parameters has been fitted to the
experimental ARPES data of graphene grown on SiC.22 As a
result they obtained a surprisingly large absolute value of the
nearest-neighbor � hopping parameter of 5.13 eV.22 This is
in stark contrast to the fit to the LDA calculation, which
gives only about half of this value.20 Another issue regarding
the TB fit to the electronic bands of graphene on a SiC sub-
strate is the substrate interaction, which is also responsible
for a gap opening and a distortion of the bands when com-
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pared to an isolated graphene sheet.23 Considering the wide
range of values reported for the hopping parameters, a reli-
able and universal set of TB parameters is needed that can be
used to calculate the QP dispersion of an arbitrary number of
graphene layers. The band structure of FLGs has been
calculated24 using first-nearest-neighbor in-plane coupling,
which provides the correct band structure close to K point.
However, as we will show in detail in this paper, the inclu-
sion of 3NN is essential in describing the experimental band
structure in the whole Brillouin zone �BZ�. The inclusion of
second-nearest-neighbor �2NN� interactions is responsible
for breaking of the electron-hole symmetry.25 Since the dis-
tance ratio to second- and to third-nearest neighbors is 1.73/
2.0, inclusion of 3NN is also essential for reproducing the ab
initio data in the whole 3D BZ. It has already been shown in
Ref. 26 that these very interactions have considerable mag-
nitude in graphene and must also be considered to reproduce
first-principles data in graphene nanoribbons.

In this paper, we present a TB formulation of the � LDA
energy band and QP dispersions of AB stacked FLG and
graphite. We have previously compared both GW and LDA
calculations to ARPES experiments and proven that LDA
underestimates the slope of the bands and trigonal warping.13

Here we list the TB fit parameters of the QP dispersion
�tight-binding GW �TB-GW�� and the corresponding LDA
dispersion �tight-binding local-density approximation �TB-
LDA�� and show that the in-plane and out-of-plane hopping
parameters increase when going from LDA to GW.

This new and improved set of TB-GW parameters is used
for direct comparision to experiments. The parameters are
obtained from a fit to QP calculations in the GW approxima-
tion. This set of TB parameters works in the whole 2D �3D�
BZ of FLG �graphite� and is in agreement to a wide range of
different experiments. In addition we fit the parameters of the
popular SWMC Hamiltonian that is valid close to the KH
axis of graphite. The main application of the parameter set
given in this work are planar and infinite sp2 bonded carbon
sheets. In addition, also the quasiparticle band structure of
one-dimensional graphene nanoribbons and large diameter
carbon nanotubes can be calculated with this set of param-
eters.

This paper is organized as follows: in Sec. II we develop
the 3NN TB formulation for graphite and FLG, and in Sec.
III the SWMC Hamiltonian is revised. In Sec. IV a new set
of TB parameters for calculating the QP dispersion of
stacked sp2 carbon is given. In Sec. V we compare the graph-
ite electron energy-band dispersion of the LDA to the QP
�GW� dispersion. In Sec. VI we use the TB-GW Hamiltonian
and calculate the doping-dependent Fermi surface of graphite
and estimate effective masses and free charge carrier plas-
mon frequencies of pristine and doped graphite. In Sec. VII
we show the calculated QP dispersions of FLGs. In Sec. VIII
we discuss the present results and estimate the exciton bind-
ing energies, transport properties, and the low-energy plas-
mon frequencies. In Sec. IX the conclusions of this work are
given. Finally, in the Appendix, the analytical forms of the
Hamiltonians for FLG and for graphite are shown.

II. THIRD-NEAREST-NEIGHBOR
TIGHT-BINDING FORMULATION

Natural graphite occurs mainly with AB stacking order
and has four atoms in the unit cell �two atoms for each
graphene plane� as shown in Fig. 1�a�. Each atom contributes
one electron to the four � electronic energy bands in the 3D
BZ �see Fig. 1�b��. FLG has N parallel graphene planes
stacked in an AB fashion above one another; the unit cell of
FLG is 2D, and the number of � bands in the 2D BZ equals
2N. For graphite and FLG the TB calculations are carried out
with a new 3NN Hamiltonian and in addition with the well-
known SWMC Hamiltonian27 that is valid in the vicinity to
the Fermi level �EF�. The TB parameters that enter these two
Hamiltonians are �= ��0

1 ,�0
2 ,�0

3 ,s0
1 ,s0

2 ,s0
3 ,�1 , . . . ,�5 ,� ,E0�

for the 3NN Hamiltonian �shown in Fig. 1�a�� and ��
= ��0� , . . . ,�5� ,�� ,E0�� for the SWMC Hamiltonian. The hop-
ping matrix elements for the SWMC Hamiltonian are not
shown here, but they have a similar meaning with the differ-
ence that only one nearest-neighbor in-plane coupling con-
stant is considered �see e.g., Ref. 28 for an explanation of
SWMC parameters�. The hopping matrix elements for the
3NN Hamiltonian are shown in Fig. 1�a�. The atoms in the
3D unit cell are labeled A1 and B1 for the first layer and A2
and B2 for the second layer. The A2 atom lies directly above
the A1 atom in z direction �perpendicular to the layers�.
Within the xy plane the interactions are described by �0

1 �e.g.,
A1B1 and A2B2� for the nearest neighbors, and �0

2 and �0
3 for

FIG. 1. �Color online� �a� The graphite unit cell consists of four
atoms denoted by A1, B1, A2, and B2 �light blue�. The red arrows
denote the interatomic tight-binding hopping matrix elements
�0

1 ,�0
2 ,�0

3 ,�1 , . . . ,�5. The overlap matrix elements s0
1, s0

2, and s0
3 �not

shown� couple the same atoms as �0
1, �0

2, and �0
3. �b� The 3D Bril-

louin zone of graphite with the high-symmetry points and the coor-
dinate system used throughout this work.
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second-nearest and third-nearest neighbors, respectively. A
further parameter, �1 �A1A2�, is needed to couple the atoms
directly above each other �in z direction�. The hoppings be-
tween adjacent layers of sites that do not lie directly above
each other are described by �3 �B1B2� and �4 �A1B2 and
B1A2�. The small couplings of atoms in the next-nearest layer
are �2 �B1B1 and B2B2� and �5 �A1A1 and A2A2�.

The calculation shown here is valid for both graphite and
FLGs with small adjustment as indicated when needed. The
lattice vectors for graphite in the xy plane are a1 and a2 and
the out-of-plane lattice vector perpendicular to the layers is
a3,

a1 = ��3a0

2
,−

a0

2
,0�, a2 = ��3a0

2
,
a0

2
,0�, a3 = �0,0,2c0� .

