

W&M ScholarWorks

VIMS Articles

Virginia Institute of Marine Science

2021

A global analysis of complexity–biodiversity relationships on marine artificial structures

Elisabeth M. A. Strain

Peter D. Steinberg

Maria Vozzo

(...)

Kathleen E. Knick

See next page for additional authors

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles

Part of the Marine Biology Commons

Authors

Elisabeth M. A. Strain, Peter D. Steinberg, Maria Vozzo, (...), Kathleen E. Knick, (...), Rochelle D. Seitz, and et al

Global Ecology and Biogeography

A global analysis of complexity-biodiversity relationships on marine artificial structures

Journal:	Global Ecology and Biogeography
Manuscript ID	GEB-2020-0280.R1
Manuscript Type:	Research Papers
Keywords:	Diversity, Habitat structure, Intertidal, Seawalls, Breakwaters, Manipulative experiment

1 2		
3 4 5	1	Aim
6 7	2	Topographic complexity is widely accepted as a key driver of biodiversity, but at the patch-
8 9	3	scale, complexity-biodiversity relationships may vary spatially and temporally according to
10 11	4	the environmental stressors complexity mitigates, and the species richness and identity of
12 13 14	5	potential colonists. Using a manipulative experiment, we assessed spatial variation in patch-
15 16	6	scale effects of complexity on intertidal biodiversity.
17 18	7	Location
19 20 21	8	27 sites within 14 estuaries/bays distributed globally
21 22 23	9	Time period
24 25	10	2015-2017
26 27	11	Major taxa studied
28 29 30	12	Functional groups of algae, sessile and mobile invertebrates
31 32	13	Methods
33 34	14	Concrete tiles of differing complexity (flat; 2.5 cm or 5 cm complex) were affixed at low-
35 36 37	15	high intertidal elevation on coastal defence structures, and the richness and abundance of the
38 39	16	colonising taxa were quantified after 12 months.
40 41	17	Results
42 43 44	18	The patch-scale effects of complexity varied spatially and among functional groups.
44 45 46	19	Complexity had neutral to positive effects on total, invertebrate and algal taxa richness, and
47 48	20	invertebrate abundances. However, effects on the abundance of algae ranged from positive to
49 50	21	negative, depending on location and functional group. The tidal elevation at which tiles were
51 52 53	22	placed accounted for some variation. The total and invertebrate richness were greater at low
54 55	23	or mid than at high intertidal elevations. Latitude was also an important source of spatial
56 57 58 59 60	24	variation, with the effects of complexity on total richness and mobile mollusc abundance

greatest at lower latitudes, whilst the cover of sessile invertebrates and sessile molluscs
responded most strongly to complexity at higher latitudes.

27 Conclusions

After 12 months, patch-scale relationships between biodiversity and habitat complexity were
not universally positive. Instead, the relationship varied among functional groups and
according to local abiotic and biotic conditions. This result challenges the assumption that
effects of complexity on biodiversity are universally positive. The variable effect of
complexity has ramifications for community and applied ecology, including eco-engineering

and restoration that seek to bolster biodiversity through the addition of complexity.

35 Introduction:

Habitat complexity the physical structure of environments, is a key driver of variability in the distribution of biodiversity (Huston, 1979; Kovalenko, Thomaz, & Warfe, 2012). In general, more complex habitats, with a greater density of spatial elements, support greater species richness and abundance, across a range of functional groups, than less complex habitats (McCoy & Bell, 1991; Stein, Gerstner, & Kreft, 2014). Habitat complexity may be derived from both topographic (e.g. undulations, depressions, and protrusions) or biogenic (e.g., trees, grasses, seaweeds, ants, corals and bivalves) structures. Complex habitats can influence the colonisation and subsequent survival of species by determining the area available for organisms to occupy (Connor & McCoy, 1979), which in turn can influence biotic interactions (Hixon & Beets, 1993; Holt, 1987). Complex habitats can also have area-independent effects on niche diversity (Johnson, Frost, Mosley, Roberts, & Hawkins, 2003), and consequently the availability of refuges from environmental stressors and predators (Strain, Cumbo, Morris, Steinberg, & Bishop, 2020). At land- and sea-scape scales complexity enhances biodiversity by increasing habitat heterogeneity and niche space

Global Ecology and Biogeography

2							
3 4	50	(Kovalenko, Thomaz, & Warfe, 2012). However, at smaller scales, biodiversity and habitat					
5 6	51	complexity relationships may vary depending on the type of complexity provided and how it					
7 8 9	52	interacts with the environmental and biological setting (Loke & Todd, 2016).					
9 10 11	53						
12							
13 14	54	The environmental variation among sites at local and biogeographic scales may influence					
15 16	55	patch-scale habitat complexity (hereafter complexity) - biodiversity relationships by					
17 18	56	determining resource availability, environmental conditions, as well as the species pool on					
19 20 21	57	which complexity can act (Johnson et al., 2003); Bracewell et al., 2018). The stress gradient					
22 23	58	hypothesis (Bertness & Callaway, 1994) proposes that positive interactions among species					
24 25	59	(e.g. between habitat-forming and dependent taxa) will be most prevalent in environmentally					
26 27	60	stressful environments, where local habitat amelioration is critical to organismal survival					
28 29 30	61	(Bracewell, Clark, & Johnston, 2018; McAfee, Cole, & Bishop, 2016). Hence, microhabitats					
31 32	62	that ameliorate extreme temperatures and/or desiccation stressors could increase in					
33 34	63	importance with increasing tidal elevation (Bateman & Bishop, 2016) and decreasing latitude					
35 36 37	64	(Bracewell et al., 2018). Conversely, the patch-scale effects of complexity may be consistent					
38 39	65	across latitude if the local species are adapted to their local conditions or could have a greater					
40 41	66	influence in locations where there is a greater difference between the air and sea					
42 43	67	temperatures.					
44 45							
46 47 48	68						
49 50	69	Additionally, complexity may be expected to have greatest patch-scale effects on biodiversity					
51 52	70	in environments where there is a diverse species pool on which it can act, whereby, the					
53 54	71	effects of complexity may vary across latitudinal gradients in species richness (Bracewell et					
55 56 57	72	al., 2018). At local scales, anthropogenic stressors such as contaminants may over-ride the					
57 58 59 60	73	effects of complexity where they create conditions that are inhibitory to the survival of most					

2 3	
5 4	
5	
6	
7	
8	
10	
9 10 11 12 13 14 15 16 17 18 19	
12	
13	
14	
15	
16 17	
17	
18	
19	
20	
20 21 22 23 24	
22	
25 7/	
24 25	
26	
27	
28	
29	
30	
31	
32	
22	
34 35	
35	
36	
37 38	
38 39	
40	
41 42	
42 43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57 50	
58 59	
59 60	
00	

1 2

species (Mayer-Pinto, Matias, & Coleman, 2016). How species abundance and, hence, 74 richness responds to complexity may also vary according to the dominant functional groups 75 76 present at a given location (Strain, Olabarria, et al., 2018). Functional groups, defined here as groups of organisms displaying distinct life-forms, that differ in their niche requirements, 77 tolerance to environmental stressors, and susceptibility to predation (Micheli & Halpern, 78 79 2005). While, overall, increasing complexity is expected to enhance microhabitat diversity 80 and niche space, the availability of some microhabitat types will decline and others will 81 increase with different types of complexity (Kelaher, 2003).

The taxa whose niche requirements are favoured by increasing complexity will benefit at the 83 84 expense of other taxa whose niches match microhabitats that decline in abundance or area (Malumbres-Olarte, Vink, Ross, Cruickshank, & Paterson, 2013). For example, on intertidal 85 rocky shores, algae can be among the dominant space occupants of well-lit yet wet 86 microhabitats (e.g. rockpools), that prevent desiccation, and allow adequate light for 87 photosynthesis (Wilson, James, Newman, & Myers, 1992). In contrast, mobile invertebrates, 88 particularly sessile invertebrates benefit from microhabitats (e.g. crevices) that provide 89 protection from predators, but are also sufficiently shaded that their algal competitors cannot 90 survive (Glasby, 1999; Miller & Etter, 2008). Stress-sensitive taxa may benefit more than 91 92 stress-tolerant taxa from microhabitats that ameliorate environmental stressors (Darling et al., 2017). Similarly, taxa that are more susceptible to predation (i.e. lack morphological or 93 behavioural defences) or have body sizes that most closely match the size of the 94 95 microhabitats may benefit most from complexity-mediated predator amelioration (Strain, 96 Morris, et al., 2018). Experimental research on the effects of increasing complexity on different functional groups (i.e. algae, sessile invertebrates, and mobile invertebrates) is 97 lacking (but see Strain et al. 2020). 98

1 2		
2 3 4	99	Few studies have examined the effects of complexity at large spatial scales, across functional
5 6	100	groups and the influence of varying environmental contexts, to test the generality of patch-
7 8 9	101	scale complexity-biodiversity relationships. Understanding how complexity underpins
9 10 11	102	richness and abundance of different taxa and functional groups across a range of
12 13	103	environmental conditions is of particular importance, given accelerating habitat loss and
14 15	104	homogenisation (Kovalenko et al., 2012). In urban marine environments, natural habitats are
16 17 18	105	being replaced by artificial structures (e.g. seawalls, groynes, breakwaters and wharves) with
19 20	106	reduced complexity (Airoldi, Connell, & Beck, 2009; Bulleri & Chapman, 2010). Such
21 22	107	habitat homogenisation often occurs simultaneously with other anthropogenically-derived
23 24	108	environmental changes, such as pollution and/or species invasions (McKinney, 2008). The
25 26 27	109	smooth, relatively homogenous, surfaces of artificial structures typically support fewer native
28 29	110	species and individuals (Chapman, 2003), but more non-native species (Airoldi & Bulleri,
30 31	111	2011) compared to the more complex natural habitats they replace.
32 33		
24	112	
34 35 36	112	
35 36 37	112 113	There has been increasing interest in how complexity might be incorporated into the design
35 36 37 38 39		There has been increasing interest in how complexity might be incorporated into the design of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al.,
35 36 37 38 39 40 41 42	113	
35 36 37 38 39 40 41 42 43 44	113 114	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al.,
35 36 37 38 39 40 41 42 43 44 45 46	113 114 115	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al., 2020). The addition of complexity to topographically homogenous marine urban structures
35 36 37 38 39 40 41 42 43 44 45	113 114 115 116	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al., 2020). The addition of complexity to topographically homogenous marine urban structures has been proposed as a mechanism by which the overall richness and abundances of key
 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	113 114 115 116 117	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al., 2020). The addition of complexity to topographically homogenous marine urban structures has been proposed as a mechanism by which the overall richness and abundances of key functional groups might be enhanced (Strain et al. 2018). However, the manner in which
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53	113 114 115 116 117 118	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al., 2020). The addition of complexity to topographically homogenous marine urban structures has been proposed as a mechanism by which the overall richness and abundances of key functional groups might be enhanced (Strain et al. 2018). However, the manner in which complexity acts will be context dependent and researchers have recommended that latitudinal
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	113 114 115 116 117 118 119 120	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al., 2020). The addition of complexity to topographically homogenous marine urban structures has been proposed as a mechanism by which the overall richness and abundances of key functional groups might be enhanced (Strain et al. 2018). However, the manner in which complexity acts will be context dependent and researchers have recommended that latitudinal and biogeographic considerations are taken into account prior to design or construction
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	113 114 115 116 117 118 119	of marine urban structures so as to enhance their ecological value (O'Shaughnessy et al., 2020). The addition of complexity to topographically homogenous marine urban structures has been proposed as a mechanism by which the overall richness and abundances of key functional groups might be enhanced (Strain et al. 2018). However, the manner in which complexity acts will be context dependent and researchers have recommended that latitudinal and biogeographic considerations are taken into account prior to design or construction

122	Using standardized experiments on a global scale, we investigated how manipulating one
122	Using standardised experiments on a global scale, we investigated how manipulating one
123	form of complexity (crevices/ridges) on tiles affected the richness and abundance of
124	colonising taxa at fourteen urban estuaries or bays spread across nine biogeographic realms.
125	We predicted that patch-scale complexity would have a positive influence on the taxa
126	richness and abundances of all sessile and mobile invertebrates functional groups but not
127	algae, which have higher light requirements, because of greater shading in the crevices
128	(Strain et al., 2020). Furthermore, we expected that the positive effects of increased
129	complexity on richness and abundances of sessile and mobile invertebrates would increase
130	with tidal elevation and with decreasing latitude, as desiccation stress and extreme high
131	temperatures increase, respectively. Finally, we hypothesised that complexity would have a
132	reduced effect on the richness and abundances of sessile and mobile invertebrates in highly
133	polluted environments such as those located near marinas or ports, where the effects of
134	pollution can over-ride the effects of complexity (Mayer-Pinto et al. 2018).
135	
136	pollution can over-ride the effects of complexity (Mayer-Pinto et al. 2018). Materials and methods
137	Study sites
138	Experimental manipulations were conducted at 27 sites, distributed across 14 locations
139	globally (Fig. 1). There were two sites at each location, except for Herzliya Marina, Israel,
140	which hosted a single site. The locations were all in estuaries or bays situated along urbanise
141	coastlines, and were partners in the World Harbour Project (www.worldharbourproject.com)

ed <u>)</u>. Each had a semi-diurnal tidal regime and well mixed marine waters. Within locations, each site comprised a vertical seawall or breakwater that extended from the shallow subtidal or the low intertidal to the high intertidal zone. Sites at least 0.1 km apart, were of variable proximity to port facilities or marinas, and varied in tidal height, tidal range, temperature

2		
3 4	146	(average, minimum and maximum) and concentration of heavy metals (see Supplementary
5 6 7	147	S1).
8 9 10	148	
10 11 12	149	Fig 1: Map showing the experimental locations. Locations are ordered by biogeographic
13 14	150	realm.
15 16	151	
17 18 19	152	Experimental design
20 21	153	At each site, 0.25×0.25 m concrete tiles were affixed to the coastal defence structures (i.e.
22 23	154	seawalls, or breakwaters). The tiles allowed manipulation of intertidal habitat complexity by
24 25	155	provisioning crevices and ridges as well as associated increase in surface area. The tiles,
26 27 28	156	designed and manufactured by Reef Design Lab (Melbourne, Australia), were flat (surface
28 29 30	157	area = 0.0625 m^2), had 0.025 m high ridges separated by $0.015 \text{ to } 0.05 \text{ m}$ wide crevices
31 32	158	(hereafter '2.5 cm complex'; surface area = 0.090 m^2) or had 0.05 m high ridges, each
33 34 35	159	separated by 0.015 to 0.05 m wide crevices (hereafter '5 cm complex'; surface area = 0.136
35 36 37	160	m ² ; Fig. 2). At each site, five tiles of each design were either directly attached to the
38 39	161	structures, in the centre of 0.3×0.3 m patches cleared of pre-existing flora and fauna, or
40 41	162	attached to wood backing boards that were suspended off the top of the structures using rope
42 43 44	163	or nails. Tiles were attached to the structures, backing boards or steel frames using bolts that
45 46	164	were placed through a drilled hole in two to four corners of the tiles. At each site, the tiles
47 48	165	were deployed in a single horizontal row, from a low to high intertidal elevation, depending
49 50 51	166	on the location. Tiles were deployed in random order with respect to the experimental
52 53	167	treatments, with the complex tiles positioned so that the crevices and ridges were orientated
54 55	168	vertically. In temperate locations, the tiles were deployed between early spring to late autumn
56 57 58	169	during the period of greatest species recruitment and growth (Table S1).
59 60	170	

Fig 2: The three experimental treatments: a) flat, b) 2.5 cm complex, c) 5 cm complex. **Colonising taxa** After 12 months, all tiles were removed from the field, individually bagged and frozen until analysis. On each tile, we recorded the identity and percentage cover (pooling across primary and secondary growth) of all sessile algae and invertebrate taxa and removed all mobile invertebrates (> 500 μ m), using tweezers and by carefully rinsing the tile area with seawater over a 500 µm sieve from the whole tile or two subsamples, depending on location (Supplementary S1). At locations where subsampling was conducted, these were from one pre-determined crevice (0.016 m^2) and one ridge (0.013 m^2) of each complex tile, that were not adjacent to each other, but were pooled for the purposes of the analyses. On flat tiles, two areas of similar size were subsampled and pooled. A pilot study conducted using Sydney data revealed similar treatment effects on the richness and abundance of colonising taxa, irrespective of whether a subsample or the full tile was sampled (Supplementary S2). All taxa were identified to species or morphospecies using dissecting microscopes and then classified into three coarser-level functional groups (hereafter 'functional groups') including algae, sessile invertebrates and mobile invertebrates as well as nineteen finer-level functional groups (Supplementary S2) based on the CATAMI classification guide (Althaus et al., 2015); hereafter 'CATAMI groups.

Environmental parameters

To test hypotheses about potential sources of variability in complexity effects, we estimated the tidal elevation, temperature, and proximity to boating facilities of tiles at each study site.

