173 research outputs found

    Not all Fuel-Reduction Treatments Degrade Biocrusts: Herbicides Cause Mostly Neutral to Positive Effects on Cover of Biocrusts

    Get PDF
    In response to increasing fire, fuel‐reduction treatments are being used to minimize large fire risk. Although biocrusts are associated with reduced cover of fire‐promoting, invasive grasses, the impact of fuel‐reduction treatments on biocrusts is poorly understood. We use data from a long‐term experiment, the Sagebrush Steppe Treatment Evaluation Project, testing the following fuel‐reduction treatments: mowing, prescribed fire, and the use of two herbicides: one commonly used to reduce shrub cover, tebuthiuron, and one commonly used to combat cheatgrass, imazapic. Looking at sites with high cover of biocrusts prior to treatments, we demonstrate positive effects of the herbicide, tebuthiuron on lichens with an increase in cover of 10% and trending towards slightly negative effects on moss cover. Across plots, imazapic trended towards a decrease in lichen and moss cover without being statistically significant. Mowing and prescribed fire reduced cover of mosses, with the latter leading to greater declines across sites (declines of 18% vs. 32%). Reductions in moss cover mirrored gains in cover of bare soil, which is associated with increased risk of invasion by grasses responsible for increasing fire risk. We demonstrate that the use of herbicides simultaneously reduces fuels and maintains greater cover of lichens and mosses compared with other fuel‐reduction treatments, possibly reducing risk of invasion by annual grasses that are responsible for increasing fire risk

    Diffuse Migratory Connectivity in Two Species of Shrubland Birds: Evidence from Stable Isotopes

    Get PDF
    Connecting seasonal ranges of migratory birds is important for understanding the annual template of stressors that influence their populations. Brewer’s sparrows (Spizella breweri) and sagebrush sparrows (Artemisiospiza nevadensis) share similar sagebrush (Artemisia spp.) habitats for breeding but have different population trends that might be related to winter location. To link breeding and winter ranges, we created isoscapes of deuterium [stable isotope ratio (δ) of deuterium; δ 2H] and nitrogen (δ 15N) for each species modeled from isotope ratios measured in feathers of 264 Brewer’s and 82 sagebrush sparrows and environmental characteristics at capture locations across their breeding range. We then used feather δ2Hf and δ15Nf measured in 1,029 Brewer’s and 527 sagebrush sparrows captured on winter locations in southwestern United States to assign probable breeding ranges. Intraspecies population mixing from across the breeding range was strong for both Brewer’s and sagebrush sparrows on winter ranges. Brewer’s sparrows but not sagebrush sparrows were linked to more northerly breeding locations in the eastern part of their winter range. Winter location was not related to breeding population trends estimated from US Geological Survey Breeding Bird Survey routes for either Brewer’s or sagebrush sparrows. Primary drivers of population dynamics are likely independent for each species; Brewer’s and sagebrush sparrows captured at the same winter location did not share predicted breeding locations or population trends. The diffuse migratory connectivity displayed by Brewer’s and sagebrush sparrows measured at the coarse spatial resolution in our analysis also suggests that local environments rather than broad regional characteristics are primary drivers of annual population trends

    A global analysis of complexity–biodiversity relationships on marine artificial structures

    Get PDF
    Topographic complexity is widely accepted as a key driver of biodiversity, but at the patch-scale, complexity–biodiversity relationships may vary spatially and temporally according to the environmental stressors complexity mitigates, and the species richness and identity of potential colonists. Using a manipulative experiment, we assessed spatial variation in patch-scale effects of complexity on intertidal biodiversity

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 3. Site Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2016) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) depends on large landscapes of intact habitat of sagebrush and perennial grasses for their existence. In addition, other sagebrush-obligate animals have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals, livestock, and wild horses, and to provide ecosystem services for humans now and for future generations. When a decision is made on where restoration treatments should be applied, there are a number of site-specific decisions managers face before selecting the appropriate type of restoration. This site-level decision tool for restoration of sagebrush steppe ecosystems is organized in nine steps. ●Step 1 describes the process of defining site-level restoration objectives. ●Step 2 describes the ecological site characteristics of the restoration site. This covers soil chemistry and texture, soil moisture and temperature regimes, and the vegetation communities the site is capable of supporting. ●Step 3 compares the current vegetation to the plant communities associated with the site State and Transition models. ●Step 4 takes the manager through the process of current land uses and past disturbances that may influence restoration success. ●Step 5 is a brief discussion of how weather before and after treatments may impact restoration success. ●Step 6 addresses restoration treatment types and their potential positive and negative impacts on the ecosystem and on habitats, especially for greater sage-grouse. We discuss when passive restoration options may be sufficient and when active restoration may be necessary to achieve restoration objectives. ●Step 7 addresses decisions regarding post-restoration livestock grazing management. ●Step 8 addresses monitoring of the restoration; we discuss important aspects associated with implementation monitoring as well as effectiveness monitoring. ●Step 9 takes the information learned from monitoring to determine how restoration actions in the future might be adapted to improve restoration success

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 1. Concepts for Understanding and Applying Restoration