�1�

The C-C distance a0=1.42 Å and the distance of two
graphene layers c0=3.35 Å. For a FLG with N layers and
hence 2N atoms only the 2D unit vectors a1 and a2. Similarly
the electron wave vectors in graphite k= �kx ,ky ,kz� have
three components and in FLG k= �kx ,ky�. A TB method �or
linear combination of atomic orbitals �LCAO�� is used to
calculate the LDA and QP energy-band dispersion by two
different sets of interatomic hopping matrix elements. The
electronic eigenfunction ��r ,k� is made up from a linear
combination of atomic 2pz orbitals ��r�, which form the �
electronic bands in the solid. The electron wave function for
the band with index j is given by

�j�k,r� = 	
s=A1,B1,. . .,BN

cs
j�k��s�k,r�,�j = 1, . . . ,2N� . �2�

Here j=1, . . . ,2N is the electronic energy-band index and s
in the sum is taken over all atomic 2pz orbitals from atoms
A1, B1, A2 , . . . ,BN. Note that for 3D graphite we have N=2.
The cs

j�k� are wave-function coefficients for the Bloch func-
tions �s�k ,r�. The Bloch wave functions are given by a sum
over the atomic wave functions �s for each orbital in the unit
cell with index �� ,m ,m� multiplied by a phase factor. The
Bloch function in graphite for the atom with index s is given
by

�s�r,k� =
1

�U
	

�,m,n

U

exp�− iRs
�mn · k��s�r − Rs

�mn� , �3�

where U is the number of unit cells and �s denotes atomic
wave functions of orbital s. In graphite the atomic orbital �s
in the unit cell with index �� ,m ,m� is centered at Rs

�mn

=�a1+ma2+na3+rs and in FLGs at Rs
�m=�a1+ma2+rs.

For the case of FLGs �s�r ,k� contains only the sum over
the 2D in-plane Rs

�m. The 2N	2N Hamiltonian matrix de-
fined by Hss��k�= 
�s�r ,k��H�r���s��r ,k�� and the overlap
matrix is defined by Sss��k�= 
�s�r ,k� ��s��r ,k��. For calcu-
lation of H and S, up to third nearest-neighbor interactions
�in the xy plane� and both nearest- and next-nearest-neighbor
planes �in z direction� are included as shown in Fig. 1�a�. The
energy dispersion relations are given by the eigenvalues E�k�
and are calculated by solving

H�k�c�k� = S�k�E�k�c�k� . �4�

In the Appendix, we show the explicit form of H�k� for
graphite and FLG with up to four layers.

III. SWMC HAMILTONIAN

The SWMC Hamiltonian has been extensively used in the
literature.28 It considers only first-nearest-neighbor in-plane
interaction and up to second-nearest-neighbor out-of-plane
interaction and is valid close to the KH axis of graphite. For
small k measured from the KH axis �up to 0.15 Å−1�, both
the 3NN and the SWMC Hamiltonians yield identical results.
The eight TB parameters for the SWMC Hamiltonian were
previously fitted to various optical and transport
experiments.28

For the cross sections of the electron and hole pockets
analytical solutions have been obtained, and thus, it has been
used to calculate the electronic transport properties of graph-
ite. Thus, in order to provide a connection to many transport
experiments from the past, we also fitted the LDA and GW
calculations to the SWMC Hamiltonian.

The TB parameters are directly related to the energy-band
structure. For example, �0� is proportional to the Fermi ve-
locity in the kxky plane, and 4�1� gives the bandwidth in the kz
direction. The bandwidth of a weakly dispersive band in kz
that crosses EF approximately halfway in between K and H
is equal to 2�2�, which is responsible for the semimetallic
character of graphite. Its sign is of great importance for the
location of the electron and hole pockets: a negative sign
brings the electron pocket to K while a positive sign brings
the electron pocket to H. There has been positive signs of �2�
reported earlier,29 but it has been found by Dresselhaus28,30

that the electron �hole� pockets are located at K�H�, which is
in agreement with recent DFT calculations,13 tight-binding
calculation,31 and experiments.28,32,13 The magnitude of �2�
determines the overlap of electrons and holes and the volume
of the Fermi surface. It, thus, also strongly affects the con-
centration of carriers and, hence, the conductivity and free
charge carrier plasmon frequency. The effective masses for
electrons and holes of the weakly dispersive energy band are
denoted by mze

� and mzh
� , respectively. Their huge value also

results from the small value of �2� and causes the low elec-
trical conductivity and low plasmon frequency in the direc-
tion perpendicular to the graphene layers since mze

� ��mze
� �

enters the denominator in the expression for the Drude con-
ductivity �free carrier plasmon frequency�. The parameter �3�
determines the strength of the trigonal warping effect ��3�
=0 gives isotropic equienergy contours� and �4� the asymme-
try of the effective masses in valence band �VB� and conduc-
tion band �CB�. The other parameter from next-nearest-
neighbor coupling, �5�, has less impact on the electronic
structure: both the VB and CB at K are shifted with respect
to the Fermi level by ��+�5�, causing a small asymmetry.28

Here �� is the difference in the on-site potentials at sites
A1�B2� and A2�B1�. �� is the value of the gap at the H
point.33 This crystal-field effect for nonzero �� occurs in AB
stacked graphite and FLGs, but it does not occur in AA
stacked graphite and the graphene monolayer. The small on-
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site energy difference �� appears in the diagonal elements of
H�k�. It causes an opening of a gap at the H point, which
results in a breakdown of Dirac fermions in graphite and
FLGs with N
1. Note that the magnitudes of this gap at H
depends sensitively on the doping level,34 which was ad-
justed in the first-principles calculations of this work in order
to match the experimental values. This is reasonable when
considering that the typical impurity concentrations are al-
ready sufficient to cause this small doping level. Finally, E0�
is set in such a way that the electronlike and holelike Fermi
surfaces of graphite yield an equal number of free carriers.
E0� is measured from the bottom of the CB to the Fermi level.

IV. NUMERICAL FITTING PROCEDURE

The ab initio calculations of the electronic dispersion are
performed on two levels: density-functional theory calcula-
tions �LDA� and QP dispersion calculations within the GW
approximation. We calculate the Kohn-Sham band structure
within the LDA to DFT.35 Wave functions are expanded in
plane waves with an energy cutoff at 25 Ha. Core electrons
are accounted for by Trouiller-Martins pseudopotentials.

We then employ the G0W0 approximation using a
plasmon-pole approximation for the screening16,36,37 to cal-

culate the self-energy corrections to the LDA dispersion. For
the calculation of the dielectric function ��� ,q� we use a
15	15	5 Monkhorst-Pack k sampling of the first BZ, and
for conduction-band states with energies up to 100 eV above
the valence band �80 bands�, calculations were performed
using the code YAMBO.38 The details for the first-principles
calculations are given elsewhere.34

For the fitting of the TB parameters to the ab initio �LDA
and GW� calculations we used energies of the four � bands
of graphite at �100 k points. The points were distributed
inside the whole 3D BZ of graphite. The fitting was per-
formed with the 3NN Hamiltonian. In addition we chose a
smaller subset of points inside a volume of 0.15	0.15
	0.47 Å−3 and fitted the SWMC parameters, which is fre-
quently used in the literature.24,27,28

The set of TB parameters were fitted by employing a
steepest-descent algorithm that minimizes the sum of
squared differences between the TB and the ab initio calcu-
lations. This involves solving Eq. �4� with different sets of
TB parameters so as to approach a minimum deviation from
the ab initio calculations. Points close to EF were given ad-
ditional weight so that the band crossing EF was described
with a deviation less than 1 meV. This is important for an
accurate description of the Fermi surface. In Table I we list
the parameters for the 3NN Hamiltonian that can be used to

TABLE I. 3NN tight-binding parameters for few-layer graphene and graphite. All values except the ones for s0
1, s0

2, and s0
3 are in eV. The

parameters of fits to LDA and GW calculations are shown. The 3NN Hamiltonian is valid in the whole two �three� dimensional BZ of
graphite �graphene layers�.