1		
2 3 4	195	For tidal elevation we recorded the inundation period (proportion of time underwater) of the
5 6	196	tiles using a pressure logger. At each site, one pressure logger was attached to the top of a flat
7 8	197	tile and programmed to record water depth every 20 min for a period of one-month.
9 10 11	198	Measurements were made using either a Sensus Ultra (Reefnet Pty Ltd; +/- 0.03 m accuracy),
12 13	199	a Hobo Onset (Onsetcomp; +/- 0.02 m accuracy) or EasyTREK SP-300 (NIVELCO; +/-
14 15	200	0.05% of the measured range accuracy). Based on these measurements, the tidal elevation
16 17	201	was categorised as either high (inundated for <33% of the tidal cycle), mid (inundated for
18 19	202	>34 to 65% of the tidal cycle) or low (inundated for >66% of the tidal cycle; Supplementary
20 21 22	203	S1).
23 24		
25 26	204	S1).
27 28	205	Throughout the 12-month experiment, we took measurements of temperature at 21 sites
29 30 31	206	(Supplementary S1). At each site, we deployed three DS1921G Themochron iButton data
32 33	207	loggers (Thermodata Pty. Ltd. Warrnambool, Australia) haphazardly on flat tiles. The
34 35	208	iButtons were waterproofed with Plastidip rubber coating (Plasti Dip International, Blaine,
36 37	209	Minnesota, USA). The iButtons were programmed to record temperatures at 20 min intervals,
38 39	210	across a one-month period, with 0.5°C accuracy. The iButtons were attached to the tiles using
40 41 42	210	cable ties so that they could easily be removed, downloaded, and replaced each month. Mean
43 44		
45	212	(both aerial and in water), maximum (aerial) and minimum (aerial) temperature were
46 47	213	negatively correlated with absolute latitude at the 21 sites (Supplementary S4). Hence, to
48 49 50	214	avoid issues with collinearity between these two predictor variables, subsequent analyses
50 51 52	215	were run only on latitude of study sites.
53 54	216	
55 56	217	At the end of the experiment, we measured the distance from the centre of each site to the
57 58 59	218	nearest boating facility (port or marina) using satellite images in Google Earth. For 17 sites,
59 60		

2		
3 4	219	we also obtained information on the concentration of copper from sediment sampling
5 6	220	(Supplementary S1). Increasing distance of study sites to the nearest boating facility was
7 8 9	221	negatively correlated (but not significantly) with the amount of copper (historically used as
9 10 11	222	an antifouling agent; Dafforn et al. 2011) in sediment at the 17 sites for which both sets of
12 13	223	data were available (Supplementary S4). Hence, distance to the nearest boating facility,
14 15	224	which could be measured for all 27 sites, was used as a proxy for contamination.
16 17 18	225	
19 20	226	Analyses
21 22	227	
23 24 25	228	We used multivariate generalised linear modelling to test the effects of complexity (fixed, 3
26 27	229	levels: flat, 2.5 cm or 5 cm), location (fixed, 14 levels) and site nested within location (fixed
28 29	230	1-2 levels) on the abundances of each of the 19 CATAMI groups. These data were modelled
30 31 32	231	using a negative binomial distribution due to overdispersion from the Poisson distribution.
33 34	232	Where multivariate analyses indicated a significant main effect of treatment, or an interaction
35 36	233	of treatment with location or site(location) univariate post hoc test statistics and p-values
37 38	234	were calculated for each group separately adjusting for multiple comparisons. For those
39 40 41	235	groups found to have significant effects of treatment (either occurring independently of or
42 43	236	interacting with spatial factors), pairwise differences between treatment levels, were assessed
44 45	237	using univariate linear models (LMs). Where both the treatment \times location and treatment \times
46 47 48	238	site (location) were significant, only the treatment \times location interaction was interpreted as its
49 50	239	significance demonstrates effects of location that are apparent over smaller site-scale
51 52	240	variability. Similarly, we used LMs or generalised linear models (GLMs) with the factors
53 54 55	241	complexity, location and site nested within location to compare the richness and abundances
56 57	242	(cover or counts) of total taxa, algae, sessile invertebrates and mobile invertebrates across
58 59	243	treatments, at 12 months.
60		

1 2		
3 4	244	
5 6	245	To test hypotheses about whether the effects of complexity on the richness and abundances of
7 8 9	246	the key functional groups on the tiles, varied by tidal elevations, latitude and distance from
10 11	247	the nearest marina or port, we used analyses on the standard mean difference (SMD) between
12 13	248	the 5 cm and flat tile. The Hedge's G SMD was calculated at the scale of site, using the
14 15 16	249	average and standard deviation of the five tiles sampled within each site, for each treatment.
17 18	250	We chose the SMD effect size rather than the log response ratio because these data contained
19 20	251	many zeros (i.e. no species observed and/or no variance observed between replicates within
21 22 23	252	the same treatment) (Borenstein, Hedges, Higgins, & Rothstein, 2010). We tested the effects
23 24 25	253	of tidal zone, latitude and distance to the nearest marina or port using the Hedges random
26 27	254	effects estimator (Hedges, 1981) with the package metafor (Viechtbauer, 2010). For the
28 29	255	analyses testing the effects of tidal zone, we adjusted for the effects of location, by adding
30 31 32	256	location as a moderator in a multilevel random effects model.
33 34	257	
35 36	258	All statistical analyses were undertaken in R 3.5.0 (R Core Team, 2016). For all models we
37 38 39	259	offset the sample area (m ²), to separate the effects of complexity from surface area.
40 41	260	Generalised linear models were undertaken in the package MASS and figures were produced
42 43	261	using the package ggplot 2 (Wickham, 2016). The multivariate analyses were undertaken
44 45 46	262	with the packages mvabund and boral (Hui, 2016). All models were checked for over-
40 47 48	263	dispersion and spatial and temporal autocorrelation with plots, and the residuals were visually
49 50	264	inspected for heteroscedasticity. Where appropriate, post hoc comparisons were undertaken
51 52	265	using the package emmeans (Lenth, Singmann, & Love, 2018) to identify sources of
53 54 55	266	treatment effects.
56 57	267	
58 59	268	Results
60		

269 Effect of complexity on richness

The effect of complexity on total taxa richness and the richness of each of the three coarselevel functional groups (algae, sessile invertebrates, and mobile invertebrates) varied among locations (Fig. 3, Table 1, Supplementary S5). Where significant effects were seen, the 2.5 cm and/or the 5 cm complex tiles (i.e. with cervices/ridges) supported greater taxa richness than the flat tiles (Table 1). Total taxa richness was greater on the 5 cm complex tiles than the flat tiles (by 0.8 - 2.7 times) at 10 of the 14 locations and on the 2.5 cm complex relative to the flat tiles at eight locations, with no effect of complexity on total richness at four locations (Fig. 3, Table 1, Supplementary S5). Algal richness was greater on 5 cm complex tiles (by 1.1-2.4 times) than on the 2.5 cm complex tiles or the flat tiles at two locations, but displayed no significant effect of complexity at the other 12 locations (Table 1, Supplementary S5). Sessile invertebrates were more speciose on the 5 cm complex tiles than on flat tiles at nine locations (by 1.0-1.8 times), and more speciose on the 2.5 cm complex than flat tiles at seven locations, but did not differ among treatments at the other five locations (Table 1, Supplementary S5). There were more mobile species on the 5 cm complex tiles compared with the flat tiles at eight locations (1.0-2.4 times), and on the 2.5 cm complex tiles relative to flat tiles at five locations, with no significant differences for the other nine locations (Table 1, Supplementary S5). Fig 3: Effect of complexity (flat and 2.5 cm or 5 cm complex tiles) on the mean (+/-SE) total taxa richness at each of fourteen locations by realm (n = 1 or 2 sites per location). Significant differences (at $\alpha = 0.05$) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are

indicated by '>' or '<', with 'ns' or '=' denoting treatments that did not significantly differ.

1	
2 3 4	294
4 5 6	295
7 8	296
9 10	297
11 12	298
13 14	290
15 16	
17 18	
19 20 21	
21 22 23	
24 25	
26 27	
28 29	
30 31	
32 33	
34 35	
36 37	
38 39	
40 41	
42 43 44	
44 45 46	
47 48	299
49 50	300
51 52	301
53 54	302
55 56	303
57 58	304
59 60	

differences (at			the total richness and the richness and abundance of functional groups. Significant					
differences (at	· · · ·							
	differences (at $\alpha = 0.05$) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are							
indicated by '>' or '<', with 'ns' or '=' denoting treatments that did not significantly differ.								
Locations are	ordered b	y realm. Detai	ls of these anal	lyses are g	iven in Append	lices S4.		
Response	Richness			Abundan	ces (percentage	cover or counts		
Functional group	Algae	Sessile invertebrate	Mobile invertebrate	Algae	Sessile invertebrates	Mobile invertebrate		
1. Sydney	F=2.5<5	F=2.5<5	F<2.5=5	ns	F=2.5<5	F=2.5<5		
2. Auckland	ns	F<2.5<5	F<2.5=5	ns	F<2.5=5	F<2.5=5		
3. Hobart	ns	F=2.5<5	F=2.5<5	ns	F<2.5=5	F=2.5<5		
4. East London	ns	ns	F=2.5<5	ns	ns	F=2.5<5		
5. Penang	ns	F<2.5=5	Ns	ns	ns	Ns		
6. Hong Kong	ns	F<2.5=5	F<2.5=5	ns	F<2.5=5	F<2.5=5		
7. Keelung	ns	ns	F<2.5=5	ns	Ns	F=2.5<5		
8. Herzliya	ns	F<2.5=5	Ns	ns	F<2.5=5	F<2.5=5		
9. Ravenna	ns	F<2.5=5	Ns	ns	Ns	ns		
10. Plymouth	ns	ns	Ns	ns	F<2.5=5	ns		
11. Chesapeake Bay	ns	F<2.5=5	F=2.5<5	F<2.5=5	F<2.5=5	F<2.5=5		
12. San Francisco	ns	ns	Ns	ns	Ns	ns		
13. Arraial do Cabo	F=2.5<5	F<2.5=5	Ns	ns	Ns	F=2.5<5		
14. Coquimbo	ns	ns	F<2.5=5	F<2.5=5	F<2.5=5	F<2.5=5		

306 Effect of complexity on abundances

The effects of complexity varied among functional groups (algae, sessile and mobile invertebrates) and the 19 CATAMI groups, and within these groupings, according to location and/or site (Table 1, Table 2, Supplementary S5-S6). The abundances (i.e. percentage cover or counts) of algae, sessile and mobile invertebrates (Table 1, Supplementary S5) as well as that of encrusting macroalgae, bryozoans, sessile and mobile crustaceans, sessile and mobile molluscs and sessile worms each displayed significant positive effects of the 2.5 cm and/or the 5 cm complex tiles relative to the flat tiles, at one or more locations, with non-significant effects at the remaining (Table 2, Supplementary S5). The abundances of mobile crustaceans and mobile molluscs showed significant positive effects of either the 2.5 cm and/or 5 cm tiles compared with the flat tiles, at some sites, but these differences were not consistent between sites within locations (Tables 2, Supplementary S6). The effects of complexity were, among locations, spatially variable in both occurrence and direction for filamentous/filiform macroalgae cover and mobile worm abundances and between sites for foliose macroalgae cover (Table 2, Supplementary S6). Although present on tiles, globose saccate macroalgae, articulated calcareous macroalgae, ascidians, cnidarians, sponges, hexapods, arthropods and echinoderms displayed patterns in abundance that did not respond to complexity, at any of the sites or locations (Table 2, Supplementary S6).

Global Ecology and Biogeography

Table 2: Overview of the posthoc tests for significant complexity by location or complexity by site(location) interactions in the abundance of

328 CATAMI groups. Significant differences (at $\alpha = 0.05$) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are denoted with '>' or '<',

329 with 'ns' or '=' denoting treatments that did not differ. Locations are ordered by realm. Details of these analyses are given in supplementary S5.

Response	Abundances (pe	rcentage cove	r or counts)							
Functional group	Filamentous filiform algae (%)	Foliose algae (%)	Encrusting algae (%)	Bryozoans (%)	Sessile crustaceans (%)	Sessile molluscs (%)	Sessile worms (%)	Mobile crustacea (counts)	Mobile molluscs (counts)	Mobile worms (counts)
1. Sydney	F=2.5<5	Site 1 F<2.5<5 Site 2 ns	F=2.5<5	F=2.5<5	F=5<2.5	F<2.5<5	F=2.5<5	Site 1 F=2.5<5 Site 2 F<2.5<5	F<2.5<5	F=2.5<5
2. Auckland	ns	Site 1 F>2.5>5 Site 2 ns	ns	ns	F<2.5<5	ns	F=2.5<5	Site 1 F<2.5<5 Site 2 F<2.5<5	F<2.5<5	F=2.5<5
3. Hobart	ns	Site 1 F=5<2.5	ns	ns	F<2.5<5	F<2.5<5	ns	Site 1 F=5<2.5 Site 2 ns	F<2.5<5	F>2.5<5
4. East London	ns	Site 1 F>2.5>5 Site 2 F=2.5<5	F=2.5<5	ns	ns	ns	ns	ns	F<2.5<5	ns
5. Penang	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns
6. Hong Kong	ns	ns	ns	ns	F<2.5<5	F=5<2.5	ns	Site 1 F<2.5<5 Site 2 F<2.5<5	F<2.5<5	ns
7. Keelung	F>2.5>5	ns	ns	ns	ns	ns	F=2.5<5	Site 1 ns Site 2 F<2.5<5	F<2.5<5	ns
8. Herzliya	ns	ns	ns	F<2.5<5	F=2.5<5	ns	F=2.5<5	ns	ns	ns
9. Ravenna	ns	ns	ns	ns	F=5<2.5	F<2.5<5	ns	ns	ns	ns

10. Plymouth	ns	Site 1 F=5<2.5 Site 2 ns	ns	F=5<2.5	F<2.5<5	F=2.5<5	ns	ns	ns	ns
11. Chesapeake Bay	ns	ns	ns	ns	ns	F<2.5<5	ns	Site 1 F<2.5<5 Site 2 F=2.5<5	ns	F<2.5<5
12. San Francisco	ns	ns	ns	ns	F<2.5<5	ns	ns	Site 1 F>2.5>5 Site 2 ns	F>2.5>5	ns
13. Arraial do Cabo	ns	ns	F<2.5<5	ns	F<2.5<5	ns	F<2.5<5	ns	F<2.5<5	ns
14. Coquimbo	F>2.5>5	Site 1 F>2.5>5 Site 2 ns	ns	ns	F<2.5<5	ns	ns	ns	F<2.5<5	ns

er Review

1		
2		
3 4	331	
5 6	332	Correlates of spatial variation in effects of complexity
7 8	333	
9 10 11	334	The standard mean difference (SMD) of total, sessile invertebrate and mobile invertebrate
12 13	335	richness, the percentage cover of filamentous/filiform macroalgae, encrusting algae, sessile
14 15	336	bivalves, sessile crustaceans, sessile worms and the abundances of mobile worms on the 5 cm
16 17 18	337	compared to the flat tiles varied significantly among tidal zones (Fig. 4, Supplementary S7).
19 20	338	Significant differences in the SMDs were found in the mid and low tidal zone for each of
21 22	339	total and sessile and mobile invertebrate richness and in the high, mid and low tidal zone for
23 24 25	340	the abundances of mobile molluscs (Fig. 4, Supplementary S7). In contrast, the difference in
26 27	341	the SMD was only significant in the high tidal zone for the percentage cover of encrusting
28 29	342	algae and in the mid and high tidal zones for the percentage cover of sessile worms and the
30 31 32	343	abundances of mobile crustaceans. The percentage cover of sessile bivalves and sessile
33 34	344	crustaceans and the abundances of mobile worms displayed differences in the SMDs that
35 36	345	were only significant in the mid-tidal zone and in the low tidal zone for the percentage cover
37 38 39	346	of filamentous algae (Fig. 4, Supplementary S7).
40 41	347	
42 43	348	The SMD in the richness of sessile invertebrate species between the 5 cm complex and flat
44 45	349	tiles increased with distance from the nearest marina or port. However, the SMD for other
46 47 48	350	groups was unaffected by this variable (Supplementary S7). The SMD of total taxa richness
49 50	351	significantly decreased with latitude (Fig. 5), as did abundance of molluscs, while conversely,
51 52	352	SMD of percentage cover of sessile bivalves increased with latitude (Supplementary S7). All
53 54 55	353	other groups were unaffected by latitude (Supplementary S7).
56 57	354	
58 59 60	355	

1 2		
2 3 4	356	Fig. 4: Effects of tidal zones on the standard mean difference SMD (+/-CI) in a) richness of
5 6	357	total taxa, algae, sessile invertebrates and mobile invertebrates and b) abundances (percentage
7 8 9	358	cover or abundance) of key CATAMI groups between 5 cm complex and flat tiles (high $n = 5$
9 10 11	359	sites, mid $n = 18$ sites, and low $n = 4$ sites). Effects are significant if the confidence intervals
12 13	360	do not overlap zero (dashed line). Significant differences (at $\alpha = 0.05$) between high (H), and
14 15	361	mid (M) or low (L) tidal zones are indicated by '>' or '<'.
16 17 19	362	
18 19 20	363	
21 22	364	
23 24		
25 26	365	Fig. 5: Effects of absolute latitude on the standard mean differences SMD in total taxa
27 28	366	between 5 cm complex and flat tiles ($n = 27$ sites), where the size of the circle varies
29 30 31	367	according to the variance.
32		
33	368	
33 34 35	368 369	
33 34 35 36 37	369 370	Discussion
33 34 35 36 37 38 39	369 370 371	
33 34 35 36 37 38 39 40 41	369 370	The incorporation of complexity into artificial structures is increasingly being advocated as a
 33 34 35 36 37 38 39 40 41 42 43 	369 370 371	
 33 34 35 36 37 38 39 40 41 42 	369 370 371 372	The incorporation of complexity into artificial structures is increasingly being advocated as a
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	369 370 371 372 373	The incorporation of complexity into artificial structures is increasingly being advocated as a mechanism to maintain or enhance native biodiversity, but most studies to date have
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	369 370 371 372 373 374	The incorporation of complexity into artificial structures is increasingly being advocated as a mechanism to maintain or enhance native biodiversity, but most studies to date have examined effects of complexity on marine built structures over a relatively narrow range of
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	369 370 371 372 373 374 375	The incorporation of complexity into artificial structures is increasingly being advocated as a mechanism to maintain or enhance native biodiversity, but most studies to date have examined effects of complexity on marine built structures over a relatively narrow range of environmental conditions (reviewed by Strain et al. 2018). Our study, spanning 27 sites from
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 	369 370 371 372 373 374 375 376	The incorporation of complexity into artificial structures is increasingly being advocated as a mechanism to maintain or enhance native biodiversity, but most studies to date have examined effects of complexity on marine built structures over a relatively narrow range of environmental conditions (reviewed by Strain et al. 2018). Our study, spanning 27 sites from 14 locations across the globe, provided the first experimental test of how effects of patch-
 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 	369 370 371 372 373 374 375 376 377	The incorporation of complexity into artificial structures is increasingly being advocated as a mechanism to maintain or enhance native biodiversity, but most studies to date have examined effects of complexity on marine built structures over a relatively narrow range of environmental conditions (reviewed by Strain et al. 2018). Our study, spanning 27 sites from 14 locations across the globe, provided the first experimental test of how effects of patch-scale complexity on artificial structures vary across very large spatial scales. After 12

