4,280 research outputs found

    Experimental Signatures of Critically Balanced Turbulence in MAST

    Full text link
    Beam Emission Spectroscopy (BES) measurements of ion-scale density fluctuations in the MAST tokamak are used to show that the turbulence correlation time, the drift time associated with ion temperature or density gradients, the particle (ion) streaming time along the magnetic field and the magnetic drift time are consistently comparable, suggesting a "critically balanced" turbulence determined by the local equilibrium. The resulting scalings of the poloidal and radial correlation lengths are derived and tested. The nonlinear time inferred from the density fluctuations is longer than the other times; its ratio to the correlation time scales as νi0.8±0.1\nu_{*i}^{-0.8\pm0.1}, where νi=\nu_{*i}= ion collision rate/streaming rate. This is consistent with turbulent decorrelation being controlled by a zonal component, invisible to the BES, with an amplitude exceeding the drift waves' by νi0.8\sim \nu_{*i}^{-0.8}.Comment: 6 pages, 4 figures, submitted to PR

    Considering Fluctuation Energy as a Measure of Gyrokinetic Turbulence

    Full text link
    In gyrokinetic theory there are two quadratic measures of fluctuation energy, left invariant under nonlinear interactions, that constrain the turbulence. The recent work of Plunk and Tatsuno [Phys. Rev. Lett. 106, 165003 (2011)] reported on the novel consequences that this constraint has on the direction and locality of spectral energy transfer. This paper builds on that work. We provide detailed analysis in support of the results of Plunk and Tatsuno but also significantly broaden the scope and use additional methods to address the problem of energy transfer. The perspective taken here is that the fluctuation energies are not merely formal invariants of an idealized model (two-dimensional gyrokinetics) but are general measures of gyrokinetic turbulence, i.e. quantities that can be used to predict the behavior of the turbulence. Though many open questions remain, this paper collects evidence in favor of this perspective by demonstrating in several contexts that constrained spectral energy transfer governs the dynamics.Comment: Final version as published. Some cosmetic changes and update of reference

    Perpendicular momentum injection by lower hybrid wave in a tokamak

    Full text link
    The injection of lower hybrid waves for current drive into a tokamak affects the profile of intrinsic rotation. In this article, the momentum deposition by the lower hybrid wave on the electrons is studied. Due to the increase in the poloidal momentum of the wave as it propagates into the tokamak, the parallel momentum of the wave increases considerably. The change of the perpendicular momentum of the wave is such that the toroidal angular momentum of the wave is conserved. If the perpendicular momentum transfer via electron Landau damping is ignored, the transfer of the toroidal angular momentum to the plasma will be larger than the injected toroidal angular momentum. A proper quasilinear treatment proves that both perpendicular and parallel momentum are transferred to the electrons. The toroidal angular momentum of the electrons is then transferred to the ions via different mechanisms for the parallel and perpendicular momentum. The perpendicular momentum is transferred to ions through an outward radial electron pinch, while the parallel momentum is transferred through collisions.Comment: 22 pages, 4 figure

    Combined microbiological test to assess changes in an organic matrix used to avoid agricultural soil contamination, exposed to an insecticide

    Get PDF
    Combined microbiological test (Biolog Ecoplate, denaturing gradient gel electrophoresis (DGGE) and Real Time PCR (qPCR)) were developed to evaluate the impact of repeated diazinon (DZN) applications at high concentration (40 mg kg-1) on microbial communities in a microcosm simulating the organic matrix (straw (50%): peat (25%): soil (25%) vv-1) of an pesticide biopurification system (PBS). Moreover, pesticide dissipation was also evaluated. After three successive exposition of DZN, dissipation efficiency was high; achieved 87%, 93% and 96% after each application, respectively showing a clear accelerated dissipation of this pesticide in the organic matrix. The results obtained with Biolog Ecoplate showed that community level physiological profiles were no affected by the addition of DZN. On the other hand, molecular assays (DGGE and QPCR) demonstrated that the microbial structure (bacteria and fungi) remained relatively stable over time with high DZN doses compared to control. Therefore, the results of the present study, clearly, demonstrate the high dissipation capacity of this biomixture and highlight the microbiological robustness of this biological system.Fil: Tortella, G. R.. Universidad de la Frontera. Nucleo Cientifico y Tecnologico En Recursos Naturales (bioren-ufro). Departamento de Ciencias Quimicas y Recursos Naturales; ChileFil: Salgado, E.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; ChileFil: Cuozzo, Sergio Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Tucumán. Planta Piloto de Procesos Industriales Microbiológicos (i); ArgentinaFil: Mella Herrera, R. A.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; ChileFil: Parra, L.. Universidad de la Frontera. Núcleo Científico y Tecnológico en Recursos Naturales; ChileFil: Diez, M. C.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; ChileFil: Rubilar, O.. Universidad de la Frontera. Nucleo Cientifico y Tecnológico En Recursos Naturales; Chil

    Finite size effects near the onset of the oscillatory instability

    Get PDF
    A system of two complex Ginzburg - Landau equations is considered that applies at the onset of the oscillatory instability in spatial domains whose size is large (but finite) in one direction; the dependent variables are the slowly modulated complex amplitudes of two counterpropagating wavetrains. In order to obtain a well posed problem, four boundary conditions must be imposed at the boundaries. Two of them were already known, and the other two are first derived in this paper. In the generic case when the group velocity is of order unity, the resulting problem has terms that are not of the same order of magnitude. This fact allows us to consider two distinguished limits and to derive two associated (simpler) sub-models, that are briefly discussed. Our results predict quite a rich variety of complex dynamics that is due to both the modulational instability and finite size effects

    Illusory Percepts from Auditory Adaptation

    Get PDF
    Phenomena resembling tinnitus and Zwicker phantom tone are seen to result from an auditory gain adaptation mechanism that attempts to make full use of a fixed-capacity channel. In the case of tinnitus, the gain adaptation enhances internal noise of a frequency band otherwise silent due to damage. This generates a percept of a phantom sound as a consequence of hearing loss. In the case of Zwicker tone, a frequency band is temporarily silent during the presentation of a notched broad-band sound, resulting in a percept of a tone at the notched frequency. The model suggests a link between tinnitus and the Zwicker tone percept, in that it predicts different results for normal and tinnitus subjects due to a loss of instantaneous nonlinear compression. Listening experiments on 44 subjects show that tinnitus subjects (11 of 44) are significantly more likely to hear the Zwicker tone. This psychoacoustic experiment establishes the first empirical link between the Zwicker tone percept and tinnitus. Together with the modeling results, this supports the hypothesis that the phantom percept is a consequence of a central adaptation mechanism confronted with a degraded sensory apparatus

    The Genetic Structure and History of Africans and African Americans.

    Get PDF
    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies
    corecore