Method �0
1 �0

2 �0
3 s0

1 s0
2 s0

3 �1 �2 �3 �4 �5 E0 �

3NN TB-GW a −3.4416 −0.7544 −0.4246 0.2671 0.0494 0.0345 0.3513 −0.0105 0.2973 0.1954 0.0187 −2.2624 0.0540b

3NN TB-LDAa −3.0121 −0.6346 −0.3628 0.2499 0.0390 0.0322 0.3077 −0.0077 0.2583 0.1735 0.0147 −1.9037 0.0214

EXPc −5.13 1.70 −0.418 −0.148 −0.0948 0.0743

3NN TB-LDAd −2.79 −0.68 −0.30 0.30 0.046 0.039 −2.03

aThis work.
bWe adjusted the impurity doping level in order to reproduce the experimental value of �.
cFit to ARPES by Bostwick et al. �Ref. 22�.
dFit to LDA by Reich et al. �Ref. 20�.

TABLE II. The SWMC tight-binding parameters for the LDA and the quasiparticle dispersion �GW�. All
values are in eV. These parameters are for the SWMC Hamiltonian �Refs. 24, 27, 28, and 39� which is valid
close to the KH axis.

Method �0� �1� �2� �3� �4� �5� E0� ��

TB-GW a 3.053 0.403 −0.025 0.274 0.143 0.030 −0.025 −0.005b

TB-LDAa 2.553 0.343 −0.018 0.180 0.173 0.018 −0.022 −0.018

EXPc 3.16 0.39 −0.02 0.315 0.044 0.038 −0.024 −0.008

LDAd 2.598 0.364 −0.014 0.319 0.177 0.036 −0.026 −0.013

EXPe 2.9 0.3 0.1 0.12

KKRf 2.92 0.27 −0.022 0.15 0.10 0.0063 0.0079 −0.027

aThis work.
bWe adjusted the impurity doping level to reproduce the experimental value of ��.
cFit to experiment; see Dresselhaus et al. �Ref. 28�.
dFit to LDA by Charlier et al. �Ref. 31�.
eFit to double resonance Raman spectra by Malard et al. �Ref. 21�.
fFit to Korringa-Kohn-Rostocker first-principles calculation by Tatar and Rabi �Ref. 27�.
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calculate TB-GW bands in the whole 3D BZ of graphite.
The parameters that were fit with the SWMC Hamiltonian

are summarized in Table II. These TB parameters reproduce
the LDA and the QP �fit to GW� calculated dispersions. Here-
after these fits are referred to as TB-LDA and TB-GW, re-
spectively. We also list the values from other groups that
were fit to experiments28 and to LDA31 and another first-
principles calculation.27 It can be seen that the TB-GW pa-
rameters for the nearest-neighbor coupling increase by about
20% when compared to TB-LDA. TB-GW is also closer to
the experimental TB parameters than the TB-LDA param-
eters. This indicates that electronic correlation effects play a
crucial role in graphite and FLGs for interpreting and under-
standing experiments that probe the electronic energy-band
structure.

V. COMPARISION OF THE LDA TO THE QUASIPARTICLE
ENERGY-BAND DISPERSION OF GRAPHITE

We now compare the calculated TB-LDA to TB-GW, and
we also show the result of the first-principles calculations
that were used for fitting in order to illustrate the high quality
of the fit. In Fig. 2 the full kz dispersion from K to H for �a�
TB-LDA is compared to �b� TB-GW calculations. It is clear
that the bandwidth in kz increases by about 20% or 200 meV
when going from TB-LDA to TB-GW, i.e., when long-range
electron-electron interaction is taken into account. Such an
increase in bandwidth is reflected by the TB parameter �1 �in
the SWMC model 4�1� is the total bandwidth in the out-of-
plane direction�. It can be seen that the conduction band-
width increases even more than the valence bandwidth. The
VB dispersion was measured directly by ARPES and gave a
result in good agreement to the TB-GW.13

The dispersion parallel to the layers is investigated in Fig.
3, where we show the ky dispersion for kz=0 �K� and kz
=0.47 Å−1 �H�. Here the TB-GW bands also become steeper
by about 20% when compared to TB-LDA. This affects �0

1,
�0

2, and �0
3, which are the in-plane nearest-neighbor coupling

�see Fig. 1�a��. It determines the in-plane vF and in-plane

bandwidth, which is proportional to �0
1−2�0

3 �Refs. 26 and
40� �or proportional to �0� in the SWMC Hamiltonian�. In
Fig. 4 the trigonal warping effect is illustrated by plotting
equienergy contours for kz=0 with �a� TB-LDA and �b�
TB-GW for energies of E=0.1 eV, . . . ,0.5 eV in steps of
0.1 eV. The trigonal warping effect is determined by �3 �or
proportional to �3� in the SWMC Hamiltonian�. In order to
give a numerical estimate of the trigonal warping, we evalu-
ate the distances between the K point to the equienergy con-
tour with E=0.4 eV for the TB-LDA and the TB-GW calcu-
lations. For the TB-LDA calculation we obtain 0.147 Å−1

�0.117 Å−1� for the distance along KM �K� direction. For
TB-GW the corresponding values are 0.135 Å−1

�0.100 Å−1� along KM �K�. A good measure of the trigonal

FIG. 2. The TB fit along kz direction at kx=ky =0 �KH axis� for
�a� LDA and �b� GW. � denotes LDA calculations and � denotes
GW calculations taken from Ref. 13 that were used for the fitting.

FIG. 3. Upper panel: The TB fits along ky direction at kz=0 �K
point� for �a� LDA and �b� GW. Lower panel: the ky dispersion at
kz=0.47 Å−1 �H point� for �c� LDA and �d� GW. � denotes LDA
calculations and � denotes GW calculations that were used for the
fitting �taken from Ref. 13�.
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warping effect is the ratio of KM to K distances, which
yield 1.256 and 1.347 for TB-LDA and TB-GW, respec-
tively. Thus, the trigonal warping effect is about 10% larger
for the TB-GW compared to the TB-LDA �for the 0.4 eV
contour�.

VI. THREE-DIMENSIONAL QUASIPARTICLE
DISPERSION AND DOPING-DEPENDENT FERMI

SURFACE OF GRAPHITE

In Sec. V we have shown that the � bandwidth increases
by 20% when going from TB-LDA to TB-GW. This is im-
portant especially for the transport measurements �such as
STS and contact measurements� and the ARPES results. Op-
tical properties such as the �→�� transition that plays an
important role in optical absorption and resonance Raman
will also be affected, but in this case the situation is more
complicated since the formation of excitons with a finite
binding energy will cancel the self-energy corrections of
TB-GW to the optical gap. However, for two-photon photo-
excitation spectroscopies, the binding energy of an exciton in
the 2p state has a smaller value than in the 1s state, and thus,
the optical gap should be well described by TB-GW.