2		
3 4	381	latitude. These results challenge the paradigm that environmental that complexity has
5 6	382	universally positive effects on biodiversity (Huston, 1979) and instead support the growing
7 8 9	383	assertion (Beck, 1998) that at the patch-scale effects of complexity on biodiversity can vary
10 11	384	in magnitude and direction according to local abiotic and biotic stressors, niche requirements
12 13	385	of the dominant taxa and the scale of complexity provided.
14 15 16 17	386	
18 19	387	The study, which manipulated a single type of habitat complexity (crevices/ridges), was not
20 21	388	designed to disentangle complexity effects arising from enhancement of surface area and
22 23 24	389	microhabitat diversity. The complex tiles not only had greater surface area but, in providing
25 26	390	crevices and ridges, provided greater microhabitat diversity than the flat tiles that had only a
27 28	391	single microhabitat type. These crevices and ridges have previously been demonstrated to
29 30 31	392	differ in light, humidity, temperature, and predator access (Strain et al. 2018; 2020),
32 33	393	supporting distinct communities of algae and invertebrates (Strain et al. 2020). The spatially
34 35	394	variable effects of crevices and ridges on biodiversity suggest that differences between
36 37	395	complex and flat treatments did not simply reflect the greater surface area of the former, but
38 39 40	396	also modification of environmental conditions and biological interactions by the
41 42	397	microhabitats. Further, whereas differences were consistently found between complex and
43 44	398	flat tiles, differences between the two complex treatments, with 5 cm or 2.5 cm deep cervices,
45 46 47	399	were often absent, suggesting a greater role of microhabitat identity and diversity than surface
48 49	400	area in driving the patterns.
50 51 52	401	
53 54 55	402	Whereas effects of the complex tiles on the richness and abundance of invertebrate groups
56		

algae were highly variable, not only in occurrence, but also direction. The sessile invertebrate

were, where present, positive, effects of the complex tiles on the richness and abundance of

groups that responded most positively to the cervices and ridges provided by this study were taxa that are limited to shaded and moist low intertidal and subtidal shore (such as bryozoans) (Miller & Etter, 2008), and taxa commonly targeted by benthic predators (e.g. molluscs, crustaceans, worms) (Janssen, Sabelis, Magalhães, Montserrat, & Van der Hammen, 2007; Strain, Morris, et al., 2018). In contrast, the mobile invertebrates that responded positively were taxa that could rapidly colonise by migration from nearby habitats (e.g. mobile molluscs and crustaceans), (Martins, Thompson, Neto, Hawkins, & Jenkins, 2010). These taxa were predominantly found in the protective crevices of the complex tiles, suggesting that the provision of refugia could have played an important role (Strain et al., 2020). Filamentous and foliose macroalgae were negatively affected by complexity at some sites, despite the overall greater surface area of complex tiles. This may be because light in the crevices was insufficient to meet the needs of these taxa that have high light requirements (Markager & Sand-Jensen, 1992), or alternatively because of enhanced top-down control by the abundant grazer communities in the crevices. Encrusting algae, which have low light requirements (Markager & Sand-Jensen, 1992) and a tough thallus that deters grazers (Bertness, Yund, & Brown, 1983) were the only algal group to consistently respond positively to complexity. Thermal and desiccation stress have long been implicated in setting the upper distributional limits of organisms intertidally (Harley, 2003; Wolcott, 1973) while classically, the lower distributional limits are thought to be set by biological interactions such as competition and predation (Connell, 1961). Consistent with this thinking and previous within-site comparisons of complexity-biodiversity relationships among elevations (Cordell et al. 2017), we found the effects of added complexity on taxa richness and abundance of colonising organisms differed among tidal elevations, as well as among functional groups. Total taxa richness and the richness of sessile and mobile invertebrates responded most strongly to complexity in the low

1		
2 3 4	430	inter
5 6	431	inve
7 8	432	inter
9 10 11	433	bodi
12 13	434	com
14 15	435	that
16 17 18	436	(Bul
19 20	437	artif
21 22	438	influ
23 24 25	439	prov
26 27	440	Bloc
28 29	441	
30 31 32	442	Add
33 34	443	taxa
35 36	444	effe
37 38 20	445	whe
39 40 41	446	gene
42 43	447	reve
44 45	448	temj
46 47 48	449	cons
49 50	450	rich
51 52	451	Osm
53 54 55	452	likel
55 56 57	453	recr
58 59 60	454	
00		

430	intertidal zone, but the richness and abundances of algae, and abundances of sessile
431	invertebrates responded more strongly in the mid and high intertidal zones. In the low
432	intertidal, the crevices on complex tiles may provide refuge to invertebrate taxa from large-
433	bodied marine predators, such as fish, which can exert considerable top-down control on the
434	communities of coastal structures (Connell & Anderson, 1999) and/or from wave exposure
435	that can challenge the attachment strength of organisms and interfere with feeding behaviour
436	(Bulleri & Chapman, 2010; Moschella et al., 2005). In the high and mid intertidal, on
437	artificial coastal defences as on natural rocky shores, cool and shaded crevices could
438	influence the richness and abundances of algae and the abundances of invertebrates by
439	providing refuge from extreme temperatures and desiccation at low tide (Chapman &
440	Blockley, 2009; Strain et al., 2020).
441	
442	Additionally, we found evidence for latitudinal variation in the effects of complexity on total
442 443	Additionally, we found evidence for latitudinal variation in the effects of complexity on total taxa richness and the abundance of some invertebrate groups. Complexity had the greatest
443	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest
443 444	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes,
443 444 445	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes, where average temperatures, primary productivity as well as taxa richness and abundance are
443 444 445 446	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes, where average temperatures, primary productivity as well as taxa richness and abundance are generally highest (Hillebrand, 2004). However, the cover of sessile molluscs displayed the
443 444 445 446 447	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes, where average temperatures, primary productivity as well as taxa richness and abundance are generally highest (Hillebrand, 2004). However, the cover of sessile molluscs displayed the reverse pattern of greater effects of complexity at higher latitudes, where average
443 444 445 446 447 448	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes, where average temperatures, primary productivity as well as taxa richness and abundance are generally highest (Hillebrand, 2004). However, the cover of sessile molluscs displayed the reverse pattern of greater effects of complexity at higher latitudes, where average temperatures and the percentage cover of sessile invertebrates were lower. These results are
443 444 445 446 447 448 449	taxa richness and the abundance of some invertebrate groups. Complexity had the greatest effects on the total richness of taxa and the abundances of mobile molluscs at low latitudes, where average temperatures, primary productivity as well as taxa richness and abundance are generally highest (Hillebrand, 2004). However, the cover of sessile molluscs displayed the reverse pattern of greater effects of complexity at higher latitudes, where average temperatures and the percentage cover of sessile invertebrates were lower. These results are consistent with other studies that have demonstrated positive effects of complexity on the

ruitment, predation, and growth rates.

1 2	
3 4	4
5 6 7	2
/ 8 9	4
9 10 11	2
12 13	4
14 15	4
16 17 18	4
19 20	4
21 22	4
23 24 25	2
25 26 27	2
28 29	4
30 31	2
32 33 34	2
35 36 37	2
37 38	4
39 40	2
41 42 43	4
43 44 45	2
46 47	4
48 49	2
50 51 52	4
52 53 54	4
55 56	4
57 58	4
59 60	

455	Despite our hypothesis that pollutants would override the effects of complexity, proximity of
456	sites to marinas and port facilities, which are commonly highly contaminated (Adamo et al.,
457	2005; Rivero, Dafforn, Coleman, & Johnston, 2013), explained little of the variation in
458	effects of complexity for most groups of algae and invertebrates. There was, however, a
459	positive effect of the distance to the nearest port or marina on the relationship between
460	complexity and richness of sessile invertebrates. Although our study did not document spatial
461	variation in the size of the species pool of available colonists, the positive relationship
462	between distance from boating facilities and effects of complexity on sessile invertebrates is
463	consistent with the contaminants associated with boating facilities adversely impacting the
464	native species pool on which complexity can act. Heavy metals, such as copper, either
465	historically or presently used in antifouling paints, can negatively impact native biodiversity
466	(Dafforn, Lewis, & Johnston, 2011; Kinsella & Crowe, 2016). Previous studies have
467	demonstrated these contaminants can also enhance the richness and abundances of invasive
468	species (Marraffini, Ashton, Brown, Chang, & Ruiz, 2017; Piola, Dafforn, & Johnston,
469	2009); thus complexity could facilitate the increase of the non-endemic species pool. Studies
470	directly manipulating contamination inside and outside harbours would be required to
471	establish the importance of this factor as a moderator of complexity effects.
472	
473	Our results support previous suggestions that the addition of complexity to the homogenous,
474	flat surfaces of coastal defence structures has the potential to improve ecological outcomes
475	(O'Shaughnessy et al., 2020). As compared to the natural habitats they replace,
476	topographically simple artificial structures commonly support reduced native biodiversity
477	(Airoldi, Turon, Perkol-Finkel, & Rius, 2015). Eco-engineering complexity and missing
478	microhabitats on these artificial structures to enhance the biodiversity and ecosystem
479	functioning of their communities, is increasingly common. However, scientific studies

48 48 48 48 48 48
48 48 48 48
48 48 48 48
48 48 48
48 48
48
48
48
48
49
49
49
49
49
49
49
49
49
49
50
50
50
50
50

480	providing the evidence base for this rapidly-growing field are often poorly replicated and
481	carried out over small spatial and temporal scales (Chapman, Underwood, & Browne, 2018;
482	Firth et al., 2020). Global integration of small-scale ecological experiments such as those
483	conducted here can be useful in identifying appropriate eco-engineering approaches before
484	they are scaled up. Our study provides the most geographically comprehensive test of the
485	effects of complexity on the biodiversity of coastal defence structures across the globe. We
486	clearly demonstrate that complexity can affect the richness and abundances of colonising
487	taxa, and despite large biogeographic variation in the identity of taxa present, these effects are
488	largely of a consistent and positive direction for particular functional groups, across the
489	globe.
490	globe.
491	Despite the generally positive effects of complexity, we found that the magnitude of these
492	varied spatially from negligible to strongly positive (or in the case of some algae, negative).
493	This is an important result as it suggests that economically costly eco-engineering
494	interventions may have negligible benefit at some locations and may even negatively
495	influence some functional groups if applied blindly. Effective eco-engineering requires
496	understanding of the key environmental stressors that may be mitigated and the functional
497	traits of taxa that are being targeted for enhancement (see also Morris et al. 2018). By
498	designing microhabitats with the niches of target functional groups in mind, the benefits of
499	complexity additions to structures may be maximised. Critically, the finding that the effect of
500	complexity varied among locations, tidal zones and with latitude, highlights the importance
501	of understanding how the effects of complexity are shaped by the local abiotic and biotic
502	environments before implementing eco-engineering solutions - one size will not necessarily
503	fit all. Manipulative experiments are now needed to confirm how specific environmental and
504	biological factors mediate complexity-biodiversity relationships, within urbanised marine

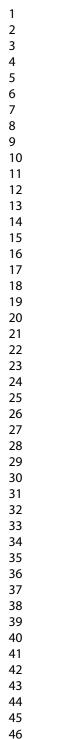
3 4	505	settings and whether the effects of complexity identified over a 12-month period here persist
5 6 7	506	over longer time scales. Moreover, to fully assess the biodiversity benefits of eco-engineering
7 8 9	507	interventions that add complexity, we would also need to compare the complex tiles to the
10 11	508	surface of the coastal defence structure and adjacent natural rocky shores.
12 13	509	
14 15	510	Eco-engineering, like ecological restoration (Ewel, 1987) provides the ultimate test of
16 17 18	511	ecological theory (Mitsch 1996), by reassembling ecosystems from first principles. A
19 20	512	cornerstone of community ecology has been the positive relationship between complexity and
21 22	513	diversity (Dean & Connell, 1987; Kovalenko et al., 2012). Our global study challenges this
23 24 25	514	paradigm in demonstrating that at patch-scales complexity effects can range from positive to
26 27	515	neutral to negative, depending upon location and functional group. General guidelines to
28 29	516	enhance biodiversity in coastal constructions will benefit from a grounding in ecological
30 31 32	517	theory that can help developers predict the influence of local environmental and biotic
33 34	518	contexts (Mayer-Pinto et al 2019).
35 36	519	
37 38 39	520	
40 41	521	Acknowledgements
42 43		
44 45	522	We thank the many people that helped in deploying and monitoring the experiment and
46 47	523	funding bodies (see Supplementary S9 for full details).
48 49 50	524	Data Availability
51 52 53	525	The data are available as Supporting Information
54 55	526	
56 57 58 59 60	527	References

1 2		
3 4	528	Adamo, P., Arienzo, M., Imperato, M., Naimo, D., Nardi, G., & Stanzione, D. (2005).
5 6	529	Distribution and partition of heavy metals in surface and sub-surface sediments of
7 8 9	530	Naples city port. Chemosphere, 61(6), 800-809.
10 11	531	Airoldi, L., & Bulleri, F. (2011). Anthropogenic disturbance can determine the magnitude of
12 13	532	opportunistic species responses on marine urban infrastructures. PLoS One, 6(8),
14 15 16	533	e22985.
17 18	534	Airoldi, L., Connell, S. D., & Beck, M. W. (2009). The loss of natural habitats and the
19 20	535	addition of artificial substrata. In Marine Hard Bottom Communities (pp. 269-280):
21 22 23	536	Springer.
23 24 25 26 27 28 29 30	537	Airoldi, L., Turon, X., Perkol-Finkel, S., & Rius, M. (2015). Corridors for aliens but not for
	538	natives: effects of marine urban sprawl at a regional scale. Diversity and
	539	Distributions, 21(7), 755-768.
31 32	540	Althaus, F., Hill, N., Ferrari, R., Edwards, L., Przeslawski, R., Schönberg, C. H.,
33 34	541	Colquhoun, J. (2015). A standardised vocabulary for identifying benthic biota and
35 36 37	542	substrata from underwater imagery: the CATAMI classification scheme. PLoS One,
38 39	543	<i>10</i> (10), e0141039.
40 41	544	Bateman, D., & Bishop, M. J. (2016). The environmental context and traits of habitat-
42 43 44	545	forming bivalves influence the magnitude of their ecosystem engineering. Marine
45 46	546	Ecology Progress Series, 563, 95-110.
47 48	547	Beck, M. W. (1998). Comparison of the measurement and effects of habitat structure on
49 50 51	548	gastropods in rocky intertidal and mangrove habitats. Marine Ecology Progress
52 53	549	Series, 169, 165-178.
54 55	550	Bertness, M. D., & Callaway, R. (1994). Positive interactions in communities. Trends in
56 57 58 59	551	Ecology and Evolution, 9(5), 191-193.

3 4	552	Bertness, M. D., Yund, P. O., & Brown, A. F. (1983). Snail grazing and the abundance of
5 6	553	algal crusts on a sheltered New England rocky beach. Journal of Experimental
7 8 9	554	Marine Biology and Ecology, 71(2), 147-164.
10 11	555	Borenstein, M., Hedges, L. V., Higgins, J., & Rothstein, H. R. (2010). A basic introduction to
12 13	556	fixed-effect and random-effects models for meta-analysis. Research Synthesis
14 15 16	557	Methods, 1(2), 97-111.
17 18	558	Bracewell, S. A., Clark, G. F., & Johnston, E. L. (2018). Habitat complexity effects on
19 20 21	559	diversity and abundance differ with latitude: an experimental study over 20 degrees.
21 22 23	560	<i>Ecology, 99</i> (9), 1964-1974.
24 25	561	Bulleri, F., & Chapman, M. G. (2010). The introduction of coastal infrastructure as a driver
26 27	562	of change in marine environments. Journal of Applied Ecology, 47(1), 26-35.
28 29 30	563	Chapman. (2003). Paucity of mobile species on constructed seawalls: effects of urbanization
31 32	564	on biodiversity. Marine Ecology Progress Series, 264, 21-29.
33 34	565	Chapman, & Blockley, D. J. (2009). Engineering novel habitats on urban infrastructure to
35 36 37	566	increase intertidal biodiversity. <i>Oecologia</i> , 161(3), 625-635.
38 39	567	Chapman, Underwood, A., & Browne, M. A. (2018). An assessment of the current usage of
40 41	568	ecological engineering and reconciliation ecology in managing alterations to habitats
42 43 44	569	in urban estuaries. Ecological Engineering, 120, 560-573.
45 46	570	Connell, J. (1961). The influence of interspecific competition and other factors on the
47 48	571	distribution of the barnacle Chthamalus stellatus. Ecology, 42(4), 710-723.
49 50 51	572	Connell, S. D., & Anderson, M. J. (1999). Predation by fish on assemblages of intertidal
52 53	573	epibiota: effects of predator size and patch size. Journal of Experimental Marine
54 55	574	Biology and Ecology, 241(1), 15-29.
56 57	575	Connor, E. F., & McCoy, E. D. (1979). The statistics and biology of the species-area
58 59 60	576	relationship. The American Naturalist, 113(6), 791-833.

2		
3 4	577	Dafforn, K. A., Lewis, J. A., & Johnston, E. L. (2011). Antifouling strategies: history and
5 6	578	regulation, ecological impacts and mitigation. Marine Pollution Bulletin, 62(3), 453-
7 8 9	579	465.
9 10 11	580	Darling, E. S., Graham, N. A., Januchowski-Hartley, F. A., Nash, K. L., Pratchett, M. S., &
12 13	581	Wilson, S. K. (2017). Relationships between structural complexity, coral traits, and
14 15	582	reef fish assemblages. Coral Reefs, 36(2), 561-575.
16 17 18	583	Dean, R. L., & Connell, J. H. (1987). Marine invertebrates in an algal succession. III.
19 20	584	Mechanisms linking habitat complexity with diversity. Journal of Experimental
21 22	585	Marine Biology and Ecology, 109(3), 249-273.
23 24 25	586	Ewel, J. J. (1987). Restoration is the ultimate test of ecological theory. <i>Restoration ecology: a</i>
26 27	587	synthetic approach to ecological research. Cambridge University Press, Cambridge,
28 29	588	UK, 31-33.
30 31 32	589	Firth, L. B., Airoldi, L., Bulleri, F., Challinor, S., Chee, S. Y., Evans, A. J., Thompson, R.
33 34	590	C. (2020). Greening of grey infrastructure should not be used as a Trojan horse to
35 36	591	facilitate coastal development. Journal of Applied Ecology. doi:10.1111/1365-
37 38 39	592	2664.13683
40 41	593	Freestone, A. L., & Osman, R. W. (2007). COS 1-3: Latitudinal diversity gradient drives
42 43	594	community response to heterogeneity and shapes marine biodiversity patterns at small
44 45 46	595	scales.
40 47 48	596	Glasby, T. (1999). Effects of shading on subtidal epibiotic assemblages. Journal of
49 50	597	Experimental Marine Biology and Ecology, 234(2), 275-290.
51 52 53	598	Harley, C. D. (2003). Abiotic stress and herbivory interact to set range limits across a
55 54 55	599	two-dimensional stress gradient. Ecology, 84(6), 1477-1488.
56 57	600	Hedges, L. V. (1981). Distribution theory for Glass's estimator of effect size and related
58 59 60	601	estimators. Journal of Educational and Behavioral Statistics, 6(2), 107-128.

