We present Raman spectroscopy measurements on single- and few-layer graphene
flakes. Using a scanning confocal approach we collect spectral data with
spatial resolution, which allows us to directly compare Raman images with
scanning force micrographs. Single-layer graphene can be distinguished from
double- and few-layer by the width of the D' line: the single peak for
single-layer graphene splits into different peaks for the double-layer. These
findings are explained using the double-resonant Raman model based on ab-initio
calculations of the electronic structure and of the phonon dispersion. We
investigate the D line intensity and find no defects within the flake. A finite
D line response originating from the edges can be attributed either to defects
or to the breakdown of translational symmetry