In Fig. 5 we show the complete in-plane QP band struc-
ture for �a� kz=0 �K point� and �b� kz=0.46 Å−1 �H point�

calculated by the 3NN TB Hamiltonian. In the KM plane
two valence bands ��1 and �2� and two conduction bands
��3 and �4� can be seen, and in the whole HAL plane the two
valence �conduction� bands are degenerate. The ab initio GW
values are compared to the 3NN TB-GW calculation in Table
III. It can be seen that the fit reproduces the ab initio calcu-
lations with an accuracy of �10 meV in the BZ center and
an accuracy of 1 meV along the KH axis, close to EF.

Close to EF the 3NN Hamiltonian is identical to the
SWMC Hamiltonian. Thus, for evaluation of the Fermi sur-
face and the doping dependence on EF in the dilute limit, we
use the SWMC Hamiltonian. The weakly dispersing band
that crosses EF is responsible for the Fermi surface and the
electron and hole pockets. This energy band is illustrated in
Fig. 6�a� where we show that the TB-GW fit has an accuracy
of 1 meV. The minority pocket that is a result of the steeply
dispersive energy band close to H is shown in Fig. 6�b�.

The QP dispersion close to EF is shown in Fig. 7 for ��a�,
�b�� K and ��c�, �d�� H points. The dispersion around the K
point is particularly complicated: there are four touching
points between valence and conduction bands. Three touch-
ing points between the valence and conduction bands exist in

TABLE III. Energy values of the GW calculation and the 3NN
TB fit �TB-GW� at high symmetry points in the 3D BZ of graphite
�all values in units eV�. The symbols �1-�4 denote the four � bands
of graphite. The TB-GW have been calculated with the 3NN
TB-GW parameters from Table I.

Point Method �1 �2 �3 �4

 GW −9.458 −7.257 12.176 12.541

TB-GW −9.457 −7.258 12.184 12.540

M GW −3.232 −2.441 1.655 2.491

TB-GW −3.216 −2.457 1.656 2.495

K GW −0.736 −0.025 −0.025 0.917

TB-GW −0.728 −0.024 −0.024 0.909

H GW 0.020 0.020 0.025 0.025

TB-GW 0.020 0.020 0.025 0.025

FIG. 4. The TB fits of equienergy contours at kz=0 for �a� TB-
LDA and �b� TB-GW.
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FIG. 5. The in-plane quasiparticle dispersion for �a� kz=0 and �b� kz=0.47 Å−1 calculated by TB-GW. The symbols �1−�4 denote the
four � bands of graphite.
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the close vicinity to K at angles of 0°, 120°, and 240° away
from kx �i.e., the KM direction�. The fourth touching point is
exactly at K point. The touching points arise from the semi-
metallic character of graphite: there are two parabolas �VB
and CB� that overlap by about 20 meV. For example the

bottom of the CB is denoted by point 2 in Figs. 7�a� and 7�b�.
At H point shown in Figs. 7�c� and 7�d� the energy-band
structure becomes simpler: The � and �� bands are each
doubly generate, and their dispersion is rather isotropic
around H �the trigonal warping effect in the kxky plane is a

(b)(a)

FIG. 6. �a� The weakly dispersive band that is responsible for the formation of electron and hole pockets. � denotes GW calculations
�with the impurity doping level adjusted to reproduce the experimental gap at H point� and the line the TB-GW fits. �b� shows a magnifi-
cation of the minority hole pocket that is caused by the steeply dispersive band close to H.

FIG. 7. �Color online� TB-GW QP band structure around ��a�, �b�� K point and ��c�, �d�� H point. The points 1, 2, and 3 denote the
dispersion we use to determine electron and hole masses �see Fig. 9�. The points 1, 2, and 3 span a parabola. In ��a�, �b�� the parabola is along
the KM direction with heaviest electron masses and in ��c�, �d�� the hole masses are isotropic around H.
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minimum in the AHL plane and a maximum in the KM
plane�. It is clear that the energy bands do not touch each
other and the dispersion is not linear but parabolic with a
very large curvature �and, hence, a very small absolute value
of the effective mass; see Fig. 8� at H. EF lies 20 meV below
the top of the VB and the energy gap � is equal to 5 meV. It
is interesting to note that a larger value of � would bring the
top of the VB below EF. The horizontal cuts through the
dispersions in Fig. 7 at E=EF �blue area� give cross-sectional
areas of an electronlike Fermi surface at kz=0 �K� and a
holelike Fermi surface at kz=0.47 Å−1 �H point�, consistent
with a semimetallic behavior.

The effective in-plane massses for electrons �me
�� and

holes �mh
�� are evaluated along the parabola indicated in Fig.

7 by points 1, 2, and 3. This parabola lies in the plane
spanned by KM and HL and can, thus, be considered an
upper limit for the effective mass since the dispersion is flat
in this direction, as can be seen in Fig. 7�a�. For me

� the center
of the parabola is chosen to be the bottom of the CB, i.e.,
point 2 in Fig. 7�a�. Similarly for mh

� the center of the pa-
rabola is chosen to be the top of the VB, i.e., point 2 in Fig.
7�b�. Due to the larger curvature of the hole bands, the ab-
solute value of me

� is larger than mh
�. The kz dependence of me

�

and mh
� is shown in Figs. 8�a� and 8�b�, respectively. For the

effective mass in the z direction we fit a parabola for the
weakly dispersing band in direction perpendicular to the lay-
ers and get mze

� =16m0 and mzh
� =−16m0 for the effective elec-

tron and hole masses perpendicular to the layers, respec-
tively. Figures 8�c� and 8�d� shows the TB-GW along kz for
the electron and hole pocket, respectively. The parabolic fits
that were used to determine the effective masses are shown
along with the calculation.

