114 research outputs found

    Recurrent Hepatitis C in Liver Allografts: Prospective Assessment of Diagnostic Accuracy, Identification of Pitfalls, and Observations about Pathogenesis

    Get PDF
    Rationale and Design: The accuracy of a prospective histopathologic diagnosis of rejection and recurrent hepatitis C (HCV) was determined in 48 HCV RNA-positive liver allograft recipients enrolled in an "immunosuppression minimization protocol" between July 29, 2001 and January 24, 2003. Prospective entry of all pertinent treatment, laboratory, and histopathology results into an electronic data-base enabled a retrospective analysis of the accuracy of histopathologic diagnoses and the pathophysiologic relationship between recurrent HCV and rejection. Results: Time to first onset of acute rejection (AR) (mean, 107 days; median, 83 days; range, 7-329 days) overlapped with the time to first onset of recurrent HCV (mean, 115 days; median, 123 days; range, 22-315 days), making distinction between the two difficult. AR and chronic rejection (CR) with and without co-existent HCV showed overlapping but significantly different liver injury test profiles. One major and two minor errors occurred (positive predictive values for AR = 91%; recurrent HCV = 100%) ; all involved an overdiagnosis of AR in the context of recurrent HCV. Retrospective analysis of the mistakes showed that major errors can be avoided altogether and the impact of unavoidable minor errors can be minimized by strict adherence to specific histopathologic criteria, close clinicopathologic correlation including examination of HCV RNA levels, and a conservative approach to the use of additional immunosuppression. In addition, histopathologic diagnoses of moderate and severe AR and CR were associated with relatively low HCV RNA levels, whereas relatively high HCV RNA levels were associated with a histopathologic diagnosis of hepatitis alone, particularly the cholestatic variant of HCV. Conclusions: Liver allograft biopsy interpretation can rapidly and accurately distinguish between recurrent HCV and AR/CR. In addition, the histopathologic observations suggest that the immune mechanism responsible for HCV clearance overlap with those leading to significant rejection

    The Cancer Genomics Resource List 2014

    Get PDF
    Context.— Genomic sequencing for cancer is offered by commercial for-profit laboratories, independent laboratory networks, and laboratories in academic medical centers and integrated health networks. The variability among the tests has created a complex, confusing environment. Objective.— To address the complexity, the Personalized Health Care (PHC) Committee of the College of American Pathologists proposed the development of a cancer genomics resource list (CGRL). The goal of this resource was to assist the laboratory pathology and clinical oncology communities. Design.— The PHC Committee established a working group in 2012 to address this goal. The group consisted of site-specific experts in cancer genetic sequencing. The group identified current next-generation sequencing (NGS)–based cancer tests and compiled them into a usable resource. The genes were annotated by the working group. The annotation process drew on published knowledge, including public databases and the medical literature. Results.— The compiled list includes NGS panels offered by 19 laboratories or vendors, accompanied by annotations. The list has 611 different genes for which NGS-based mutation testing is offered. Surprisingly, of these 611 genes, 0 genes were listed in every panel, 43 genes were listed in 4 panels, and 54 genes were listed in 3 panels. In addition, tests for 393 genes were offered by only 1 or 2 institutions. Table 1 provides an example of gene mutations offered for breast cancer genomic testing with the annotation as it appears in the CGRL 2014. Conclusions.— The final product, referred to as the Cancer Genomics Resource List 2014, is available as supplemental digital content

    arrayMap: A Reference Resource for Genomic Copy Number Imbalances in Human Malignancies

    Get PDF
    Background: The delineation of genomic copy number abnormalities (CNAs) from cancer samples has been instrumental for identification of tumor suppressor genes and oncogenes and proven useful for clinical marker detection. An increasing number of projects have mapped CNAs using high-resolution microarray based techniques. So far, no single resource does provide a global collection of readily accessible oncoge- nomic array data. Methodology/Principal Findings: We here present arrayMap, a curated reference database and bioinformatics resource targeting copy number profiling data in human cancer. The arrayMap database provides a platform for meta-analysis and systems level data integration of high-resolution oncogenomic CNA data. To date, the resource incorporates more than 40,000 arrays in 224 cancer types extracted from several resources, including the NCBI's Gene Expression Omnibus (GEO), EBIs ArrayExpress (AE), The Cancer Genome Atlas (TCGA), publication supplements and direct submissions. For the majority of the included datasets, probe level and integrated visualization facilitate gene level and genome wide data re- view. Results from multi-case selections can be connected to downstream data analysis and visualization tools. Conclusions/Significance: To our knowledge, currently no data source provides an extensive collection of high resolution oncogenomic CNA data which readily could be used for genomic feature mining, across a representative range of cancer entities. arrayMap represents our effort for providing a long term platform for oncogenomic CNA data independent of specific platform considerations or specific project dependence. The online database can be accessed at http://www.arraymap.org.Comment: 17 pages, 5 inline figures, 3 tables, supplementary figures/tables split into 4 PDF files; manuscript submitted to PLoS ON