1 2		
3 4 5 6	602	Hillebrand, H. (2004). On the generality of the latitudinal diversity gradient. The American
	603	Naturalist, 163(2), 192-211.
7 8 9	604	Hixon, M. A., & Beets, J. P. (1993). Predation, prey refuges, and the structure of coral-reef
10 11	605	fish assemblages. Ecological Monographs, 63(1), 77-101.
12 13	606	Holt, R. D. (1987). Prey communities in patchy environments. Oikos, 276-290.
14 15	607	Hui, F. K. (2016). boral-Bayesian ordination and regression analysis of multivariate
16 17 18	608	abundance data in R. Methods in Ecology and Evolution, 7(6), 744-750.
19 20	609	Huston, M. (1979). A general hypothesis of species diversity. The American Naturalist,
21 22	610	113(1), 81-101.
23 24 25	611	Janssen, A., Sabelis, M. W., Magalhães, S., Montserrat, M., & Van der Hammen, T. (2007).
25 26 27	612	Habitat structure affects intraguild predation. Ecology, 88(11), 2713-2719.
28 29	613	Johnson, M. P., Frost, N. J., Mosley, M. W., Roberts, M. F., & Hawkins, S. J. (2003). The
30 31	614	area-independent effects of habitat complexity on biodiversity vary between regions.
32 33 34	615	Ecology Letters, 6(2), 126-132.
35 36	616	Kelaher, B. (2003). Changes in habitat complexity negatively affect diverse gastropod
37 38	617	assemblages in coralline algal turf. <i>Oecologia</i> , 135(3), 431-441.
39 40 41	618	Kinsella, C. M., & Crowe, T. P. (2016). Separate and combined effects of copper and
42 43	619	freshwater on the biodiversity and functioning of fouling assemblages. Marine
44 45	620	Pollution Bulletin, 107(1), 136-143.
46 47	621	Kovalenko, K. E., Thomaz, S. M., & Warfe, D. M. (2012). Habitat complexity: approaches
48 49 50	622	and future directions. Hydrobiologia, 685(1), 1-17.
51 52	623	Lenth, R., Singmann, H., & Love, J. (2018). Emmeans: Estimated marginal means, aka least-
53 54	624	squares means. <i>R package version, 1</i> (1).
55 56 57	625	Loke, L. H., & Todd, P. A. (2016). Structural complexity and component type increase
58 59	626	intertidal biodiversity independently of area. Ecology, 97(2), 383-393.
60		


60

3 4	627	Malumbres-Olarte, J., Vink, C. J., Ross, J. G., Cruickshank, R. H., & Paterson, A. M. (2013).
5 6	628	The role of habitat complexity on spider communities in native alpine grasslands of
7 8 9	629	New Zealand. Insect Conservation and Diversity, 6(2), 124-134.
9 10 11	630	Markager, S., & Sand-Jensen, K. (1992). Light requirements and depth zonation of marine
12 13	631	macroalgae. Marine Ecology-Progress Series, 88, 83-83.
14 15	632	Marraffini, M. L., Ashton, G. V., Brown, C. W., Chang, A. L., & Ruiz, G. M. (2017).
16 17 18	633	Settlement plates as monitoring devices for non-indigenous species in marine fouling
19 20	634	communities. Management of Biological Invasions, 8(4), 559-566.
21 22	635	Martins, G. M., Thompson, R. C., Neto, A. I., Hawkins, S. J., & Jenkins, S. R. (2010).
23 24 25	636	Enhancing stocks of the exploited limpet Patella candei d'Orbigny via modifications
26 27	637	in coastal engineering. Biological Conservation, 143(1), 203-211.
28 29	638	Mayer-Pinto, M., Dafforn, K. A., & Johnston, E. L. (2019). A Decision Framework for
30 31 32	639	Coastal Infrastructure to Optimize Biotic Resistance and Resilience in a Changing
33 34	640	Climate. <i>Bioscience</i> , 69(10), 833-843.
35 36	641	Mayer-Pinto, M., Matias, M. G., & Coleman, R. A. (2016). The interplay between habitat
37 38	642	structure and chemical contaminants on biotic responses of benthic organisms. PeerJ,
39 40 41	643	4, e1985.
42 43	644	McAfee, D., Cole, V. J., & Bishop, M. J. (2016). Latitudinal gradients in ecosystem
44 45	645	engineering by oysters vary across habitats. Ecology, 97(4), 929-939.
46 47 48	646	McCoy, E. D., & Bell, S. S. (1991). Habitat structure: the evolution and diversification of a
49 50	647	complex topic. In Habitat structure (pp. 3-27): Springer.
51 52	648	McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and
53 54	649	animals. Urban Ecosystems, 11(2), 161-176.
55 56 57		
58 59		

1 2		
2 3 4	650	Menge, B. A., & Lubchenco, J. (1981). Community organization in temperate and tropical
5 6	651	rocky intertidal habitats: prey refuges in relation to consumer pressure gradients.
7 8 9	652	Ecological Monographs, 51(4), 429-450.
) 10 11	653	Micheli, F., & Halpern, B. S. (2005). Low functional redundancy in coastal marine
12 13	654	assemblages. Ecology Letters, 8(4), 391-400.
14 15 16	655	Miller, R. J., & Etter, R. J. (2008). Shading facilitates sessile invertebrate dominance in the
16 17 18	656	rocky subtidal Gulf of Maine. Ecology, 89(2), 452-462.
19 20	657	Moschella, P., Abbiati, M., Åberg, P., Airoldi, L., Anderson, J., Bacchiocchi, F., Gacia,
21 22	658	E. (2005). Low-crested coastal defence structures as artificial habitats for marine life:
23 24 25 26 27	659	using ecological criteria in design. Coastal Engineering, 52(10), 1053-1071.
	660	O'Shaughnessy, K. A., Hawkins, S. J., Evans, A. J., Hanley, M. E., Lunt, P., Thompson, R.
28 29	661	C., Iglesias, G. (2020). Design catalogue for eco-engineering of coastal artificial
30 31 32	662	structures: a multifunctional approach for stakeholders and end-users. Urban
33 34	663	<i>Ecosystems</i> , 23, 431-443.
35 36	664	Piola, R. F., Dafforn, K. A., & Johnston, E. L. (2009). The influence of antifouling practices
37 38	665	on marine invasions. <i>Biofouling</i> , 25(7), 633-644.
39 40 41	666	R Core Team. (2016). R: A Language and Environment for Statistical Computing. Vienna,
42 43	667	Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-
44 45	668	project.org
46 47 48	669	Rivero, N. K., Dafforn, K. A., Coleman, M. A., & Johnston, E. L. (2013). Environmental and
49 50	670	ecological changes associated with a marina. <i>Biofouling</i> , 29(7), 803-815.
51 52	671	Stein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver
53 54 55	672	of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866-
56 57	673	880.
58 59 60		

1 2		
2 3 4	674	Strain, E. M., Cumbo, V., Morris, R., Steinberg, P., & Bishop, M. J. (2020). Interacting
5 6 7	675	effects of habitat streuture and seeding with native oysters on intertidal biodiversity of
7 8 9	676	seawalls. PLoS One, e0230807.
10 11	677	Strain, E. M., Morris, R., Coleman, R., Figueira, W., Steinberg, P., Johnston, E., & Bishop,
12 13	678	M. J. (2018). Increasing microhabitat complexity on seawalls can reduce fish
14 15 16	679	predation on native oysters. Ecological Engineering, 120, 637-642.
17 18	680	Strain, E. M., Olabarria, C., Mayer-Pinto, M., Cumbo, V., Morris, R. L., Bugnot, A. B.,
19 20	681	Bishop, M. J. (2018). Eco-engineering urban infrastructure for marine and coastal
21 22 23	682	biodiversity: Which interventions have the greatest ecological benefit? Journal of
24 25	683	Applied Ecology, 55(1), 426-441.
26 27	684	Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. Journal of
28 29 30	685	Statistical Software, 36(3), 1-48.
31 32	686	Wickham, H. (2016). ggplot2: elegant graphics for data analysis: Springer.
33 34	687	Wilson, J. B., James, R., Newman, J., & Myers, T. (1992). Rock pool algae: species
35 36 37	688	composition determined by chance? <i>Oecologia</i> , <i>91</i> (1), 150-152.
38 39	689	Wolcott, T. G. (1973). Physiological ecology and intertidal zonation in limpets (Acmaea): a
40 41	690	critical look at" limiting factors". <i>The Biological Bulletin, 145</i> (2), 389-422.
42 43 44		
45 46		
47 48		
49		
50 51		
52		
53		
54 55		
56		
57		
58 50		
59		

For peer Review

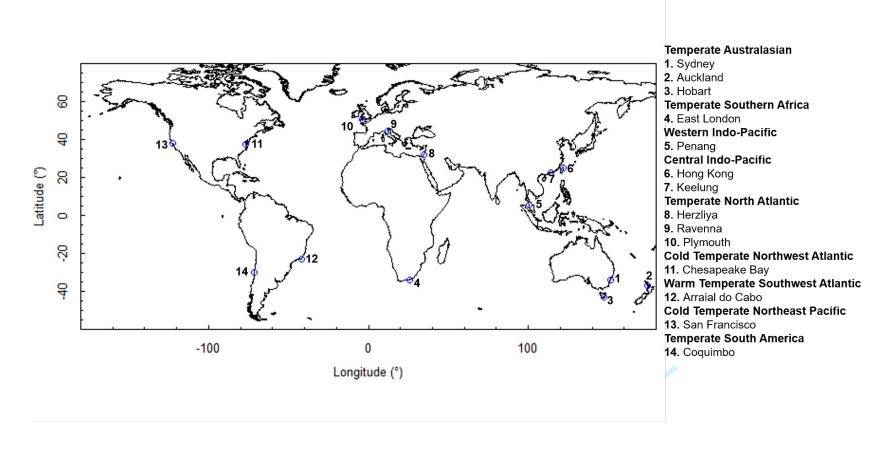
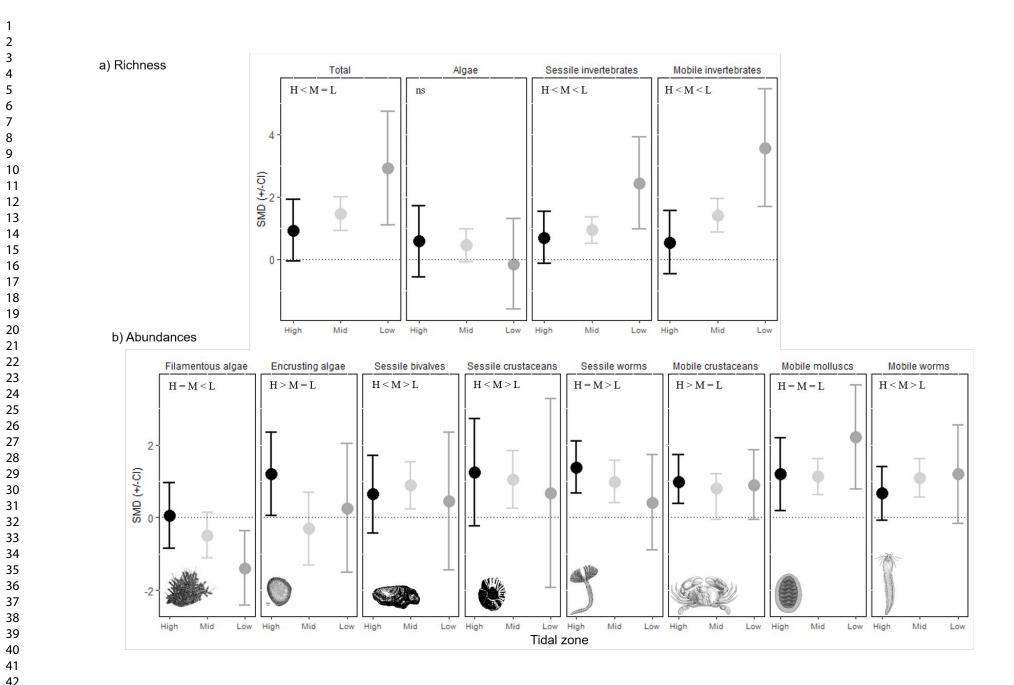


Fig 1: Map showing the experimental locations. Locations are ordered by biogeographic realm.


Fig 2: The three experimental treatments: a) flat, b) 2.5 cm complex, c) 5 cm complex.

. I treatments.

Fig 3: Effect of complexity (flat and 2 cm or 5 cm complex tiles) on the mean (+/-SE) total taxa richness at each of fourteen locations by realm (n = 1 or 2 sites per location). Significant differences (at $\alpha = 0.05$) between flat (F), and 2.5 cm (2.5) or 5 cm (5) complex tiles are indicated by '>' or '<', with 'ns' or '=' denoting treatments that did not significantly differ.

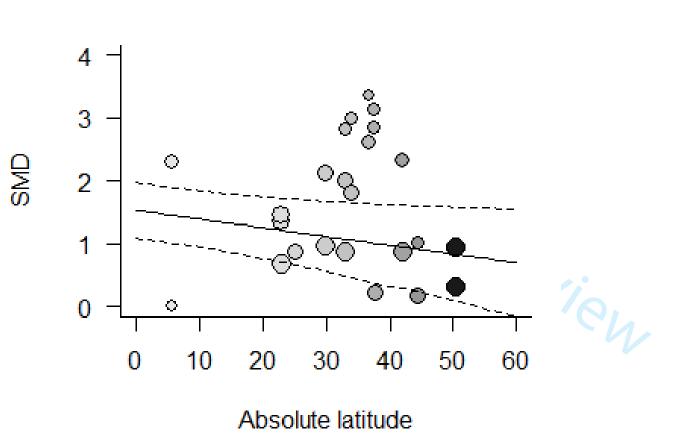

For peer Periewiew

Fig. 4: Effects of tidal zones on the standard mean difference SMD (+/-CI) in a) richness of total taxa, algae, sessiles invertebrates and mobile invertebrates and b) abundances (percentage cover or abudances) of key CATAMI groups between 5 cm complex and flat tiles (high n = 5 sites, mid n = 18 sites, and low n = 4 sites). Effects are significant if the confidence intervals do not overlap zero (dashed line). Significant differences (at $\alpha = 0.05$) between high (H), and mid (M) or low (L) tidal zones are indicated by '>' or '<'.

For per Perieu

For peer Peview

Appendices

Supplementary S1: Information on the experiment design, sampling and environmental parameters for each location and site.

Location	Season: month, and year of deployment	Sampling	Latitude	Average (Min - Max) Temperature (°C)	Tidal zone	Maximum tidal range (m)	Distance (km) to nearest port or marina	Reference	Source of heavy metals information
Sydney Harbour, Sydney Australia	Spring: November 2015	Sub sampling predefined area on complex and flat tiles	-33.85	Site 1: 19.66 (13.83 - 46.5) Site 2: 20.19 (13.66 - 43.16)	Mid	2.02	Site 1: 0.27 Site 2: 0.49	(Banks et al., 2016)	(Ling et al., 2018)
Waitemata Harbour, Auckland, New Zealand	Summer: January 2016	Full tiles	-36.84	NA	Low	3.53	Site 1: 0.5 Site 2: 0.28	(Aguirre et al., 2016)	(Council, 2012)
Keelung, Taiwan	Summer: April 2016	Full tiles	25.07	Site 1: 27.41 (19.83 - 49.77) Site 2: 27.47 (18.66 - 48.16)	Mid	1.5	Site 1: 1.5 Site 2: 0.05	NA	NA
Chesapeake Bay, USA	Summer: June 2016	Full tiles	37.37	Site 1: 18.91 (- 9.00 - 42.00) Site 2: 18.91 (- 8.50 - 45.00)	Mid	1.32	Site 1: 1.15 Site 2: 5.25	(O'Neil et al., 2020)	http://www.nerrsdata.org/
San Francisco Bay, USA	Summer; July 2016	Full tiles	37.81	Site 1: 15.70 (6.47 - 41.13) Site 2: 16.61 (10.55 - 23.83)	Low	3.01	Site 1: 0.34 Site 2: 3.00	NA	NA
Plymouth Estuary, UK	Summer; August 2016	Full tiles	50.37	Site 1: 16.56 (4.08 - 36.90) Site 2: 16.62 (3.51 - 35.60)	High	5.57	Site 1: 0 Site 2: 0.1	(Knights et al., 2016)	Environmental agency
Herzliya Marina, Israel	Summer; August 2016	Full tile – mobile invertebrates Sub sampling predefined areas on complex and	32.83	Site 1: 22.1 (7.50 - 35.50)	High	0.46	Site 1: 0	NA	Perkol-Finkel et al. unpublished data

		flat tiles – sessile invertebrates							
Ravenna Port, Italy	Summer; September 2016	Sub sampling predefined areas on complex and flat tiles	44.49	NA	Mid	0.89	Site 1: 0.5 Site 2: 0.5	(Airoldi, Ponti, & Abbiati, 2016)	NA
Penang Harbour, Malaysia	Dry, September 2016	Sub sampling predefined areas on complex and flat tiles	5.74	Site 1: 28.60 (17.64 - 48.75) Site 2: 30.17 (21.75 - 47.62)	Mid	2.35	Site 1: 0.05 Site 2: 0	NA	Chee et al. unpublished data
Arraial do Cabo Port, Brazil	Spring; September 2016	Sub sampling predefined areas on complex and flat tiles	-22.97	Site 1: 23.48 (16.00 - 46.00) Site 2: 27.41 (19.83 - 49.77)	Mid	1.26	Site 1: 0.1 Site 2: 0	(Soares- Gomes et al., 2016)	NA
Coquimbo, Chile	Spring; November 2016	Sub sampling predefined areas on complex and flat tiles	-29.79	Site 1: 16.22 (10.07 – 28.04) Site 2: 16.59 (8.59 – 35.44)	High	1.78	Site 1: 0.15 Site 2: 0	NA	Aguilera et al. unpublished data
East London Port, South Africa	Spring; November 2016	Sub sampling predefined areas on complex and flat tiles	-33.03	Site 1: 18.59 (9.72 - 37.61) Site 2: 17.40 (6.20 - 37.74)	Mid	2.03	Site 1: 0.61 Site 2: 0.65	21/2:	NA
Derwent Estuary, Hobart, Australia	Spring; November 2016	Sub sampling predefined areas on complex and flat tiles	-50.00	Site 1: 17.53 (9.32 - 30.50) Site 2: 17.53 (10.32 - 30.50)	Mid	1.44	Site 1: 0.72 Site 2: 0.27	(Macleod & Coughanowr, 2019)	(Ling et al., 2018)
Hong Kong Bay, China	Spring; November 2016	Sub sampling predefined areas on complex and flat tiles	22.89	NA	Mid	2.54	Site 1: 1.9 Site 2: 5.5	(Lai et al., 2016)	(Birch et al., 2020)

Supplementary S2: Results of the pilot study testing the effects of topographic complexity and site nested within location on the sub-sample and full samples from Sydney.

Table S2a: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), and sites nested within location (2 levels) on the richness (total, algae, sessile invertebrates and mobile invertebrates) of the sub-samples or the full tile sampled, sampled destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are shown.