The kz dependence of me
� and mh

� are shown in Fig. 9. For
this purpose we evaluated the heavy electron mass of the
parabolic subbands, as shown in Figs. 7 and 8. It is clear that
me

� has a weak kz dependence and mh
� strongly depends on the

value of kz. This is obvious since exactly at H point, the
value of mh

� has a minimum. For a finite value of the gap �,
the value of mh

� also remains finite.
We now discuss the whole 3D Fermi surface. The volume

inside the surface determines the low-energy free carrier
plasmon frequencies and the electrical conductivity. The
trigonal warping has little effect on the volume inside the
electron and hole pocket. When we set �3=0, then the Fermi
surface is isotropic around KH axis. The simplification of
�3=0 results in little change in the volume. For �3�0, there
are touching points of the electronlike and holelike Fermi
surfaces.28 The touching points �or legs� are important for
understanding the period for de Haas-van Alphen effect and
the large diamagnetism in graphite.39 However, for the cal-
culation of the number of carriers, they are not crucial, and
thus the Fermi surface calculated with �3=0 can be used for
the evaluation of the electron density, ne, and the hole den-
sity, nh. In this case, the cross section of the Fermi surface
A�kz� has an analytical form. The number of electrons per
cm3 is given by ne=4	1024	 fu /vuc with fu=ve /vbz, where
ve is the electron pocket volume and vbz the BZ volume. vuc
is the unit-cell volume in Å−3. Similarly, by replacing ve with
vh �the volume of the whole pocket� one can obtain nh, the
number of holes per cm3. The critical quantities are ve and
vh, and they are obtained by integrating the cross section of
the Fermi surface A�kz� along kz. The analytical expression
and their dependence on the TB parameters is given in Ref.
30. This yields plasmon frequencies of ��a

=��nee
2 / �me

��0�a�=113 meV for plasmon oscillation paral-
lel to the graphene layers and ��c=��nee

2 / �mze
� �0�c�

=19 meV for plasmon oscillation perpendicular to the lay-
ers. Here �a=5.4 �Ref. 41� and �c=1.25 �Ref. 42� are adopted
for the dielectric constants parallel and perpendicular to the
graphene layers, respectively. We have made two simplifica-
tions: first we do not consider a finite value of temperature

FIG. 8. �Color online� Evaluation of the in-plane �a� electron
and �b� hole masses around K and H, respectively. The dispersions
along the parabolas depicted by points 1-2-3 in Fig. 7 are taken for
evaluation of the masses. The effective masses perpendicular to the
layers in z direction are shown in �c� for electrons and in �d� for
holes. � correspond to TB-GW values and the lines are parabolic
fits.

FIG. 9. The kz dependence of the in-plane electron mass �me
��

and hole mass �mh
�� calculated by TB-GW. The masses are evalu-

ated along the parabolas as shown in Fig. 8.
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��a and �c are the plasmon frequencies at 0 K�, and second
we used an effective mass averaged over the whole kz range
of the pockets as shown in Figs. 8 and 9.

Next we discuss the doping dependence of the electronic
properties in the so-called dilute limit, which refers to a very
low ratio of dopant/carbon atoms. Here we use a method
described previously30 employing the TB-GW parameters
from Table II. This allows us to calculate the doping depen-
dence of ne and nh. The analytical formula for the
EF-dependent cross section of the Fermi surface, A�kz�
�given in Ref. 30�, is integrated for different values of EF. By
integrating dA�kz� /dEF along kz we obtain the carrier density
per electronvolt. The ratio of dopant to carbon is given by
r=n	vuc /4f , where n=ne for electron doping and n=nh for
hole doping. Here f is the charge-transfer value per dopant
atom to carbon. Although there are some discussions about
the value of f , it is was recently found for potassium-doped
graphite that f �1.43,44 In Fig. 10�a� we show the doping
dependence of the carrier densities. It is clear that at EF
= �25 meV, we have a discontinuity in the carrier density,
and this is associated to the EF at which the electron or hole
pocket is completely filled. Since the density of states de-
creases suddenly after the pockets are filled, the kink in the
density of states appears. This also marks the transition from
a two-carrier regime to a single-carrier regime. In Fig. 10�b�
we show ne and nh. It is clear that at EF=0 the number of
holes equals the number of electrons. At EF=25 meV, we
have no more holes and thus a transition from a semimetal to
a metal occurs. In such a metal, the carriers are electrons,
hence, an N-type metal. Similarly, at EF=−25 meV we have
no more electrons and a semimetal to metal transition occurs
in the other direction to EF. For this metal, the carriers are
holes, hence, a P-type metal. These semimetal to metal tran-
sitions are important for ambipolar transport in graphite and
graphene: they determine the region for the gate voltage in

which ambipolar transport is possible. Finally in Fig. 10�c�
we plot the ratio of dopant to carbon atoms as a function of
EF.

It is certainly interesting to monitor the doping induced
changes in ne and nh also in the shape of the Fermi surface.
In Fig. 11 we show the Fermi surfaces for electron doping
and hole doping for EF=0 to �35 meV in steps of 5 meV. It
is clear that at �25 meV a single carrier regime dominates,
as indicated by the two different colors �red for electrons and
green for holes�. This is consistent with Fig. 10�b� where the
integrated electron �hole� densities disappear at EF
=25 meV �EF=−25 meV�.

VII. FEW LAYER GRAPHENE

The 3NN TB-GW set of parameters fits the whole kz range
of the 3D graphite BZ. Thus the set can be transferred for the
calculation of QP dispersions of stacked sp2 FLGs with N
layers �N=1,2 , . . .�. The transferability of TB parameters is a
result of the fact that the lattice parameters of FLGs and
graphite are almost identical.45 We can use the matrix ele-
ments shown in Fig. 1�a� also for FLGs; for N=1 only �0

1, �0
2,

�0
3, s0

1, s0
2, s0

3, and E0 are needed and this results in the
graphene monolayer case. For N=2 the parameters �2 and �5
are not needed since they describe next-nearest-neighbor in-
teractions which do not exist in a bilayer. We use the set of
TB parameters given in Table I and the Hamiltonians given
in Sec. II and Appendix. In Fig. 12 we show the bilayer �N
=2�, the trilayer �N=3�, and the quadlayer �N=4� calculated
with TB-GW. Figures 12�a� and 12�b� show the electron dis-
persion of the bilayer. The separation between CB �VB� to
the Fermi level is proportional to �1 �Ref. 46�, and thus it is
clear that the TB-GW also gives a separation between the VB
of about 20% larger than that of LDA. Furthermore the slope
of all bands becomes steeper for TB-GW with respect to

FIG. 10. �Color online� Doping dependence of �a� the electron and hole carrier density, �b� the number of electrons and holes, and �c� the
stochiometric dopant to carbon ratio. The red �green� lines represent electron �hole� carriers.

FIG. 11. �Color online� The Fermi surface of doped graphite in the dilute limit for electron doping and hole doping. The red �green�
surfaces are the electron �hole� pockets of the Fermi surface. It is clear that at �25 meV we have a semimetal to metal transition.
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TB-LDA calculations. This is also responsible for the in-
crease in vF of FLGs �similar to the graphite case, when
going from LDA to GW�. The same argument is the case for
the trilayer and quadlayer. It is interesting that the QP dis-
persion measured by ARPES �Ref. 9� is in better agreement
with the TB-GW rather than the LDA calculations per-
formed.