    Get PDF
    Sagebrush steppe ecosystems in the United States currently occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. This restoration handbook is the first in a three-part series on restoration of sagebrush ecosystems. In Part 1, we discuss concepts surrounding landscape and restoration ecology of sagebrush ecosystems and greater sage-grouse that habitat managers and restoration practitioners need to know to make informed decisions regarding where and how to restore specific areas. We will describe the plant dynamics of sagebrush steppe ecosystems and their responses to major disturbances, fire, and defoliation. We will introduce the concepts of ecosystem resilience to disturbances and resistance to invasions of annual grasses within sagebrush steppe. An introduction to soils and ecological site information will provide insights into the specific plants that can be restored in a location. Soil temperature and moisture regimes are described as a tool for determining resilience and resistance and the potential for various restoration actions. Greater sage-grouse are considered landscape birds that require large areas of intact sagebrush steppe; therefore, we describe concepts of landscape ecology that aid our decisions regarding habitat restoration. We provide a brief overview of restoration techniques for sage-grouse habitat restoration. We conclude with a description of the critical nature of monitoring for adaptive management of sagebrush steppe restoration at landscape- and project-specific levels

    Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat—Part 2. Landscape Level Restoration Decisions

    Get PDF
    Sagebrush steppe ecosystems in the United States currently (2015) occur on only about one-half of their historical land area because of changes in land use, urban growth, and degradation of land, including invasions of non-native plants. The existence of many animal species depends on the existence of sagebrush steppe habitat. The greater sage-grouse (Centrocercus urophasianus) is a landscape-dependent bird that requires intact habitat and combinations of sagebrush and perennial grasses to exist. In addition, other sagebrush-obligate animals also have similar requirements and restoration of landscapes for greater sage-grouse also will benefit these animals. Once sagebrush lands are degraded, they may require restoration actions to make those lands viable habitat for supporting sagebrush-obligate animals. Land managers do not have resources to restore all locations because of the extent of the restoration need and because some land uses are not likely to change, therefore, restoration decisions made at the landscape to regional scale may improve the effectiveness of restoration to achieve landscape and local restoration objectives. We present a landscape restoration decision tool intended to assist decision makers in determining landscape objectives, to identify and prioritize landscape areas where sites for priority restoration projects might be located, and to aid in ultimately selecting restoration sites guided by criteria used to define the landscape objectives. The landscape restoration decision tool is structured in five sections that should be addressed sequentially. Each section has a primary question or statement followed by related questions and statements to assist the user in addressing the primary question or statement. This handbook will guide decision makers through the important process steps of identifying appropriate questions, gathering appropriate data, developing landscape objectives, and prioritizing landscape patches where potential sites for restoration projects may be located. Once potential sites are selected, land managers can move to the site-specific decision tool to guide restoration decisions at the site level

    A Synopsis of Short-Term Response to Alternative Restoration Treatments in Sagebrush-Steppe: The SageSTEP Project

    Get PDF
    The Sagebrush Steppe Treatment Evaluation Project (SageSTEP) is an integrated long-term study that evaluates ecological effects of alternative treatments designed to reduce woody fuels and to stimulate the herbaceous understory of sagebrush steppe communities of the Intermountain West. This synopsis summarizes results through 3 yr posttreatment. Woody vegetation reduction by prescribed fire, mechanical treatments, or herbicides initiated a cascade of effects, beginning with increased availability of nitrogen and soil water, followed by increased growth of herbaceous vegetation. Response of butterflies and magnitudes of runoff and erosion closely followed herbaceous vegetation recovery. Effects on shrubs, biological soil crust, tree cover, surface woody fuel loads, and sagebrush-obligate bird communities will take longer to be fully expressed. In the short term, cool wet sites were more resilient than warm dry sites, and resistance was mostly dependent on pretreatment herbaceous cover. At least 10 yr of posttreatment time will likely be necessary to determine outcomes for most sites. Mechanical treatments did not serve as surrogates for prescribed fire in how each influenced the fuel bed, the soil, erosion, and sage-obligate bird communities. Woody vegetation reduction by any means resulted in increased availability of soil water, higher herbaceous cover, and greater butterfly numbers. We identified several trade-offs (desirable outcomes for some variables, undesirable for others), involving most components of the study system. Trade-offs are inevitable when managing complex natural systems, and they underline the importance of asking questions about the whole system when developing management objectives. Substantial spatial and temporal heterogeneity in sagebrush steppe ecosystems emphasizes the point that there will rarely be a “recipe” for choosing management actions on any specific area. Use of a consistent evaluation process linked to monitoring may be the best chance managers have for arresting woodland expansion and cheatgrass invasion that may accelerate in a future warming climate

    Paclitaxel, vinorelbine and 5-fluorouracil in breast cancer patients pretreated with adjuvant anthracyclines

    Get PDF
    We investigated the activity and toxicity of a combination of vinorelbine (VNB), paclitaxel (PTX) and 5-fluorouracil (5-FU) continuous infusion administered as first-line chemotherapy in metastatic breast cancer patients pretreated with adjuvant anthracyclines. A total of 61 patients received a regimen consisting of VNB 25 mg m−2 on days 1 and 15, PTX 60 mg m−2 on days 1, 8 and 15 and continuous infusion of 5-FU at 200 mg m−2 every day. Cycles were repeated every 28 days. Disease response was evaluated by both RECIST and World Health Organization (WHO) criteria. Objective responses were recorded in 39 of 61 patients (64.0%) assessed by WHO and in 36 of 50 patients (72.0%) assessable by RECIST criteria. Complete remission occurred in 15 (24.6%) and 14 patients (28.0%), respectively. The median time to progression and overall survival of entire population was 10.6 and 27.3 months, respectively, and median duration of complete response was 14.8 months. The dose-limiting toxicity was myelosuppression (leucopenia grade 3/4 in 52.5% of patients). Grade 3/4 nonhaematologic toxicities included mucositis/diarrhoea in 13.1%, skin in 3.3% and cardiac in 1.6% of patients. Grade 2/3 neurotoxicity was observed in five patients (7.2%). The VNB, PTX and 5-FU continuous infusion combination regimen was active and manageable. Complete responses were frequent and durable
    • …
    corecore