Total taxa richness		• • • • • • • • • • • • • • • • • • • •				•		
a) Full sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	9.5625	9.9514	0.002	Site 1 Flat vs. 5 cm	-0.429	-1.767	>0.05
Site (Location)	1	5.9187	4.0327 🧹	0.015	Site 2 Flat vs. 5 cm	-0.537	-2.629	0.0086
Complexity x Site (Location)	1	0.1153	3.9173	>0.05				
b) Sub sample				-	Pa			
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	5.0906	10.2925	0.024	Site 1 Flat vs. 5 cm	-0.463	-1.494	>0.05
Site (Location)	1	5.9823	4.3101	0.015	Site 2 Flat vs. 5 cm	-0.405	-2.662	0.047
Complexity x Site (Location)	1	0.0210	4.2891	>0.05				
Algae richness								
a) Full sample						•	101	
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	0.86639	6.0051	>0.05	NA			
Site (Location)	1	2.83976	3.1654	>0.05				
Complexity x Site (Location)	1	0.83192	2.3335	>0.05				
b) Sub sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	0.78644	6.0051	>0.05	NA			
Site (Location)	1	2.83976	3.1654	>0.05				
Complexity x Site (Location)	1	0.83192	2.3335	>0.05				
Sessile invertebrate richness								
a) Full sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value

Page 44 of 92

Complexity	1	0.80781	5.0519	>0.05				
Site (Location)	1	2.52672	2.5251	>0.05				
Complexity x Site (Location)	1	0.06153	2.4636	>0.05				
b) Sub sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	0.80781	5.0519	>0.05				
Site (Location)	1	2.52672	2.5251	>0.05				
Complexity x Site (Location)	1	0.06153	2.4636	>0.05				
Mobile invertebrate richness	5					•		
a) Full sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	8.3126	5.0043	0.004	Flat vs. 5 cm	-0.525	-2.718	0.007
Site (Location)	1	1.4474	3.5568	>0.05				
Complexity x Site (Location)	1	1.2405	2.3163	>0.05				
b) Sub sample					YQ2			
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	2.78205	4.3121	0.046	Flat vs. 5 cm	-1.444	-2.619	0.011
Site (Location)	1	0.86182	3.4503	>0.05				

Table S2b: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), and sites nested within location (2 levels) on the abundances (cover of algae and sessile invertebrates and counts of mobile invertebrates) of the sub-samples or the full tile samples, sampled destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are shown.

log(Algae percentage cover)								
a) Full sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	1.5644	7.5826	0.014	Site 1 Flat vs. 5 cm	-1.702	4.086	<.0001
Site (Location)	1	2.6197	4.9628	0.002	Site 2 Flat vs. 5 cm	0.258	0.619	>0.05
Complexity x Site (Location)	1	2.8803	2.0825	0.001				
b) Sub sample								

Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	2.5313	5.5123	0.001	Site 1 Flat vs. 5 cm	-1.702	-4.131	<.0001
Site (Location)	1	1.6341	3.8782	0.011	Site 2 Flat vs. 5 cm	-0.135	-0.328	>0.05
Complexity x Site (Location)	1	1.8412	2.0370	0.007				
Sessile invertebrate cover								
a) Full sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	62.832	49.880	<0.001	Flat vs. 5 cm	-4.58	-5.799	<0.001
Site (Location)	1	28.135	21.745	<0.001				
Complexity x Site (Location)	1	6.799	14.945	>0.05				
b) Sub sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	59.708	58.793	<0.001	Flat vs. 5 cm	-4.46	-5.391	<0.001
Site (Location)	1	33.043	25.750	<0.001	0			
Complexity x Site (Location)	1	9.312	16.438	>0.05				
log(Mobile invertebrate abu	ndar	ices)				\mathbf{O}		
a) Full sample						In.		
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	5.0962	1.6960	<0.001	Flat vs. 5 cm			
Site (Location)	1	0.4286	1.2673	>0.05				
Complexity x Site (Location)	1	0.1874	1.0800	>0.05				
b) Sub sample								
Factor	df	Deviance Residual	Deviance	P-value	Post-hoc tests	Estimate	Z-value	P-value
Complexity	1	2.33701	0.8732	<0.001	Flat vs. 5 cm	0.883	4.683	<0.001
Site (Location)	1	0.00214	0.8711	>0.05				
Complexity x Site (Location)	1	0.01873	0.8523	>0.05				

Supplementary S3: List of the functional groups, nineteen CATAMI groups and species/taxa on the experiment treatments, after 12 months. Species/morphospecies are classified as non-indigenous based on the published literature. Where species/morphospecies were observed at multiple locations, the location at which it is non-indigenous is indicated.

Functional group	CATAMI classification	Taxon	Location	Non-indigenous
		Algal mat morphospecies 1	Chesapeake	
	Algal mats	Algal mat morphospecies 2-4	Penang	
		Algal mat morphospecies 5-6	San Francisco	
	Macroalgae articulated calcareous	Corallina officinalis	Auckland, Sydney	
		Lithothamnium sp.	Coquimbo	
Algae		Encrusting coralline algae unknown	Arraial do Cabo	
		Hildenbrandia spp.	Coquimbo, East London, San Francisco	
	Macroalgae	Ralfsia verrucosa	Sydney	
	encrusting	Ralfsia sp.	Coquimbo	
		Encrusting macroalgae morphospecies 1 (black)	Keelung	
		Encrusting macroalgae	Sydney	

	morphospecies 1		
	(green)		
	Ectocarpaceae unknown	Coquimbo	
	Turf macroalgae morphospecies 1	Ravenna	
Macroalgae filamentous/filiform	Turf macroalgae morphospecies 2-4 (brown)	San Francisco, Sydney	
manientous/mnorm	Turf macroalgae morphospecies 5-6 (green)	Sydney, Keelung	
	Turf macroalgae morphospecies 7-8 (red)	San Francisco, Sydney	
Macroalgae globose/saccate	<i>Colpomenia</i> sp.	Auckland	
	Mastocarpus morphospecies 1-2	San Francisco	
	<i>Gelidium</i> sp.	East London	
	<i>Gracilaria</i> sp.	Chesapeake	
	Pterocladiella capillacea	Auckland	
Macroalgae foliose	Fucus spp.	Plymouth, San Francisco	
	Phyllospora comosa	Hobart	
	<i>Mazzaella</i> sp. 1	San Francisco	
	<i>Mazzaella</i> sp. 2	San Francisco	
	Pachymenia lusoria	Auckland	
	<i>Porphyra</i> sp.	Hobart	

		<i>Pyropia</i> sp.	San Francisco	
		Ulva lactuca	Auckland	
		Ulva spp. (8 morphospecies)	Chesapeake, Coquimbo, East London, Hobart, San Francisco, Sydney, Keelung	
		Sheet-like macroalgae morphospecies 1 (brown)	Sydney	
		Sheet-like macroalgae morphospecies 2 (red)	Sydney	
		Macroalgae unknown morphospecies 1 (brown)	Auckland	
		Macroalgae unknown morphospecies 2 (green)	Auckland	
		Macroalgae unknown morphospecies 3-6	Hobart	
		Corella eumyota	Auckland	
		<i>Pyura</i> sp.	Hobart	
Sessile invertebrates	Ascidians	Stalked ascidian morphospecies 1	Hobart	
		Botrylloides niger	Arraial do Cabo	(Granthom-Costa, Ferreira, & Dias, 2016)
		Botryllus tabori	Arraial do Cabo	
		Ascidian morphospecies 1	Auckland	

	Membraniporidae sp.	San Francisco	(Bishop & Hutchings, 2011)
	Schizoporella errata	Arraial do Cabo	(Almeida, Souza, Gordon, & Vieira, 2015)
	Schizoporella sp.	Herzliya	www.marinespecies.org
	Watersipora cucullata	Herzliya	www.marinespecies.org
	Watersipora subtorquata	Hobart	(Bishop & Hutchings, 2011)
	Watersipora spp.	Auckland, Sydney	(Bishop & Hutchings, 2011)
Bryozoans	Encrusting bryozoa morphospecies 1	Arraial do Cabo	
Diyozounis	Encrusting bryozoa morphospecies 2	Chesapeake	
	Encrusting bryozoa morphospecies 3	Herzliya	
	Encrusting bryozoa morphospecies 4-6	Hobart	
	Encrusting bryozoa morphospecies 7	Plymouth	
	Bugula neritina	Herzilya, Penang	www.marinespecies.org Herzilya (Tilbrook & Gordon, 2016) Penang
	Bryozoan unknown	Auckland	
Cnidarians	Hydroid morphospecies (rope)	Chesapeake	
	Anemone unknown	Auckland	

2
3
4
5
6
7
8
9
10
11
12
13
1/
15
10
10
17
18
19
20
21
22
5 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
23 24 25 26 27 28 29 30
25
26
27
27
20
29
30
31
32
33
34
35
36
30 31 32 33 34 35 36 37
37 38
39
40
41
42
42
43 44
44 45
46
47
48
49
50
51
52
53
54
55
56
50 57
57 58
59 60
60

	Amphibalanus	Herzliya, Hong Kong, Penang,	(Rainbow, 2000) Hong
	amphitrite	Sydney	Kong
	Amphibalanus variegatus	Sydney	
	Amphibalanus spp.	East London, Keelung	
	Austrobalanus imperator	Sydney	
	Austrominius modestus	Auckland, Plymouth, Sydney	(Bracewell, Spencer, Marrs, Iles, & Robinson, 2012) Plymouth
	Balanus sp.	Chesapeake	
	Balanidae unknown	Coquimbo	
Crustaceans sessile	Chamaesipho tasmanica	Hobart	
	Chthamalus antennatus	Hobart, Sydney	
	Chthamalus stellatus	Ravenna	
	Chthamalidae unknown	Coquimbo	
	Hexaminius sp.	Sydney	
	Striatobalanus tenuis	Penang	
	Tetraclita japonica	Hong Kong	
	Tetraclita stalactifera	Arraial do Cabo	
	Tetraclita sp.	East London	
	Tetraclita squamosa	Penang	
	Barnacle unknown recruits spp.	Arraial do Cabo, Hong Kong	
	Barnacle unknown 1	Auckland	
	Barnacle unknown 2	San Francisco	

	Capitulum mitella	Hong Kong	
	Barbatia virescens	Hong Kong	
	Brachidontes mutabilis	Hong Kong	
		Plymouth	www.marinespecies.or
	Crassostrea gigas	Hobart, Sydney	(Bishop and Hutchings 2011)
		Penang	
	Crassostrea virginica	Chesapeake	
	Isognomon bicolor	Arraial do Cabo	(López, Lavrado, & Coutinho, 2014)
	Magallana angulata	Penang	
	Magallana ariakensis	Penang	
	Magallana bilineata	Penang	
Molluscs sessile	Mytilus galloprovincialis	Ravenna	
	Mytilus sp.	Hobart	
	Perna canaliculus	Auckland	
	Perna viridis	Penang	
	Perumytilus purpuratus	Coquimbo	
	Pinctada imbricata radiata	Herzliya	
	Ostrea edulis	Herzliya	
	Ostreidae oyster recruit	Ravenna	
	Saccostrea cuccullata	Hong Kong, Penang, Keelung	
	Saccostrea glomerata	Sydney	

		_	
	Geukensia demissa	Chesapeake	
Mussel unknown sn		Chesapeake	
		Keelung	
	Oyster unknown sp.	Auckland	
Ovster recruit		Arraial do Cabo	
	Chondrilla australiensis	Penang	
	Crambe crambe	Herzliya	
Sponge	Sponge crust morphospecies 1 (gray)	Auckland	
	Sponge crust morphospecies 2 (orange)	Sydney	
	Galeolaria caespitosa	Hobart	
	Serpulidae spp.	Arraial do Cabo, Herzliya	
	Spirobranchus cariniferus	Auckland	
	Spirorbinae spp.	Herzliya, Sydney, Keelung	
Worms sessile	Tubeworm morphospecies 1	Auckland	
	Tubeworm morphospecies 2 (sand)	Auckland	
	Tubeworm morphospecies 3 (keel)	Penang	

		Parasabella microphthalma	Chesapeake	
		Achelia assimilis	Auckland	
	Arthropods	Chelicerates	Sydney	
		Spider unknown	Auckland	
		Uniramia unknown	Sydney	
		Petrolisthes japonica	Keelung	
		Petrolisthes elongatus	Auckland, Hobart	(Steger & Gardner, 2007) Hobart
		Acanthocyclus gayi	Coquimbo	
		Armases cinereum	Chesapeake	
		Callinectes sapidus	Chesapeake	
Mobile		Cyclograpsus granulosus	Hobart	
invertebrates		Cyclograpsus punctatus	East London	
	Crustaceans mobile	Eriphia ferox	Keelung	
		Eurypanopeus depressus	Chesapeake	
		Grapsidae unknown	Herzliya	
		Halicarcinus quoyi	Hobart	(Sliwa, Migus, McEnnulty, & Hayes, 2009)
		Halicarcinus sp.	Auckland	
		Hemigrapsus sp.	Keelung	
		Heteropanope glabra	Hong Kong	
		Nanosesarma minutum	Hong Kong	

Nasutoplax rostrate	Hobart	
Paragrapsus sp.	Sydney	
Parasesarma pictum	Hong Kong	
Pilumnus sp.	Sydney	
Pinnotheres hickmani	Hobart	
Pinnotheres ostreum	Chesapeake	
Pinnotheres sp.	Hong Kong	
Sesarma sp.	Sydney	
Crab morphospecies 1-2	Auckland	
Alpheus sp.	Hong Kong	
Americamysis bigelowi	Chesapeake	
Palaemonetes pugio	Chesapeake	
Processidae unknown	Herzliya	
Amphitoe sp.	Sydney	
Ampithoe valida	Chesapeake	
Amphipod morphospecies 1	Coquimbo	
Amphipod morphospecies 2-3	Keelung	
Amphipod morphospecies 4	Hong Kong	
Apocorophium lacustra	Chesapeake	
Bellorchestia sp. 1	Auckland	
Bellorchestia sp. 2	Auckland	

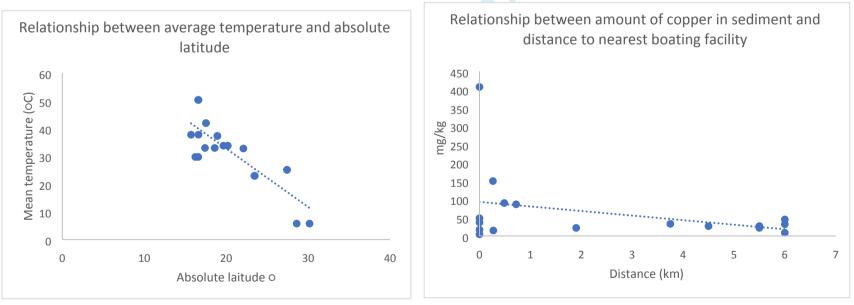
Cirolana harfordi	Sydney	(Bugnot, Coleman, Figueira, & Marzinelli, 2014)
Corophiidae unknown	Herzliya	
Corophium spp.	Sydney, San Francisco	
Cymodocella pustulata	East London	
Elasmopus levis	Chesapeake	
Eusiridae unknown	Hobart	
Gammarus mucronatus	Chesapeake	
Gammaridae unknown	Herzliya	
Haylidae unknown	Hobart	
Isocladus armatus	Auckland	
Isopod morphospecies 1-4	Auckland	
Isopod morphospecies 5	Sydney	
Isopod morphospecies 6	Keelung	
Jassa marmorata	Hobart	
Leucothoe spinicarpa	East London	
Ligia (Megaligia) exotica	Chesapeake, Hong Kong, Keelung	
Ligia sp.	Herzliya	
Melita nitida	Chesapeake	
Paracorophium sp.	Hobart	
Parhyale sp.	Hong Kong	

1 2	
2 3 4	
5	
7 8	
9 10	
11 12	
13 14	
15 16	
17 18	
19 20	
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	
23 24	
24 25 26 27	
28	
29 30 31	
32 33	
34 35	
34 35 36 37	
38 39	
40 41	
42 43	
44 45	
46 47 48	
40 49 50	
50 51 52	
53 54	
55 56	
57 58	
59 60	

	Sphaeroma quadridentatum	Chesapeake	
	Sphaeromatidae unknown	Hobart, San Francisco Bay	
	Ophiomyxa brevirima	Auckland	
Echinoderm	Parvulastra exigua	East London, Sydney	
	Patiriella regularis	Auckland	
	Chironomid	Hobart	
Havanada	Chironomid larvae	Chesapeake	
Hexapods	Insect unknown	Sydney	
	Collembola unknown	Sydney	
	Eualetes tulipa	Arraial do Cabo	
	Brachidontes semistriatus	East London	
	Geukensia demissa	Chesapeake	
	Ischadium recurvum	Chesapeake	
	Lasaea adansoni	East London	
	Lasaea australis	Sydney	
Molluscs mobile	Mytilus galloprovincialis	East London	
	Mytilus sp.	San Francisco	
	Perna perna	East London	
	Tapes spp.	Sydney	
	Mussel unknown	Keelung	
	Acanthopleura echinata	Coquimbo	
	Acanthopleura gaimardi	Sydney	

Acanthochitona garnoti	East London
Acanthochitona zelandica	Auckland
Chiton glaucus	Auckland
Liolophura japonica	Hong Kong
Sypharochiton pelliserpentis	Auckland, Hobart, Sydney
Ascorhis tasmanica	Hobart
Austrocochlea porcata	Sydney
Austrolittorina araucana	Coquimbo
Austrolittorina unifasciata	Hobart
Austrolittorina sp.	Auckland
Bedeva paivae	Sydney
Bembicium auratum	Sydney
Bembicium nanum	Sydney
Bittiolum alternatum	Chesapeake
Cellana grata	Hong Kong, Keelung
Cellana toreuma	Hong Kong, Keelung
Cellana tramoserica	Sydney
<i>Cellana</i> spp.	Auckland, Penang
Columbellidae unknown	Sydney
Cryptassiminea buccinoide	Sydney
Cymbula oculus	East London

Dicathais	orbita	Auckland	
Diloma concamero	atum	Sydney	
Diloma su	brostratum	Auckland	
Echinolitte radiata	orina	Hong Kong	
Echinolitte	orina vidua	Hong Kong	
Fissurella	spp.	Arraial do Cabo, Coquimbo	
Haustrum	scobina	Auckland	
Helcion co	oncolor	East London	
Littoraria	articulata	Hong Kong	
Littoraria	irrorata	Chesapeake	
Littoraria	luteola	Sydney	
Littorina l	ittorea	Plymouth	
Littorina c	obtusata	Plymouth	
Littorina s	saxatilis	Plymouth	
Lottia luch	huana	Hong Kong, Keelung	
Lottia sp.		Arraial do Cabo	
Lunella sn	naragda	Auckland	
<i>Mitrella</i> s	pp.	Coquimbo	
Nipponaci concinna	nea	Hong Kong	
Notoacme	a flammea	Hobart, Sydney	
Notoacme	a petterdi	Sydney	
Onchidelle	a nigricans	Auckland	
Oxystele s	inensis	East London	
Oxystele to	abularis	East London	


Oxystele tigrina	East London
Patella caerulea	Ravenna
Patella depressa	Plymouth
Patella vulgata	Plymouth
Patelloida latistrigate	a Sydney
Patelloida mimuli	Sydney
Patelloida ryukyuensis	Hong Kong
Patelloida saccharing	Hong Kong, Sydney
Reishia clavigera	Hong Kong
Scurria araucana	Coquimbo
Scurria ceciliana	Coquimbo
Scurria variabilis	Coquimbo
Scurria spp.	Coquimbo
Scutellastra argenvillei	East London
Scutellastra granularis	East London
Scutellastra laticostata	Hobart
Scutellastra longicosta	East London
Sigapatella novaezelandiae	Auckland
Siphonaria australis	Auckland
Siphonaria capensis	East London
Siphonaria concinna	East London

2
3
4
5
6
7 8
9
10
11
12
13
13 14
15
16 17 18
18
19
20
21
22
23
24 25
26 27
28
29
30
31
31 32 33
33 34
34 35
36 37
38
39
40
41
42
43 44
44 45
46
47
48
49
50
51 52
52 53
53 54
55
56
57
58
59
60

	Siphonaria denticulata	Sydney
	Siphonaria diemenensis	Hobart
	Siphonaria funiculata	Hobart
	Siphonaria japonica	Hong Kong, Keelung
	Siphonaria laciniosa	Hong Kong, Keelung
	Siphonaria serrata	East London
	Siphonaria spp.	Coquimbo, Sydney
	<i>Siphonaria</i> sp. unknown juvenile	Hong Kong
	Snail unknown	Auckland
	Snail, screwshell unknown	Sydney
	Steromphala umbilicalis	Plymouth
	Tenguella marginalba	Sydney
	Coronadena mutabilis	Chesapeake
	Platyhelminthes unknown	Hobart
	Stylochus ellipticus	Chesapeake
Worms mobile	Nemertean spp. Unknown	Chesapeake
	Nemertean unknown	Hobart
	Alitta succinea	Chesapeake
	Capitellidae unknown	Chesapeake
	Eulalia microphylla	Auckland
	Hesionidae unknown	Herzliya

<i>Hypereteone</i> <i>heteropoda</i>	Chesapeake
Loimia medusa	Chesapeake
Neanthes vaalii	Hobart
Nereididae spp.	East London, Herzliya, Hong Kong, Sydney
Phyllodocidae sp. 1	Auckland
Polydora websteri	Chesapeake
Polynoidae unknown	Sydney
Phyllodocidae unknown	Sydney
Spionidae unknown	Sydney
Syllidae unknown	Sydney
Polychaete morphospecies 1	Auckland
Polychaete morphospecies 2	Coquimbo
Polychaete morphospecies 3-7	Keelung
Sipuncula spp.	East London, Penang, Sydney

Supplementary S4: The relationships between the environmental parameters and sites.