The low-energy dispersion relation of FLGs are particu-
larly important for describing transport properties. From the
calculations, we find that all FLG has a finite density of
states at EF. The trilayer has a small overlap at K point be-
tween valence and conduction band �i.e., semimetallic�. This
property might be useful for devices with ambipolar trans-
port properties. Our results are in qualitative agreement with
the LDA calculations.47

It can be seen that a linear �Dirac-type� band appears for
the trilayer �and also for all other odd-numbered multilay-
ers�. This observation is in agreement to previous calcula-
tions and is relevant to an increase in the orbital contribution
to diamagnetism.48

Since TB allows for rapid calculation of the QP bands, the
transition from FLG to bulk graphite can be analyzed. Even

in the case of N=30, the solution of Eq. �4� for the 60	60
Hamiltonian and overlap matrices takes only �10 sec on a
Pentium workstation per k point. In Fig. 13 we show the
eigenvalue spectrum for FLG with N=1, . . . ,30. As we in-
crease N and, hence, the number of � bands, the bandwidth
also increases and approaches that of bulk graphite. It can be
seen that for N
15, the total bandwidth is that of bulk
graphite. Interestingly, the energies of the � bands group
together and form families of the highest, second-highest,
etc. energy eigenvalue at K. With increasing number of lay-
ers, a given family approaches the limit for bulk graphite.
Such a family pattern is a direct consequence of the AB
stacking sequence in FLG, and it might be accessible to op-
tical spectroscopy similar to the fine structure around K point
that has been observed in bulk graphite.49

In the limit of one isolated graphene layer, the TB-GW fit
no longer exactly reproduces the slope of the � bands. The
reason is that screening in an isolated �2D� graphene sheet is
considerably weaker than in 3D bulk graphite. Therefore, the
electron-electron interaction is stronger in single-layer
graphene and leads to a stronger renormalization of the
bands. For example, in graphite, the gap at H is renormalized
by 13%, while in single-layer graphene, the corresponding
gap at M is renormalized by 21%.50 Note, however, that
graphene is usually deposited on a substrate.1,3,5 Thus, the
dielectric screening of the substrate will contribute to the
renormalization and cancel to some extent the very strong
GW renormalization of the imaginary isolated graphene
sheet.

VIII. DISCUSSION

We first discuss the QP band structure and relation to
recent ARPES experiments. From several experimental
works it is clear that the LDA bands need to be scaled in
order to fit the experiments.12–14 Our set of TB parameters
quantitatively describes the QP dispersions of graphite and
FLG. The scaling is mainly reflected in an increase in �0

1, �0
2,

�0
3, and �1, the in-plane and out-of-plane coupling, respec-

FIG. 12. Quasiparticle � bands for ��a�, �b�� bilayer, ��c�, �d��
trilayer, and ��e�, �f�� quadlayer graphene. The right panels show a
magnification of the band structure around K point. These band
structures have been calculated by 3NN TB-GW using the param-
eters from Table I. The corresponding Hamiltonian and overlap ma-
trices are given in Appendix.

FIG. 13. �Color online� Evolution of the eigenvalue spectrum
for FLG from N=1. . .30 graphene layers calculated by TB-GW at
the K point. The dashed lines labeled by �1 and �4 denote the lower
and upper limits of the total bandwidth at K point in 3D graphite. A
pattern that connects the first, second, etc. energies of FLG is
emerging �see text�.
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tively. It, thus, can be used to analyze ARPES of both pris-
tine and doped �dilute limit� graphite and FLG. Most impor-
tantly, the correlation effects increase vF, the Fermi velocity
when going from LDA to GW. For the TB-GW calculation,
vF=1.01	106 ms−1, which is in perfect agreement to the
values from ARPES that is equal to vF=1.06	106 ms−1.13

The question why LDA works for some metals but fails to
give the correct vF and energy-band dispersion in semime-
tallic graphite arises. In graphite, the contribution of the
electron-electron interaction to the self-energy is unusually
large. The reason for this is the small number of free carriers
to screen efficiently the Coulomb interaction. In most other
metals, the density of states at EF has a much larger
��1000 times� value than in graphite and the screening
lengths are shorter. Hence the LDA is a good description for
such a material but it fails in the case of graphite. Another
parameter that illustrates the quality of the TB-GW to repro-
duce the experimental QP dispersion is �, the band splitting
at K point. For TB-GW, we obtain �=0.704 eV and the
ARPES gives �=0.71 eV.13

The TB parameters of the SWMC Hamiltonian have been
fitted in order to reproduce double-resonance Raman
spectra.21 As a result they obtained that �3� �see Fig. 1� has a
value of 0.1 eV, while that for graphite that we obtain in this
paper is 0.274 eV �see Table II� and the value that was fit to
transport experiments is 0.315 eV,28,51 which is also in per-
fect agreement to ARPES experiments of graphite single
crystals.51 We now discuss a possible reason for this discrep-
ancy. The fitting procedure in Ref 21 depends on the choice
of the phonon-dispersion relation of graphite. It is important
to note that recently a Kohn anomaly has been directly ob-
served by inelastic x-ray scattering experiments using syn-
chrotron radiation,52 which has a steeper slope of the TO
phonon branch at K point in contrast to previous
measurements.53 Thus the assumption of the correct phonon-
dispersion relation is crucial for obtaining the correct band-
structure parameters.

Next we discuss the present QP electronic energy-band
structure in relation to optical spectroscopies such as optical
absorption spectroscopy �OAS� and resonance Raman spec-
troscopy. The optical spectroscopies probe the joint density
of states �JDOS� weighted with the dipole matrix elements.
Peaks in the OAS are redshifted when compared to the JDOS
of the QP dispersion if excitons are created. By comparing
the QP dispersion with OAS experiments,49,54,55 we now es-
timate a value for exciton binding energies in graphite. In
general many resonant states with k contribute to OAS, but a
fine structure in OAS of bulk graphite measured in reflection
geometry was observed by Misu et al.,49 which was assigned
to two specific transitions around K: the A1 transition be-
tween the lower VB and states just above EF and the A2
transition between the upper VB and the upper CB. The ex-
perimental energies they found were EA1

exp=0.669 eV and
EA2

exp=0.847 eV. The TB-GW dispersion yields energies
EA1

GW=0.722 eV and EA2
GW=0.926 eV �see Fig. 2�b��. Assum-

ing one exciton is created for the A1�A2� transition, this
yields exciton binding energies of EA1

GW−EA1
exp�50 meV and

EA2
GW−EA2

exp�80 meV for a K-point exciton in bulk graphite.
Such a value for the exciton binding energies most probably
increases when going from bulk graphite to FLGs due to

confinement of the exciton wave function in z direction.
Concerning the value of �, the gap at H, several experi-

mental values exist and magnetoreflectance experiments sug-
gest �=5 meV. This is in disagreement to the calculated
values obtained for pristine graphite.13 However, when the
doping level is slightly increased, � becomes smaller, and
we thus, fixed a doping level in the ab initio calculation that
reproduces the experimental �.34 While some of the varia-
tions may be explained by the sample crystallinity in z direc-
tion, it is also conceivable that small impurities are respon-
sible for the discrepancy.