    Genomic analysis of atypical fibroxanthoma

    Get PDF
    Atypical fibroxanthoma (AFX), is a rare type of skin cancer affecting older individuals with sun damaged skin. Since there is limited genomic information about AFX, our study seeks to improve the understanding of AFX through whole-exome and RNA sequencing of 8 matched tumor-normal samples. AFX is a highly mutated malignancy with recurrent mutations in a number of genes, including COL11A1, ERBB4, CSMD3, and FAT1. The majority of mutations identified were UV signature (C>T in dipyrimidines). We observed deletion of chromosomal segments on chr9p and chr13q, including tumor suppressor genes such as KANK1 and CDKN2A, but no gene fusions were found. Gene expression profiling revealed several biological pathways that are upregulated in AFX, including tumor associated macrophage response, GPCR signaling, and epithelial to mesenchymal transition (EMT). To further investigate the presence of EMT in AFX, we conducted a gene expression meta-analysis that incorporated RNA-seq data from dermal fibroblasts and keratinocytes. Ours is the first study to employ high throughput sequencing for molecular profiling of AFX. These data provide valuable insights to inform models of carcinogenesis and additional research towards tumor-directed therapy

    The immunobiology of primary sclerosing cholangitis

    Get PDF
    Primary sclerosing cholangitis (PSC) is a chronic cholestatic liver disease histologically characterized by the presence of intrahepatic and/or extrahepatic biliary duct concentric, obliterative fibrosis, eventually leading to cirrhosis. Approximately 75% of patients with PSC have inflammatory bowel disease. The male predominance of PSC, the lack of a defined, pathogenic autoantigen, and the potential role of the innate immune system suggest that it may be due to dysregulation of immunity rather than a classic autoimmune disease. However, PSC is associated with several classic autoimmune diseases, and the strongest genetic link to PSC identified to date is with the human leukocyte antigen DRB01*03 haplotype. The precise immunopathogenesis of PSC is largely unknown but likely involves activation of the innate immune system by bacterial components delivered to the liver via the portal vein. Induction of adhesion molecules and chemokines leads to the recruitment of intestinal lymphocytes. Bile duct injury results from the sustained inflammation and production of inflammatory cytokines. Biliary strictures may cause further damage as a result of bile stasis and recurrent secondary bacterial cholangitis. Currently, there is no effective therapy for PSC and developing a rational therapeutic strategy demands a better understanding of the disease

    Acute deterioration of idiopathic portal hypertension requiring living donor liver transplantation: a case report.

    Get PDF
    Case reports of severe idiopathic portal hypertension (IPH) requiring liver transplantation are very rare. We report the case of a 65-year-old woman who was diagnosed as having IPH. At the age of 60 years, her initial symptom was hematemesis, due to ruptured esophageal varices. Computed tomography of the abdomen showed splenomegaly and a small amount of ascites, without liver cirrhosis. She was diagnosed as having IPH and followed-up as an outpatient. Five years later, she developed symptoms of a common cold and rapidly progressive abdominal distension. She was found to have severe liver atrophy, liver dysfunction, and massive ascites. Living donor liver transplantation was then performed, and her postoperative course was uneventful. Histopathological findings of the explanted liver showed collapse and stenosis of the peripheral portal vein. The areas of liver parenchyma were narrow, while the portal tracts and central veins were approximate one another, leading to a diagnosis of IPH. There was no liver cirrhosis. The natural history of refractory IPH could be observed in this case. Patients with end-stage liver failure due to severe IPH can be treated by liver transplantation
    corecore