Fig S4a: The relationship between a) mean temperature and absolute latitude (significant) and b) amount of copper in sediment (mg/kg) and distance to nearest marina by sites (non-significant). The measurements of temperature were taken at twenty-one sites, within eleven locations throughout the experiment and the measurements of heavy metals were taken at eighteen sites, within nine locations, across the globe.

Table S4b: Results of linear models testing the relationship between a) average temperature and absolute latitude and b) amount of copper in sediment and distance to the nearest boating facility

Factor	Estimate	Standard error	T-value	P-value
Average temperature	-2.112	0.322	-6.568	<0.001
Average maximum temperature	-0.9032	0.2510	-3.598	0.00192
Average minimum temperature	-0.8729	0.2824	-3.091	0.00602
Distance to boating facility	-0.038	0.020	-1.894	>0.05

Supplementary S5: Effects of adding topographic complexity on the total taxa richness and the richness and abundances of algae, sessile invertebrates and mobile invertebrates Total taxa richness was greater on the 5 cm complex tiles than the flat tiles at eleven locations (Arraial do Cabo, Auckland, Chesapeake Bay, Coquimbo, East London, Herzliya, Hobart, Hong Kong, Keelung, Penang, and Sydney); and on the 2.5 cm complex relative to the flat tiles at eight locations (Arraial do Cabo, Auckland, Chesapeake Bay, Coquimbo, Herzliya, Hong Kong, Keelung and Penang). Algal richness was greater on 5 cm complex tiles than on the 2.5 cm complex tiles or the flat tiles at two of the fourteen locations (Arraial do Cabo and Sydney), whereas the 2.5 cm complex tiles and the flat tiles did not significantly differ. At the other twelve locations, there were no significant differences in algal richness among treatments. Sessile invertebrates were more speciose on the 2.5 cm and 5 cm complex tiles than on flat tiles at seven locations (Arraial do Cabo, Auckland, Chesapeake Bay, Herzliya, Hong Kong, Penang and Ravenna), more speciose on the 5 cm complex than the 2.5 cm and flat tiles at two locations (Hobart and Sydney), but did not differ among treatments at the other five locations. There were more mobile species on the 2.5 and 5 cm complex tile compared with the flat tiles at six locations (Auckland, Coquimbo, Hong Kong, Hobart, Keelung, Sydney) and on the 5 cm complex tiles relative to the 2.5 cm and flat tiles at two locations (Chesapeake Bay and East London), with no significant differences for the other six locations.

Table S5a: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), locations (14 levels) and sites nested within location (1-2 levels) on the richness (total, algae, sessile invertebrates and mobile invertebrates) sampled destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are shown.

Factor	df	Deviance	Deviance	Р-	Post-hoc tests	Estimate	Z-	P-
		Residual		value			value	value
Complexity	2	115.650	1568.950	<0.001	Arraial do Cabo Flat vs. 2.5	-0.603	-1.394	0.035
					cm	-0.607	-1.437	0.032
					Arraial do Cabo Flat vs. 5 cm	-0.005	-0.031	>0.05
					Arraial do Cabo 2.5 cm vs. 5			
					cm			
Location	13	1093.780	475.170	<0.001	Auckland Flat vs. 2.5 cm	-0.384	-3.784	0.001
					Auckland Flat vs. 5 cm	-7.993	-7.993	<0.001
					Auckland 2.5 cm vs. 5 cm	-0.382	-4.529	<0.001
Site (Location)	1	9.100	466.070	<0.001	Chesapeake Bay Flat vs. 2.5	-0.457	-3.694	0.001
					cm	-0.546	-4.527	<0.001
					Chesapeake Bay Flat vs. 5 cm	-0.090	-0.853	>0.05
					Chesapeake Bay 2.5 cm vs. 5			
					cm			
Complexity x Location	26	80.230	385.840	<0.001	Coquimbo Flat vs. 2.5cm	-0.602	-1.706	0.021
					Coquimbo Flat vs. 5 cm	-0.606	-1.747	0.019
					Coquimbo 2.5cm vs. 5 cm	-0.004	-0.026	>0.05
Complexity x Site	2	4.800	381.040	<0.001	East London Flat vs. 2.5cm	-0.185	-0.810	>0.05
(Location)					East London Flat vs. 5 cm	-0.680	-3.315	0.003
					East London 2.5cm vs. 5 cm	-0.496	-2.585	0.027
					Herzliya Flat vs. 2.5 cm,	-0.612	-2.697	0.019
					Herzliya Flat vs. 5 cm	-0.633	-2.842	0.013
					Herzliya 2.5cm vs. 5 cm	-0.021	-0.108	>0.05
					Hobart Flat vs. 2.5 cm,	0.505	0.787	>0.05

					Hobart Flat vs. 5 cm	-0.438	-3.081	0.006
					Hobart 2.5cm vs. 5 cm	-0.943	-5.605	<0.001
					Hong Kong Flat vs. 2.5 cm,	-0.622	-1.644	0.023
					Hong Kong Flat vs. 5 cm	-0.626	-1.650	0.023
					Hong Kong 2.5cm vs. 5 cm	-0.003	-0.026	>0.05
					Keelung Flat vs. 2.5 cm,	-0.511	-2.491	0.034
					Keelung Flat vs. 5 cm	-0.502	-2.461	0.037
					Keelung 2.5cm vs. 5 cm	0.009	0.052	>0.05
					Penang Flat vs. 2.5 cm,	-0.557	-2.213	>0.05
					Penang Flat vs. 5 cm	-0.589	-2.438	0.039
					Penang 2.5cm vs. 5 cm	-0.032	-0.146	>0.05
			-		Sydney Flat vs. 2.5 cm,	-0.145	-1.003	>0.05
					Sydney Flat vs. 5 cm	-0.577	-4.502	<0.001
					Sydney 2.5cm vs. 5 cm	-0.432	-3.530	0.001
Log(Algae richness)	1	I		1	60.	1	1	1
Factor	df	Mean square	F-value	P-	Post-hoc tests	Estimate	Z-	P-
		-		value	'R		value	value
Complexity	2	28.759	7.369	<0.001	Arraial do Cabo Flat vs. 2.5	-1.725	-1.900	>0.05
1 5					cm	-4.443	-4.893	<0.001
					Arraial do Cabo Flat vs. 5 cm	-2.718	-3.076	0.007
					Arraial do Cabo 2.5 cm vs. 5			
					cm			
Location	13	206.173	52.829	<0.001	Sydney Flat vs. 2.5 cm	0.769	0.869	>0.05
					Sydney Flat vs. 5 cm	-3.175	-3.593	0.001
					Sydney 2.5 cm vs. 5 cm	-3.943	-4.463	<0.001
Site (Location)	1	88.029	22.556	<0.001				
Complexity x Location	26	8.346	2.139	0.001				1
Complexity x Site	2	9.921	2.542	>0.05				
(Location)								
	329	3.903						
Residual	329	3.903						1

Page 67 of 92

Factor	df	Mean square	F-value	P- value	Post-hoc tests	Estimate	Z- value	P- value
Complexity	2	2.903	24.028	<pre>value </pre>	Arraial do Cabo Flat vs. 2.5	-1.218	-1.366	0.036
Complexity		2.905	24.020	~0.001	cm	-1.178	-1.112	0.030
					Arraial do Cabo Flat vs. 5 cm	0.041	0.261	>0.04
					Arraial do Cabo Plat VS. 5 cm	0.041	0.201	/ 20.0
					cm			
Location	13	11.024	91.257	<0.001	Auckland Flat vs. 2.5 cm	-0.391	-2.513	0.03
	15	11.021	91.207		Auckland Flat vs. 5 cm	-1.027	-6.428	<0.0
					Auckland 2.5 cm vs. 5 cm	-0.631	-3.982	0.00
Site (Location)	1	1.207	9.988	0.002	Chesapeake Bay Flat vs. 2.5	-0.616	-3.959	0.00
					cm	-0.674	-4.333	0.00
					Chesapeake Bay Flat vs. 5 cm	-0.058	-0.374	>0.0
					Chesapeake Bay 2.5 cm vs. 5			
					cm			
Complexity x Location	26	0.404	3.346	<0.001	Herzliya Flat vs. 2.5 cm,	-0.493	-2.193	0.04
					Herzliya Flat vs. 5 cm	-0.522	-2.326	0.03
					Herzliya 2.5cm vs. 5 cm	-0.030	-0.133	>0.0
Complexity x Site	2	0.065	0.538	>0.05	Hobart Flat vs. 2.5 cm,	0.318	2.042	>0.0
(Location)					Hobart Flat vs. 5 cm	-0.456	-2.933	0.01
					Hobart 2.5cm vs. 5 cm	-0.774	-4.975	<0.0
Residual	329	0.121			Hong Kong Flat vs. 2.5 cm,	-0.464	-1.051	0.00
					Hong Kong Flat vs. 5 cm	-0.465	-1.030	0.04
					Hong Kong 2.5cm vs. 5 cm	-0.001	-0.007	>0.0
					Penang Flat vs. 2.5 cm,	-1.360	-1.845	0.01
					Penang Flat vs. 5 cm	-1.375	-2.004	0.00
					Penang 2.5cm vs. 5 cm	-0.015	-0.075	>0.0
					Ravenna Flat vs. 2.5 cm,	-0.856	-4.225	0.00
					Ravenna Flat vs. 5 cm	-0.490	-2.436	0.04
					Ravenna 2.5cm vs. 5 cm	0.366	1.822	>0.0
					Sydney Flat vs. 2.5 cm,	0.031	0.197	>0.0
					Sydney Flat vs. 5 cm	-0.418	-2.686	0.02

					Sydney 2.5cm vs. 5 cm	-0.449	-2.883	0.012
Mobile invertebrate rich		1				1		
Factor	df	Mean square	F-value	P-	Post-hoc tests	Estimate	Z-	P-
				value			value	value
Complexity	2	150.123	50.5677	<0.001	Auckland Flat vs. 2.5 cm	-5.873	-8.133	< 0.00
					Auckland Flat vs. 5 cm	-10.677	-14.346	< 0.00
					Auckland 2.5 cm vs. 5 cm	-4.804	-6.455	< 0.0
Location	13	146.015	49.1840	<0.001	Chesapeake Bay Flat vs. 2.5	-0.873	-1.208	>0.0
					cm	-2.627	-3.638	0.001
					Chesapeake Bay Flat vs. 5 cm	-1.754	-2.429	0.042
					Chesapeake Bay 2.5 cm vs. 5			
			-		cm			
Site (Location)	1	10.006	3.3706	>0.05	Coquimbo Flat vs. 2.5cm	-1.578	-2.178	0.04
					Coquimbo Flat vs. 5 cm	-2.227	-3.084	0.00
					Coquimbo 2.5cm vs. 5 cm	-0.654	-0.906	>0.0
Complexity x Location	26	19.559	6.5882	<0.001	East London Flat vs. 2.5 cm,	-0.573	-0.793	>0.0
					East London Flat vs. 5 cm	-3.037	4.192	0.00
					East London 2.5cm vs. 5 cm	-2.454	-3.399	0.00
Complexity x Site	2	1.138	0.3832	>0.05	Hobart Flat vs. 2.5 cm,	1.008	1.396	>0.0
(Location)					Hobart Flat vs. 5 cm	-2.184	-3.024	0.00
					Hobart 2.5cm vs. 5 cm	-3.192	-4.420	<0.0
Residual	329	2.969			Hong Kong Flat vs. 2.5 cm,	-1.273	-1.762	0.01
					Hong Kong Flat vs. 5 cm	-1.677	-2.253	0.01
					Hong Kong 2.5cm vs. 5 cm	-0.404	-0.543	>0.0
					Keelung Flat vs. 2.5 cm,	-3.148	-4.110	<0.0
					Keelung Flat vs. 5 cm	-2.752	-3.593	0.00
					Keelung 2.5cm vs. 5 cm	0.396	0.517	>0.0
					Sydney Flat vs. 2.5 cm,	-1.792	-2.482	0.03
					Sydney Flat vs. 5 cm	-3.284	-4.548	<0.0
					Sydney 2.5cm vs. 5 cm	-1.492	-2.066	>0.0

Algal percentage cover was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at one location (Chesapeake Bay), with no effect of complexity at the other fourteen locations. Sessile invertebrate percentage cover was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at seven locations (Auckland, Coquimbo, Chesapeake Bay, Hobart, Herzliya, Hong Kong, and Plymouth) and on only the 5 cm complex tiles than the flat tiles than the flat tiles at one location (Sydney), with no effects of complexity at the other six locations. Mobile invertebrate abundances were greater on the 2.5 cm and the 5 cm complex tiles than the flat tiles at six locations (Auckland, Chesapeake Bay, Coquimbo, East London, Hong Kong, Keelung and Sydney) and on the 5 cm complex tiles compared with the flat tiles at two locations (East London and Hobart).

Table S5b: Results of mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm), locations (14 levels) and sites nested within location (1-2 levels) on the abundances (cover of algae, cover of sessile invertebrates and abundances of mobile invertebrates) sampled destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Details of significant post-hoc tests are shown.

Algae percentage cover	'CIN							
Factor	df	Deviance	Deviance	P-	Post-hoc tests	Estimate	Z-	P-
		Residual		value			value	value
Complexity	2	29.7	28811.3	>0.05	Chesapeake Bay Flat vs. 2.5	-0.726	-3.859	0.003
					cm	-0.699	-3.725	0.006
					Chesapeake Bay Flat vs. 5 cm	0.027	0.180	>0.05
					Chesapeake Bay 2.5 cm vs. 5			
					cm			
Location	13	19915.6	8895.7	<0.001	Coquimbo Flat vs. 2.5cm	-1.043	-3.953	0.002
					Coquimbo Flat vs. 5 cm	-0.985	-3.719	0.006
					Coquimbo 2.5cm vs. 5 cm	0.059	0.307	>0.05
Site (Location)	1	60.3	8835.4	>0.05				

Complexity x Location	26	1049.1	7786.2	0.002				
Complexity x Site	2	70.1	7716.2	>0.05				
(Location)								
Sessile invertebrate perce	entage	cover						
Factor	df	Deviance	Deviance	P-	Post-hoc tests	Estimate	Z-	P-
		Residual		value			value	value
Complexity	2	974.700	18339.700	<0.001	Auckland Flat vs. 2.5 cm	-1.722	-2.142	0.042
					Auckland Flat vs. 5 cm	-2.055	-2.600	0.026
					Auckland 2.5 cm vs. 5 cm	-0.326	0.176	>0.05
Location	13	13156.000	5183.700	<0.001	Herzliya Flat vs. 2.5 cm,	-0.983	-1.242	0.043
					Herzliya Flat vs. 5 cm	-1.524	-2.025	0.011
					Herzliya 2.5cm vs. 5 cm	0.533	-1.014	>0.05
Site (Location)	1	253.900	4929.900	< 0.001	Hobart Flat vs. 2.5 cm,	-0.696	-3.335	0.003
					Hobart Flat vs. 5 cm	-0.596	-2.806	0.014
					Hobart 2.5cm vs. 5 cm	0.100	0.572	>0.05
Complexity x Location	26	1069.500	3860.400	<0.001	Hong Kong Flat vs. 2.5 cm,	-1.461	-4.274	0.001
1					Hong Kong Flat vs. 5 cm	-1.845	-5.537	<0.001
					Hong Kong 2.5cm vs. 5 cm	-0.384	-1.982	>0.05
Complexity x Site	2	113.800	3746.600	0.005	Plymouth Flat vs. 2.5 cm,	-0.648	-4.161	0.001
(Location)					Plymouth Flat vs. 5 cm	-0.503	-3.170	0.005
					Plymouth 2.5cm vs. 5 cm	0.145	1.099	>0.05
					Sydney Flat vs. 2.5 cm,	-0.137	-0.671	>0.05
					Sydney Flat vs. 5 cm	-0.966	-5.507	<0.001
					Sydney 2.5cm vs. 5 cm	-0.830	-4.969	<0.001
Mobile invertebrate abu	ndance					•		1
Factor	df	Deviance	Deviance	P-	Post-hoc tests	Estimate	Z-	P-
		Residual		value			value	value
Complexity	2	1112.26	1418.120	<0.001	Arraial do Cabo Flat vs. 2.5	-0.399	-1.185	>0.05
1 2					cm	-1.632	-1.886	0.015
					Arraial do Cabo Flat vs. 5 cm	-0.233	-0.723	>0.05
					Arraial do Cabo 2.5 cm vs. 5			
					cm			

Location	13	893.910	524.220	<0.001	Auckland Flat vs. 2.5 cm	-1.959	-6.186	<0
					Auckland Flat vs. 5 cm	-2.745	-8.473	<0
					Auckland 2.5 cm vs. 5 cm	-0.791	-2.483	0.0
Site (Location)	1	13.370	510.850	<0.001	Coquimbo Flat vs. 2.5cm	-1.395	-3.662	0.0
					Coquimbo Flat vs. 5 cm	-1.502	-3.964	0.0
					Coquimbo 2.5cm vs. 5 cm	-0.108	-0.318	>0
Complexity x Location	26	97.330	413.520	<0.001	East London Flat vs. 2.5cm	-0.781	-2.161	>0
					East London Flat vs. 5 cm	-1.516	-4.295	0.0
					East London 2.5cm vs. 5 cm	-0.735	-2.203	>0
Complexity x Site	2	4.560	408.960	>0.05	Hobart Flat vs. 2.5 cm,	1.609	4.847	<0
(Location)					Hobart Flat vs. 5 cm	-0.862	-2.743	0.0
					Hobart 2.5cm vs. 5 cm	-2.470	-7.491	<0
					Hong Kong Flat vs. 2.5 cm,	-0.936	-2.622	0.0
					Hong Kong Flat vs. 5 cm	-1.402	-3.890	0.0
					Hong Kong 2.5cm vs. 5 cm	-0.466	-1.368	>0
					Keelung Flat vs. 2.5 cm,	-1.202	-3.273	0.0
					Keelung Flat vs. 5 cm	-1.446	-3.966	0.0
					Keelung 2.5cm vs. 5 cm	-0.244	-0.712	>0
					Sydney Flat vs. 2.5 cm, 🚬 🗸	-0.654	-1.958	>0
					Sydney Flat vs. 5 cm	-1.011	-3.053	0.0
					Sydney 2.5cm vs. 5 cm	-0.358	-1.105	>0

Global Ecology and Biogeography

Filamentous/filiform macroalgae percentage cover was less on the 5cm and 2.5 cm complex tiles than on the flat tiles at two locations (Coquimbo and Keelung), but greater on the 5 cm complex tiles than the flat tiles at one location (Sydney). Foliose macroalgae percentage cover was less on the 5 and 2.5 cm complex tiles than on the flat tiles at three sites (Auckland 1, Coquimbo 1, East London 1), but greater on the 2.5 cm complex than flat tiles at three sites (Hobart 1, Plymouth 1 and Sydney 1) and on the 5 cm complex tiles compared with the flat tiles at one site (East London 2). Encrusting macroalgae displayed location-specific positive effects of habitat structure, displaying greater percentage cover on the 2.5 cm and 5 cm complex tiles than the flat tiles at one location (Arraial do Cabo) and on the 5 cm complex tiles relative to the flat tiles at an additional two locations (East London and Sydney).