Next we discuss a possibility to measure the free carrier
plasmon frequencies of pristine and alkali-metal-doped
graphite by high-resolution energy electron-loss spectros-
copy �HREELS� or inelastic tunneling spectroscopy. The
electron concentration inside the pockets very sensitively af-
fects the plasmon frequencies. In principle the charge carrier
plasmons should also appear as a dip in optical reflectivity
measurements, but due to the small relative change in inten-
sity they have not been observed so far. Due to the small size
of the pockets, the number of charge carriers and, hence, the
conductivity and plasmon frequencies are extremely sensi-
tive to temperature and doping. Experimentally observed
plasmon frequencies for oscillations parallel to the graphene
layers are ��a=128 meV �Ref. 56� and for oscillations per-
pendicular to the layers are ��c=45–50 meV.42,56–58 These
values for ��a and ��c agree reasonably well with our de-
rived value considering that we make the crude estimation of
��a and ��c at 0 K while experiments were carried out at
room temperature. We also used average effective masses of
the electron pocket in order to determine the plasmon fre-
quency, while in fact there is a kz dependence �see Fig. 9�.
We also note that the experimental literature values for �a
and �c have a rather wide range, e.g., �c=3.4 �Ref. 59� from
reflectivity measurements and �c=5.4 �Ref. 41� from energy
electron-loss spectroscopy �EELS�.

The temperature dependence of �c was measured by
Jensen et al.42 by HREELS, and they observed a strong T
dependence for �c, which was attributed to changes in the
occupation and, thus, number of free carriers with T. The
observed plasmon energy was rising from 40 to 100 meV in
a temperature range of 100 to 400 K. A similar effect might
be observed by HREELS of doped graphite as a function of
doping level. It would be interesting to study the evolution of
the plasmon frequency with doping level. With our current
understanding of the low-energy-band structure we predict a
semimetal to metal transition at a Fermi level shift of EF
�25 meV. At this doping level, the hole pocket is com-
pletely filled with electrons and disappears and the electron
pocket has roughly doubled in size, and �a and �c should
increase by a factor of ��2. Such a transition should be
observable by HREELS and might be accompied by interest-
ing changes in the band structure �electron-plasmon cou-
pling�, which can also be measured simultaneously by
ARPES. Many dc transport properties can be understood
with a Drude model for the conductivity, which is inversely
proportional to the effective carrier mass. From the ratio of
mze

� /me
� and mzh

� /mh
�, we hence expect that the dc electron

�hole� conductivity in z direction �out-of-plane� is �200
��500� times less than the in-plane conductivity. The experi-
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mental value for the ratio between in-plane and out-of-plane
conductivity is 3	103 �Ref. 28� and considering the large
variation in experimental values even for the in-plane
conductivity,28,60 it is in reasonable agreement. In Table IV
we summarize the electronic band-structure properties such
as vF, �, and the effective masses and compare them to ex-
perimental values.

IX. CONCLUSIONS

In conclusion, we have fitted two sets of TB parameters to
first-principles calculations for the LDA and QP �GW� elec-
tron energy dispersions of graphite. We have observed a 20%
increase in the nearest-neighbor in-plane and out-of-plane
matrix elements when going from LDA to GW. Comparision
to ARPES and transport measurements suggest that LDA is
not a good description of the electronic band structure of
graphite because of the importance of correlation effects. We
have explicitly shown that the accuracy of the TB-GW pa-
rameters is sufficient to reproduce the QP band structure with
an accuracy of �10 meV for the higher energy points and
�1 meV for the bands that are relevant for electronic trans-
port. Thus the 3NN TB-GW calculated QP band energy dis-
persions are sufficiently accurate to be compared to a wide
range of optical and transport experiments. The TB-GW pa-

rameters from Table I should be used in the future for inter-
pretation of experiments that probe the band structure in
graphite and FLG. For transport experiments that only in-
volve electronic states close to the KH axis �in graphite� or
the K point in FLG, the SWMC Hamiltonian with parameters
from Table II can be used.

With the new set of TB parameters we have calculated the
low-energy properties of graphite: the Fermi velocity, the
Fermi surface, plasmon frequencies, and the ratio of conduc-
tivities parallel and perpendicular to the graphene layers and
effective masses. These values are compared to experiments
and we have demonstrated an excellent agreement with al-
most all values.

We have shown that at �25 meV, a semimetal to metal
transition exists in graphite. Such a transition should be ex-
perimentally observable by HREELS or ARPES for electron-
doped graphite single crystals with very low doping levels
�i.e., the dilute limit�. Experimentally, the synthesis of such
samples is possible by evaporation of potassium onto the
sample surface and choosing a sufficiently high equilibration
temperature so that no staging compound forms. It would,
thus, be interesting to do a combined ARPES and HREELS
experiment on this kind of sample.

We have also discussed the issue of the existence of Dirac
fermions in graphite and FLGs. For pristine graphite it is
clear that for a finite value of the gap � at H point, we

TABLE IV. Properties of the electronic band structure of graphite calculated from TB-GW and compared
to experiment.

Parameter Symbol TB-GW Experimental value�s�

Fermi velocity at H �106 ms−1� vF 1.01 0.91,a 1.06,b 1.07,c 1.02d

Splitting of � bands at K �eV� � 0.704 0.71b

Bottom of � band at A point �eV� E�A� 7.6 8,e 8f

in-plane electron mass �m0� me
� 0.1 �kz averaged� 0.084,g 0.42,a 0.028,c 0.1b

in-plane hole mass �m0� h mh
� 0.06 �kz averaged� 0.069,a 0.03,i,j 0.028,c 0.04b

out-of-plane electron mass �m0� mze
� 16

out-of-plane hole mass �m0� mzh
� −16

number of electrons at EF=0 �1018 cm−3� ne 5.0 8.0,a 3.1k

number of holes at EF=0 �1018 cm−3� nh 5.0 3.1,a 2.7,k 9.2e

Gap at H point �meV� � 5 5–8l,d

in-plane plasmon frequency �meV� ��a 113 128,m125n

out-of-plane plasmon frequency �meV� ��c 19 36,o,p 40–50o,m,n,q

A1 optical transition energy �eV� EA1 0.722 0.669r,s

A2 optical transition energy �eV� EA2 0.926 0.847r,s

aReference 32.
bReference 13.
cReference 61.
dReference 62.
eReference 63.
fReference 64.
gReference 65.
hTo compare different notations, we denote here the
absolute value of mh

�.
iReference 66.
jMass at the H point was measured. Note that this is
in excellent agreement to our calculated kz depen-
dence of mh

� �see Fig. 9�.

kReference 67.
lReference 33.
mReference 56.
nReference 57.
oReference 42.
pZero-temperature extrapolation from experiment.
qReference 58.
rReference 49.
sThe difference between the experimental and the
TB-GW values might be a result of excitonic ef-
fects.
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always have a nonzero value of the effective masses at H.
We now discuss some possibilities for �=0. One way would
be to use AA stacked graphite. However, natural single-
crystal graphite has mainly AB stacking, and the preparation
of an AA-like surface by repeated cleaving is a rather diffi-
cult task. Recently, the possibility of reducing � by increas-
ing the doping level has been put forward34,43 and this seems
a more promising way for experiments. For the case of a
fully doped graphite single crystal, the interlayer interaction
is negligible because the distance between the graphene
sheets is increased and the stacking sequence is changed to
AA stacking. These two effects would cause the appearance
of Dirac fermions in fully doped graphite.