Bryozoans, sessile molluscs and sessile worms each displayed greater percentage cover on 5 cm complex, and in some instances, also 2.5 cm complex than flat tiles, at a subset of sites or locations. For bryozoans, such patterns were significant for three locations (Herzliya, Plymouth and Sydney), for sessile molluscs they were significant for seven locations (Auckland, Chesapeake Bay, Hobart, Hong Kong, Plymouth, Ravenna and Sydney) and for sessile worms, for five locations (Arraial do Cabo, Auckland, Herzliya, Keelung and Sydney). Additionally, sessile crustacean percentage cover was greater on the 5 cm and 2.5 cm complex tiles than the flat tiles at eight locations (Arraial do Cabo, Auckland, Coquimbo, Herzliya, Hobart, Hong Kong, Plymouth and Ravenna), while sessile crustacean cover was lower on the flat tiles than the 5 cm and 2.5 cm complex tiles at two locations (San Francisco and Sydney).

Global Ecology and Biogeography

Mobile crustacean abundance was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at nine sites (Auckland 1, Auckland 2, Chesapeake Bay 1, Chesapeake Bay 2, Hong Kong 1, Hong Kong 2, Keelung 2, Sydney 1 and Sydney 2). At two sites (Chesapeake Bay 1 and Sydney 1) the mobile crustacean abundance was greater on the 5 cm tiles than the 2.5 cm and flat tiles. Finally, at two sites mobile crustacean abundance was greater on the 5 cm tiles than the 2.5 cm and flat tiles. Finally, at two sites mobile crustacean abundance was greater on the 2.5 cm or 5 cm than the flat tiles (Hobart 1 and San Francisco 1, Supplementary S6). Mobile mollusc abundance was greater on the 2.5 cm and 5 cm complex tiles than the flat tiles at eight locations (Arraial do Cabo, Auckland, Coquimbo, East London, Hobart, Hong Kong, Keelung, and Sydney), but there were fewer mobile molluscs on the 2.5 cm and 5 cm than the flat tiles at one location (San Francisco). Mobile worms similarly displayed greater abundances on 5 cm complex than the flat tiles at four locations (Auckland, Chesapeake Bay and Sydney).

Table S6a: Results of multivariate and univariate mixed effects models testing the effects of complexity (flat, 2.5 cm or 5 cm) location (14 levels) and sites nested within location (1-2 levels) on the abundances of the nineteen CATAMI groups, sampled destructively at 12 months. The surface area of the tiles sampled (offset) was also included in the model. Detail of significant post-hoc tests are shown.

Fixed	Residual	df	Dev	P-	Post-hoc tests		
	df	diff		value			
Multivariate							
Intercept	373.000						
Complexity	371.000	2	145.000	0.001			
Location	358.000	13	3510.000	0.001			
Site (Location)	333.000	25	868.000	0.001			
Complexity x Location	307.000	26	478.000	0.001			

Complexity x Site (Location)	293.000	50	354.000	0.001				
Univariate								
Algal mats								
Complexity			0.602	>0.05				
Location			225.091	>0.05				
Site (Location)			13.929	>0.05				
Complexity x Location			2.455	>0.05				
Complexity x Site (Location)			14.066	>0.05				
Macroalgae articulated								
calcareous								
Complexity			6.958	>0.05				
Location			81.927	0.001				
Site (Location)			31.469	0.001				
Complexity x Location			0.001	>0.05				
Complexity x Site (Location)			0.568	>0.05				
Macroalgae					Coquimbo Flat vs. 2.5cm	0.482	5.530	<0.00
filamentous/filiform					Coquimbo Flat vs. 5 cm	0.173	2.191	0.048
					Coquimbo 2.5cm vs. 5 cm	-0.309	-3.480	0.002
Complexity			0.14	>0.05	Keelung Flat vs. 2.5cm	0.673	9.047	<0.00
					Keelung Flat vs. 5 cm	0.745	9.927	<0.00
					Keelung 2.5cm vs. 5 cm	0.837	0.680	>0.05
Location			372.211	0.001	Sydney Flat vs. 2.5cm	1.617	0.010	>0.05
					Sydney Flat vs. 5 cm	-2.564	5.527	< 0.00
					Sydney 2.5cm vs. 5 cm	-2.181	-0.011	>0.05
Site (Location)			38.877	0.001				
Complexity x Location			37.63	0.011				
Complexity x Site (Location)			34.375	0.034				
Macroalgae globose saccate								
Complexity			4.4	>0.05				
Location			10.029	>0.05				
Site (Location)			0.001	>0.05				

Page 75 of 92

Complexity x Location	0.004	>0.05				
Complexity x Site (Location)	0.001	>0.05				
Macroalgae foliose			Auckland site 1 Flat vs. 2.5 cm,	1.521	1.607	0.025
			Auckland site 1 Flat vs. 5 cm	2.488	4.014	0.002
			Auckland site 1 2.5cm vs. 5 cm	0.967	1.560	>0.05
Complexity	0.37	>0.05	Coquimbo site 1 Flat vs. 2.5 cm,	1.332	2.279	0.049
			Coquimbo site 1 Flat vs. 5 cm	1.459	2.497	0.034
			Coquimbo site 1 2.5cm vs. 5 cm	0.128	0.217	>0.05
Location	336.885	0.001	East London site 1 Flat vs. 2.5	1.335	2.285	0.048
			cm,	1.607	2.750	0.017
			East London site 1 Flat vs. 5 cm	0.272	0.465	>0.0
			East London site 1 2.5cm vs. 5 cm	0.377	0.645	>0.0
			East London site 2 Flat vs. 2.5	-1.903	-3.256	0.003
			cm,	-2.280	-3.901	0.001
			East London site 2 Flat vs. 5 cm			
			East London site 2 2.5cm vs. 5 cm			
Site (Location)	104.858	0.001	Hobart site 1 Flat vs. 2.5 cm,	-1.190	-1.325	0.001
			Hobart site 1 Flat vs. 5 cm	0.378	0.647	>0.0
			Hobart site 1 2.5cm vs. 5 cm	0.568	0.971	>0.0
Complexity x Location	27.377	0.080	Plymouth site 1 Flat vs. 2.5 cm,	-1.491	-2.552	0.029
			Plymouth site 1 Flat vs. 5 cm	-1.032	-1.766	>0.05
			Plymouth site 1 2.5cm vs. 5 cm	0.459	0.786	>0.0
Complexity x Site (Location)	42.402	0.012	Sydney site 1 Flat vs. 2.5 cm,	-1.673	-2.862	0.012
			Sydney site 1 Flat vs. 5 cm	-1.235	-2.112	>0.05
			Sydney site 1 2.5cm vs. 5 cm	0.439	0.750	>0.04
Macroalgae encrusting						
Complexity	0.557	>0.05	Arraial do Cabo Flat vs. 2.5 cm,	-0.756	-3.029	0.00
			Arraial do Cabo Flat vs. 5 cm	-1.675	-6.713	<0.0
			Arraial do Cabo 2.5cm vs. 5 cm	-0.920	-3.789	0.008
Location	212.209	0.001	East London Flat vs. 2.5 cm,	0.006	0.247	>0.0
			East London Flat vs. 5 cm	-0.703	-2.895	0.01

			East London 2.5cm vs. 5 cm	-0.763	-3.142	0.005
Site (Location)	64.698	0.001	Sydney Flat vs. 2.5 cm,	0.395	1.628	>0.05
			Sydney Flat vs. 5 cm	-0.625	-2.574	0.027
			Sydney 2.5cm vs. 5 cm	-1.020	-4.203	0.001
Complexity x Location	33.57	0.039				
Complexity x Site (Location)	24.096	>0.05				
Ascidians						
Complexity	5.859	>0.05				
Location	24.142	0.003				
Site (Location)	11.016	>0.05				
Complexity x Location	1.006	>0.05				
Complexity x Site (Location)	0.001	>0.05				
Bryozoans						
Complexity	6.948	>0.05	Herzliya Flat vs. 2.5 cm,	-0.849	-4.583	<0.001
			Herzliya Flat vs. 5 cm	-0.978	-5.280	<0.001
			Herzliya 2.5cm vs. 5 cm	-0.129	-0.697	>0.05
Location	61.313	0.001	Plymouth Flat vs. 2.5 cm,	-0.389	-2.965	0.009
			Plymouth Flat vs. 5 cm	0.074	0.561	>0.05
			Plymouth 2.5cm vs. 5 cm	0.462	3.527	0.001
Site (Location)	12.594	>0.05	Sydney Flat vs. 2.5 cm,	0.008	0.060	>0.05
			Sydney Flat vs. 5 cm	-0.302	-2.301	0.049
			Sydney 2.5cm vs. 5 cm	-0.309	-2.362	0.048
Complexity x Location	33.31	0.042				
Complexity x Site (Location)	0.001	>0.05				
Cnidarians						
Complexity	2.912	>0.05				
Location	15.64	>0.05				
Site (Location)	0.001	>0.05				
Complexity x Location	0.003	>0.05				
Complexity x Site (Location)	2.716	>0.05				
Sponges						

Complexity	6.795	>0.05				
Location	32.15	0.001				
Site (Location)	4.568	>0.05				
Complexity x Location	9.376	>0.05				
Complexity x Site (Location)	5.986	>0.05				
Sessile crustaceans			Arraial do Cabo Flat vs. 2.5 cm	-1.414	-6.182	<0.00
			Arraial do Cabo Flat vs. 5 cm	-1.295	-5.628	< 0.00
			Arraial do Cabo 2.5 cm vs. 5 cm	0.119	0.880	>0.05
Complexity	6.447	>0.05	Auckland Flat vs. 2.5 cm	-1.394	-4.681	<0.00
1 5			Auckland Flat vs. 5 cm	-1.385	-4.667	< 0.00
			Auckland 2.5 cm vs. 5 cm	0.009	0.048	>0.05
Location	423.608	0.001	Coquimbo Flat vs. 2.5 cm	-1.034	-	<0.00
			Coquimbo Flat vs. 5 cm	-0.962	12.915	< 0.00
			Coquimbo 2.5 cm vs. 5 cm	0.073	-	>0.04
			Co.		11.965	
					1.258	
Site (Location)	137.372	0.001	Herzliya Flat vs. 2.5 cm,	-0.710	-1.937	>0.05
			Herzliya Flat vs. 5 cm	-0.896	-2.530	0.031
			Herzliya 2.5cm vs. 5 cm	-0.186	-0.665	>0.05
Complexity x Location	78.89	0.001	Hobart Flat vs. 2.5 cm,	-0.749	-	<0.00
			Hobart Flat vs. 5 cm	-0.550	11.586	<0.00
			Hobart 2.5cm vs. 5 cm	0.200	-8.237	0.007
					3.663	
Complexity x Site (Location)	73.151	0.001	Hong Kong Flat vs. 2.5 cm,	-1.646	-	<0.00
			Hong Kong Flat vs. 5 cm	-2.115	13.422	<0.00
			Hong Kong 2.5cm vs. 5 cm	-0.470	-	<0.00
					17.759	
					-7.515	
			Plymouth Flat vs. 2.5 cm,	-0.639	-	<0.0
			Plymouth Flat vs. 5 cm	-0.455	13.497	<0.0
			Plymouth 2.5cm vs. 5 cm	0.185	-9.369	<0.00
					4.562	

			Ravenna Flat vs. 2.5 cm,	-1.251	-3.085	0.006
			Ravenna Flat vs. 5 cm	0.107	0.206	>0.05
			Ravenna 2.5cm vs. 5 cm	1.359	3.203	0.004
			San Francisco Flat vs. 2.5 cm,	0.708	8.869	<0.00
			San Francisco Flat vs. 5 cm	0.251	3.505	0.002
			San Francisco 2.5cm vs. 5 cm	-0.458	-5.274	0.001
			Sydney Flat vs. 2.5 cm,	0.432	5.385	<0.00
			Sydney Flat vs. 5 cm	0.152	2.061	>0.05
			Sydney 2.5cm vs. 5 cm	-0.280	-3.390	0.002
Sessile molluscs			Chesapeake Bay Flat vs. 2.5 cm	-0.704	-5.843	<0.00
			Chesapeake Bay Flat vs. 5 cm	-1.278	-	<0.00
			Chesapeake Bay 2.5 cm vs. 5 cm	-0.574	11.503	<0.00
					-6.736	
Complexity	22.979	0.001	Hobart Flat vs. 2.5 cm	2.450	3.324	0.003
			Hobart Flat vs. 5 cm	-0.800	-3.192	0.004
			Hobart 2.5 cm vs. 5 cm	-3.249	-4.510	<0.00
Location	295.64	0.001	Hong Kong Flat vs. 2.5 cm	-0.799	-3.943	0.002
			Hong Kong Flat vs. 5 cm	0.430	1.621	>0.05
			Hong Kong 2.5 cm vs. 5 cm	1.229	5.279	<0.00
Site (Location)	66.54	0.001	Plymouth Flat vs. 2.5 cm	17.820	0.010	>0.05
			Plymouth Flat vs. 5 cm	-1.824	-4.165	0.001
			Plymouth 2.5 cm vs. 5 cm	-	-0.011	>0.05
				19.643		
Complexity x Location	74.838	0.001	Ravenna Flat vs. 2.5 cm	-0.867	-2.510	0.033
			Ravenna Flat vs. 5 cm	-1.252	-3.810	0.004
			Ravenna 2.5 cm vs. 5 cm	-0.386	-1.604	>0.05
Complexity x Site (Location)	31.997	>0.05	Sydney Flat vs. 2.5 cm	-1.161	-9.724	<0.00
			Sydney Flat vs. 5 cm	-2.245	-	<0.00
			Sydney 2.5 cm vs. 5 cm	-1.084	20.482	<0.00
					-	
					16.128	
Sessile worms			Arraial do Cabo Flat vs. 2.5 cm	-2.644	-4.828	<0.00

			Arraial do Cabo Flat vs. 5 cm	-2.548	-4.653	< 0.001
			Arraial do Cabo 2.5 cm vs. 5 cm	0.096	0.180	>0.05
Complexity	11.016	>0.05	Auckland Flat vs. 2.5 cm	-0.896	-1.682	>0.05
			Auckland Flat vs. 5 cm	-1.792	-3.272	0.003
			Auckland 2.5 cm vs. 5 cm	-0.897	-1.637	>0.05
Location	217.597	0.001	Herzliya Flat vs. 2.5 cm,	-0.293	-0.389	>0.05
			Herzliya Flat vs. 5 cm	-2.927	-3.439	0.002
			Herzliya 2.5cm vs. 5 cm	-1.372	-1.822	>0.05
Site (Location)	34.825	0.001	Keelung Flat vs. 2.5 cm,	-0.084	-0.132	>0.05
			Keelung Flat vs. 5 cm	-1.695	-1.091	0.049
			Keelung 2.5cm vs. 5 cm	-0.612	-0.960	>0.05
Complexity x Location	19.225	0.049	Sydney Flat vs. 2.5 cm,	-0.692	-1.150	>0.05
			Sydney Flat vs. 5 cm	-3.184	-5.290	< 0.001
			Sydney 2.5cm vs. 5 cm	-2.492	-4.140	0.001
Complexity x Site (Location)	1.077	>0.05	Co.			
Mobile arthropods						
Complexity	4.388	>0.05	· No			
Location	10.98	>0.05				
Site (Location)	3.005	>0.05				
Complexity x Location	0.004	>0.05				
Complexity x Site (Location)	0.001	>0.05				
Mobile crustaceans			Auckland site 1 Flat vs. 2.5 cm,	-0.846	-6.883	< 0.001
			Auckland site 1 Flat vs. 5 cm	-1.091	-8.973	< 0.001
			Auckland site 1 2.5cm vs. 5 cm	-0.246	-2.652	0.0218
			Auckland site 2 Flat vs. 2.5 cm,	-3.254	-7.142	< 0.001
			Auckland site 2 Flat vs. 5 cm	-4.018	-8.909	< 0.001
			Auckland site 2 2.5cm vs. 5 cm	-0.765	-7.331	<0.001
Complexity	3.460	>0.05	Chesapeake Bay site 1 Flat vs. 2.5	-0.828	-5.721	< 0.001
			cm	-1.184	-8.611	< 0.001
			Chesapeake Bay site 1 Flat vs. 5	-0.355	-3.478	0.001
			cm	-0.062	-0.727	>0.05
				-0.428	-5.534	< 0.001

1 2	
3 4 5	
5 6 7	
8 9	
10 11	
12 13	
14 15 16	
17 18	
19 20	
21 22 23	
23 24 25	
25 26 27	
28	
29 30 31	
32 33	
34 35 36 37	
37 38	
39 40	
41 42	
43 44 45	
45 46	