With the new set of 3NN TB parameters we have calcu-
lated the QP dispersion of FLG in the whole 2D BZ. We
have shown the evolution of the energy eigenvalue spectrum
at K point as a function of N, the number of layers. An
interesting family pattern was observed, where the first-,
second-, third-, etc. highest transitions form a pattern that
approaches the energy-band width of bulk graphite with in-
creasing N. For the highest transition, the bulk graphite band
width is already reached at N=15. This family pattern is a
direct result of the AB stacking sequence in FLG and it can
possibly be observed experimentally. It should be pointed out
here that a very similar fine structure around the K point in
bulk graphite has been observed by optical absorption spec-
troscopy by Misu et al.49 although the family pattern from
Fig. 13 might be observed also by ARPES on high-quality
FLGs synthesized on Ni�111� �Ref. 3� or SiC �Ref. 2�.
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APPENDIX

We made computer programs to automatically generate
the 3NN Hamiltonians and overlap matrices for N graphene

layers. The method is following the description by Partoens
et al.24 but with the difference that we include 3NN matrix
elements that describe the QP dispersion in the whole BZ. It
is interesting to note the similarity between the Hamiltonian
of a N-layer graphene and a stage N-graphite intercalation
compound.69 The general form of the Hamiltonian is given
by

H�k� =
HA1A1

HA1B1
HA1A2

. . . HA1BN

HB1A1
HB1B1

HB1A2
. . . HB2BN

HA2A1
HA2B1

HA2A2
. . . HA2BN

] ] ] ] ]

HBNA1
HBNB1

HBNA2
. . . HBNBN

� ,

and the overlap matrix is given by

S�k� =
SA1A1

SA1B1
SA1A2

. . . SA1BN

SB1A1
SB1B1

SB1A2
. . . SB2BN

SA2A1
SA2B1

SA2A2
. . . SA2BN

] ] ] ] ]

SBNA1
SBNB1

SBNA2
. . . SBNBN

� .

The QP band structure is then given by solving equation Eq.
�4�. The 3NN TB Hamiltonians can be used with GW param-
eters from Table I. In the following we give the explicit form
for the H�k� and S�k� of a monolayer and an AB stacked
bilayer and ABA trilayer which was used in Sec. VII.

1. Monolayer graphene

The monolayer 3NN Hamiltonian and overlap matrices
are given by

H�k� = � E0 + �0
2f2�k� �0

1f1�k� + �0
3f3�k�

�0
1f1�k�� + �0

3f3�k�� E0 + �0
2f2�k�� �

and

S�k� = � 1 + f2�k�s0
2 f1�k�s0

1 + f3�k�s0
3

f1�k��s0
1 + f3�k��s0

3 1 + f2�k��s0
2 � .

2. Bilayer graphene

The bilayer 3NN Hamiltonian and overlap matrices are
given by

H�k� =
E0 + � + �0

2f2�k� �0
1f1�k� + �0

3f3�k� �1 �4f1�k��

�0
1f1�k�� + �0

3f3�k�� E0 + �0
2f2�k�� �4f1�k�� �3f1�k�

�1 �4f1�k� E0 + � + �0
2f2�k� �0

1f1�k�� + �0
3f3�k��

�4f1�k� �3f1�k�� �0
1f1�k� + �0

3f3�k� E0 + �0
2f2�k�

�
and
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S�k� =
1 + s0

2f2�k� s0
1f1�k� + s0

3f3�k� 0 0

s0
1f1�k�� + s0

3f3�k�� 1 + s0
2f2�k�� 0 0

0 0 1 + s0
2f2�k� s0

1f1�k�� + s0
3f3�k��

0 0 s0
1f1�k� + s0

3f3�k� 1 + s0
2f2�k�

.�
3. Trilayer graphene

The trilayer Hamiltonian and overlap matrices read as

H�k� =
E0 + � + �0

2f2�k� f1�k��0
1 + �0

3f3�k� �1 �4f1�k�� �5 0

�0
1f1�k�� + �0

3f3�k�� E0 + �0
2f2�k�� �4f1�k�s �3f1�k� 0 �2

�1 �4f1�k� E0 + � + �0
2f2�k� �0

1f1�k�� + �0
3f3�k�� �1 �4f1�k�

�4f1�k� �3f1�k�� �0
1f1�k� + �0

3f3�k� E0 + �0
2f2�k�� �4f1�k� �3f1�k��

�5 0 �1 �4f1�k�� E0 + � + �0
2f2�k� �0

1f1�k� + �0
3f3�k�

0 �2 �4f1�k�� �3f1�k� �0
1f1�k�� + �0

3f3�k�� E0 + �0
2f2�k��

�
and

S�k�

=
1 + s0

2f2�k� f1�k�s0
1 + s0

3f3�k� 0 0 0 0

s0
1f1�k�� + s0

3f3�k�� 1 + s0
2f2�k�� 0 0 0 0

0 0 1 + s0
2f2�k� s0

1f1�k�� + s0
3f3�k�� 0 0

0 0 s0
1f1�k� + s0

3f3�k� 1 + s0
2f2�k� 0 0

0 0 0 0 E0 + � + s0
2f2�k�� s0

1f1�k� + s0
3f3�k�

0 0 0 0 s0
1f1�k�� + s0

3f3�k�� 1 + s0
2f2�k��

.�
4. Graphite

For the case of three-dimensional graphite we have k= �kx ,ky ,kz�, and we use =2 cos�kzc0� with c0=3.35 Å �the distance
between adjacent graphene planes�. The Hamiltonian and overlap matrices of graphite are given by

H�k�

=
E0 + � + �0

2f2�k� + �5�2 − 2� �0
1f1�k� + �0

3f3�k� �1 �4f1�k��

�0
1f1�k�� + �0

3f3�k�� E0 + �0
2f2�k�� + �2�2 − 2� �4f1�k�� �3f1�k�

�1 �4f1�k� E0 + � + �0
2f2�k� + �5�2 − 2� �0

1f1�k�� + �0
3f3�k��

�4f1�k� �3f1�k�� �0
1f1�k� + �0

3f3�k� E0 + �0
2f2�k� + �2�2 − 2�

�
and

S�k� =
1 + s0

2f2�k� s0
1f1�k� + s0

3f3�k� 0 0

s0
1f1�k�� + s0

3f3�k�� 1 + s0
2f2�k�� 0 0

0 0 1 + s0
2f2�k� s0

1f1�k�� + s0
3f3�k��

0 0 s0
1f1�k� + s0

3f3�k� 1 + s0
2f2�k�

,�
respectively.

The sum of the phase factors for first-, second-, and third-nearest neighbors are given by f1�k�, f2�k�, and f3�k�, respec-
tively. Note that f1�k� and f3�k� couple A and B atoms and f2�k� describes the AA and BB interactions. The sum of phase
factors are given by f1�k�=exp�ikxa0 / 2�+2 exp�−ikxa0 / 2�cos��3kya0 / 2�, f2�k�=	�=1

6 exp�ikr�
2�, and f3�k�=	�=1

3 exp�ikr�
3�.

Here r�
2 and r�

3 are the vectors that connect the A1 atom �see Fig. 1� with the second-nearest B atoms �six atoms� and the
third-nearest A atoms �three atoms�, respectively.70
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