			0.751	2.1/1	
			1	1	0.0123
					0.001
				1	0.003
			1	1	
			1	1	>0.05
		cm Sydney site 1 Elet yr. 2.5 cm	0.695	2167	>0.05
			0.989	5.684	>0.05
		cm	1	1	< 0.00
43.316	0.012				<0.00
					>0.05
				-4.091	0.001
30.203	>0.05	Keelung site 2 Flat vs. 2.5 cm	-1.582	-4.085	0.001
		Hobart site 1 2.5 cm vs. 5 cm	-5.133	-5.118	<0.00
		Hobart site 1 Flat vs. 5 cm	-0.206	-1.791	>0.05
53.262	0.001	Hobart site 1 Flat vs. 2.5 cm	4.928	4.910	< 0.00
		Hong Kong site 2 2.5 cm vs. 5 cm	-0.783	-2.673	0.021
		Hong Kong site 2 Flat vs. 5 cm	-2.260	-4.268	0.001
		Hong Kong site 2 Flat vs. 2.5 cm	-1.477	-2.671	0.021
		Hong Kong site 1 2.5 cm vs. 5 cm	-0.229	-0.751	>0.05
		Hong Kong site 1 Flat vs. 5 cm	-2.047	-3.350	0.002
335.469	0.001	Hong Kong site 1 Flat vs. 2.5 cm	-1.819	-2.927	0.010
		5 cm			
		1 2			
		••••			
		1 2			
		Chesapeake Bay site 1 2.5 cm vs.	-0.366		<0.0
	53.262	53.262 0.001 30.203 >0.05	335.4690.001Hong Kong site 1 Flat vs. 2.5 cm Hong Kong site 1 Flat vs. 5 cm Hong Kong site 1 2.5 cm vs. 5 cm Hong Kong site 2 Flat vs. 2.5 cm 	Image: Chesapeake Bay site 2 Flat vs. 2.5 cm Chesapeake Bay site 2 Flat vs. 5 cm Chesapeake Bay site 2 2.5 cm vs. 5 cm Image: Chesapeake Bay site 2 Flat vs. 5 cm Chesapeake Bay site 2 2.5 cm vs. 5 cm 335.469 0.001 Hong Kong site 1 Flat vs. 2.5 cm Hong Kong site 1 Flat vs. 5 cm -1.819 -2.047 Hong Kong site 1 Flat vs. 5 cm 335.469 0.001 Hong Kong site 1 Flat vs. 5 cm Hong Kong site 2 Flat vs. 5 cm -2.047 -2.047 Hong Kong site 2 Flat vs. 5 cm 30.203 53.262 0.001 Hobart site 1 Flat vs. 2.5 cm Hobart site 1 Flat vs. 5 cm -0.783 -0.206 Hobart site 1 Flat vs. 5 cm 30.203 >0.05 Keelung site 2 Flat vs. 5 cm Keelung site 2 S cm vs. 5 cm -1.556 0.026 43.316 0.012 San Francisco site 1 Flat vs. 2.5 cm San Francisco site 1 Flat vs. 5 cm San Francisco site 1 Flat vs. 5 cm 0.989 43.316 0.012 San Francisco site 1 Flat vs. 5 cm Sydney site 1 Flat vs. 5 cm 0.989 43.316 Sydney site 1 Flat vs. 2.5 cm -0.685 Sydney site 1 Flat vs. 5 cm 0.989	Solution Chesapeake Bay site 2 Flat vs. 2.5 cm Chesapeake Bay site 2 Flat vs. 5 cm Chesapeake Bay site 2 2.5 cm vs. 5 cm -1.819 -2.927 335.469 0.001 Hong Kong site 1 Flat vs. 2.5 cm Hong Kong site 1 Flat vs. 5 cm Hong Kong site 1 Stat vs. 5 cm Hong Kong site 2 Flat vs. 5 cm Hong Kong site 2 Flat vs. 5 cm Hong Kong site 2 Flat vs. 5 cm Hong Kong site 2 Stat vs. 5 cm Keelung site 2 Stat vs. 5 cm Sydney site 1 Flat vs. 2.5 cm Sydney site 1 Flat vs. 2.5 cm Sydney site 1 Flat vs. 2.5 cm Sydney site 1 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Hong Sydney site 1 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Hong Sydney site 1 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Sydney site 1 Flat vs. 5 cm Sydney site 1 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Hom Stat Sydney Site 2 Flat vs. 5 cm Sydney Site 2 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm Sydney site 2 Flat vs. 5 cm S

Complexity	4.572	>0.05				
Location	185.739	0.001				
Site (Location)	8.262	>0.05				
Complexity x Location	27.15	>0.05				
Complexity x Site (Location)	10.646	>0.05				
Mobile echinoderms						
Complexity	9.872	>0.05				
Location	49.061	0.001				
Site (Location)	14.939	0.045				
Complexity x Location	1.203	>0.05				
Complexity x Site (Location)	0.485	>0.05				
Mobile molluscs			Arraial do Cabo Flat vs. 2.5 cm	-0.411	-3.501	0.002
			Arraial do Cabo Flat vs. 5 cm	-0.629	-5.611	<0.001
			Arraial do Cabo 2.5cm vs. 5 cm	-0.219	-2.315	>0.05
Complexity	42.557	0.001	Auckland Flat vs. 2.5 cm	-2.405	-	<0.001
			Auckland Flat vs. 5 cm	-3.275	23.513	<0.001
			Auckland 2.5cm vs. 5 cm	-0.870	-	<0.001
					32.762	
				0.	-	
			~		24.904	
Location	372.919	0.001	Coquimbo Flat vs. 2.5 cm	-1.870	-6.752	< 0.001
			Coquimbo Flat vs. 5 cm	-1.901	-6.897	< 0.001
			Coquimbo 2.5 cm vs. 5 cm	-0.031	-0.223	>0.05
Site (Location)	167.937	0.001	East London Flat vs. 2.5 cm	-0.758	-3.498	0.002
			East London Flat vs. 5 cm	-1.691	-8.700	< 0.001
			East London 2.5 cm vs. 5 cm	-0.933	-6.559	<0.001
Complexity x Location	62.217	0.001	Hobart Flat vs. 2.5 cm	-2.072	-4.367	< 0.001
			Hobart Flat vs. 5 cm	-2.088	-4.407	< 0.001
			Hobart 2.5 cm vs. 5 cm	-0.016	-0.073	>0.05
Complexity x Site (Location)	62.142	0.001	Hong Kong Flat vs. 2.5 cm	-0.919	-3.978	0.002
			Hong Kong Flat vs. 5 cm	-1.428	-6.518	< 0.001
			Hong Kong 2.5 cm vs. 5 cm	-0.509	-3.253	0.004

		1	W 1 DI A	1.050	6.000	0.001
			Keelung Flat vs. 2.5 cm	-1.378	-6.296	<0.001
			Keelung Flat vs. 5 cm	-1.652	-7.761	<0.001
			Keelung 2.5 cm vs. 5 cm	-0.274	-2.149	>0.05
			San Francisco Flat vs. 2.5 cm	0.597	4.370	<0.001
			San Francisco Flat vs. 5 cm	0.912	5.830	<0.001
			San Francisco 2.5 cm vs. 5 cm	0.316	1.805	>0.05
			Sydney Flat vs. 2.5 cm	-0.485	-3.101	0.006
			Sydney Flat vs. 5 cm	-0.894	-6.132	<0.001
			Sydney 2.5 cm vs. 5 cm	-0.410	-3.303	0.003
Mobile worms			Auckland Flat vs. 2.5 cm	-0.889	-1.840	>0.05
			Auckland Flat vs. 5 cm	-2.399	-5.619	<0.001
			Auckland 2.5cm vs. 5 cm	-1.510	-1.510	<0.001
Complexity	4.329	>0.05	Chesapeake Bay Flat vs. 2.5 cm	-0.748	-8.064	<0.001
1 5			Chesapeake Bay Flat vs. 5 cm	-1.142	-	<0.001
			Chesapeake Bay 2.5cm vs. 5 cm	-0.394	13.071	<0.001
					-5.904	
Location	247.461	0.001	Hobart Flat vs. 2.5 cm	1.892	8.986	<0.001
			Hobart Flat vs. 5 cm	-0.647	-6.875	<0.001
			Hobart 2.5cm vs. 5 cm	-2.539	-	<0.001
				Pi.	12.465	
Site (Location)	100.516	0.001	Sydney Flat vs. 2.5 cm	16.008	0.009	>0.05
			Sydney Flat vs. 5 cm	-2.623	-2.534	0.031
			Sydney 2.5cm vs. 5 cm	-	-0.010	>0.05
				18.631	0.010	
Complexity x Location	42.496	0.005		10.001		+
Complexity x Decation Complexity x Site (Location)	8.138	>0.005				+
complexity x bite (Location)	0.150	- 0.05				<u> </u>

Supplementary S7: Correlates of spatial variation in effects of topographic complexity

Table S7a: Effects of tidal zone (high, mid or low) on the SMD of taxa richness (total, sessile invertebrate and mobile invertebrate) and the abundances of CATAMI groups between the 5 cm complex tile relative to flat tiles. Effects are significant if confidence intervals do not overlap zero. The overall estimates are based on the destructive sampling at 12 months. ns >0.05, * < 0.05, * < 0.01, ** < 0.001. Details of significant post-hoc tests are shown.

Factor	Estimate	SE	Z- value	P- value	Lower CI	Upper CI	Post-hoc tests	Estimate	SE	Z- value	P- value	Lower CI	Upper CI
Total ri	ichness		1	1	1								
High	0.9226	0.5013	1.8405	>0.05	-0.0599	1.9052	Mid vs. Low	1.4521	1.0311	1.4083	>0.05	-0.5688	3.4729
Mid	1.4528	0.2693	5.3939	<0.001	0.9249	1.9807		0					
Low	2.9121	0.9256	3.1451	0.017	1.0979	4.7263		CO					
Algal ri	ichness				•								
High	0.5699	0.5824	0.9784	>0.05	-0.5717	1.7114	NA						
Mid	0.4412	0.2703	1.6319	>0.05	-0.0887	0.9711				GL	10		
Low	-0.1523	0.7412	- 0.2055	>0.05	-1.6050	1.3003					(d)		
Sessile	invertebrat	e richnes	S	I	1	1							
High	0.6952	0.4255	1.6337	>0.05	-0.1388	1.5292	Mid vs. Low	1.5013	0.7704	1.9488	0.0413	0.009	3.0112
Mid	0.9344	0.2181	4.2842	<0.001	0.5069	1.3619							
Low	2.4343	0.7573	3.2144	0.0013	0.9599	3.9185							
	invertebrat	te richne	ss										
High	0.5387	0.5166	1.0428	>0.05	-0.4737	1.5511	Mid vs. Low	2.1599	1.0393	2.0781	0.0377	0.1228	4.1970
Mid	1.3963	0.2716	5.1414	<0.001	0.8640	1.9286							

Low	3.5630			0.0002	1.6769	5.4491					
		0.9623	3.7026								
Filamentous algae cover											
High	0.0509	0.4647	0.1095	>0.05	-0.8599	0.9617	NA				
Mid	-0.4937	0.3211	-	>0.05	-1.1230	0.1355					
			1.5378								
Low	-1.3929	0.5227	-	0.0077	-2.4173	-0.3684					
			2.6648								
Foliose	algae cove										
High	0.5611	0.5140		>0.05	-0.4462	1.5684	NA				
			1.0917								
Mid	-0.2180	0.2120	-	>0.05	-0.6336	0.1976	\mathbf{O}				
			1.0279					\square			
	ting algae o										
High	1.2050	0.5840	2.0633	0.0391	0.0603	2.3496	NA				
Mid	-0.3078	0.5155	-	>0.05	-1.3181	0.7025					
			0.5972								
Low	0.2582	0.9018	0.2864	>0.05	-1.5093	2.0258					
	bryozoans		1	1	1	1					
High	0.5317	0.3825	1.3899	>0.05	-0.2181	1.2815	NA			,	
Mid	0.5862	0.3935	1.4898	>0.05	-0.1850	1.3574					
	bivalves co										
High	0.6455	0.5450	1.1842	>0.05	-0.4228	1.7137	NA				
Mid	0.8845	0.3289	2.6892	0.0072	0.2399	1.5291					
Low	0.4539	0.9639	0.4710	>0.05	-1.4352	2.3431					
	crustacean	1									
High	1.2446	0.7538	1.6512	>0.05	-0.2327	2.7220	NA				
Mid	1.0458	0.4014	2.6056	0.0092	0.2591	1.8326					
Low	0.6784	1.3261	0.5116	>0.05	-1.9208	3.2775					
Sessile	worms cov	er									

Page	85	of	92
------	----	----	----

High	1.3851	0.3618	3.8290	0.001	0.6761	2.0942	Mid vs.	-0.4009	0.4684	-	>0.05	-1.3189	0.5171
							High			0.8559			
Mid	0.9843	0.2975	3.3084	0.009	0.4012	1.5674							
Low	0.4168	0.6660	0.6259	>0.05	-0.8884	1.7221							
Mobile	crustacea	ns abunda	nce										
High	0.9771	0.3880	2.5182	0.0118	0.2166	1.7376	Mid vs. High	0.1071	0.5265	0.2034	>0.05	-0.9249	1.1391
Mid	0.7937	0.2048	3.8757	<0.001	0.3923	1.1951							
Low	0.9008	0.4851	1.8571	>0.05	-0.0499	1.8515							
Mobile	molluscs a	abundanc	e		•								
High	1.1896	0.5121	2.3232	0.0202	0.1860	2.1932	Mid vs.	-0.0604	0.5708	1.050	>0.05	-1.1792	1.0585
Mid	1.1292	0.2523	4.4754	<0.001	0.6347	1.6237	High Mid vs.	1.0775	0.7709	-1.058 1.3978	>0.05	-0.4334	2.5884
							Low						
Low	2.2068	0.7298	3.0237	0.0025	0.7764	3.6372	High vs.	1.0135	0.9041	1.1210	>0.05	-0.7585	2.7855
							Low						
Mobile	worms ab	undance											
High	0.6601	0.3776	1.7482	>0.05	-0.0800	1.4002	NA			C L			
Mid	1.0911	0.2726	4.0032	<.0001	0.5569	1.6253							
Low	1.1885	0.6860	1.7324	>0.05	-0.1561	2.5330							

Table S7b: Effects of distance from the nearest boating facility or marina (km) on the SMD of taxa richness (total, sessile invertebrate and mobile invertebrate) and the abundances of the CATAMI groups between the 5 cm complex tile relative to flat tiles. Effects are significant if confidence intervals do not overlap zero. The overall estimates are based on the destructive sampling at 12 months. ns >0.05, * <0.05, **<0.01, ***<0.001.

Factor	Estimate	SE	Z-value	P-value	Lower CI	Upper CI
Total rich	iness					
Distance	0.0177	0.163	0.1080	>0.05	-0.3029	0.3383

Page 86 c	of 92
-----------	-------

1	
2 3 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 4 5 6 7 8 9 10 11 23 24 25 26 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 5 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 6 7 8 9 10 11 12 13 14 15 16 7 8 9 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 10 11 12 13 14 15 16 17 18 19 20 1 22 23 24 25 26 27 28 29 30 31 32 33 33 33 33 35 3 37 3 37 3 37 3 37 3	
4	
5	
6 7	
8	
9	
10 11	
12	
13	
14 15	
16	
17	
18	
20	
21 22	
22	
24	
25 26	
27	
28	
29 30	
31	
32	
33 34	
35	
36 27	
38	
39	
40 41	
41	
43	
44 45	
43 46	

Algal rich	iness					
Distance		0.1249	-1.0431	>0.05	-0.3751	0.1145
Sessile inv	vertebrate	richness				
Distance	0.2444	0.1221	2.0015	0.0453	0.0051	0.4838
Mobile in	vertebrate	richness				
Distance	-0.0882	0.6634	-0.6281	>0.05	-1.7170	0.8836
Filamento	ous algae co	over				
Distance	-0.4167	0.5215	0.1011	>0.05	-0.9694	1.0748
Foliose al	gae cover					
Distance	ř	0.1885	-1.6878	>0.05	-0.6877	0.0513
Encrustin	ig algae cov	ver				
Distance		0.7544	-1.0092	>0.05	-2.2400	0.7173
	vozoans co	1	1	1	1	
Distance	0.0390	0.1265	0.3083	>0.05	-0.2089	0.2869
Sessile biv	valves cove	1	1	1	1	1
Distance	1	0.1759	1.0723	>0.05	-0.1561	0.5334
Sessile cr	ustaceans c	over	1	1	1	
Distance	1.0636	-0.2457	-1.1955	>0.05	-0.6486	0.1571
	orms cover	1			1	0.7173 0.2869 0.5334 0.1571 0.3068 0.2849
Distance		0.1212	0.5702	>0.05	-0.1685	0.3068
	ustaceans	1	1			
Distance		0.1241	0.3348	>0.05	-0.2017	0.2849
	olluscs abu	1			1	
Distance		0.1649	0.4226	>0.05	-0.2535	0.3928
	orms abun	1		1 0000	1 0.2000	
Distance	1	0.1373	1.0844	>0.05	-0.1202	0.4179
- 15000100		0.1070	1.0011	0.00	0.1202	

Table S7c: Effects of absolute latitude on the SMD of taxa richness (total, algae, sessile invertebrate and mobile invertebrate) and the abundances of the CATAMI groups between the 5 cm complex tile relative to flat tiles. Effects are significant if confidence intervals do not overlap zero. The overall estimates are based on the destructive sampling at 12 months. ns >0.05, * < 0.05, * < 0.01, ** < 0.001.

Factor	Estimate	SE	Z-value	P-value	Lower CI	Upper C
Total richness						
Absolute latitude	-0.0139	0.0066	-2.1242	0.0336	-0.0268	-0.0011
Algal richness						
Absolute latitude	-0.0079	0.0211	-0.3756	>0.05	-0.0492	0.0334
Sessile invertebrat	te richness					
Absolute latitude	-0.0148	0.0336	0.5437	>0.05	-0.0476	0.0841
Mobile invertebra	te richness					
Absolute latitude	0.0183	0.6634	-0.6281	>0.05	-1.7170	0.8836
Filamentous algae	cover					
Absolute latitude	0.0032	0.0350	0.0925	>0.05	-0.0653	0.0718
Foliose algae cove	r					
Absolute latitude	0.0562	2.1948	0.0256	>0.005	-0.0060	0.1063
Encrusting algae of	cover					
Absolute latitude	-0.0320	0.0223	-1.4341	>0.05	-0.0757	0.0117
Sessile bryozoans	cover					
Absolute latitude	0.0257	0.0159	1.6207	>0.05	-0.0054	0.0568
Sessile bivalves co	ver					
Absolute latitude	0.0411	0.0225	1.8217	0.0485	0.0031	0.0852
Sessile crustacean	s cover					
Absolute latitude	-0.0448	0.0284	-1.5750	>0.05	-0.1005	0.0109
Sessile worms cov	er					
Absolute latitude	0.0185	0.0171	1.0834	>0.05	-0.0149	0.0519
Mobile crustacean	s abundan	ce				
Absolute latitude	-0.0048	0.0188	-0.2556	>0.05	-0.0417	0.0321
Mobile molluscs a	bundance					
Absolute latitude	-0.0402	0.0215	-1.8664	0.0420	-0.0823	0.0020
Mobile worms abu	indance					
Absolute latitude	-0.0272	0.0208	-1.3062	>0.05	-0.0680	0.0136

Supplementary S8: Acknowledgements

For Sydney: Emma Wilkie, Peter Simpson, Stephanie Bagala, Caleb Rankin, and Dominic McAfee and the Port Stephens Fisheries Institute and the NSW Department of Primary Industry for providing the oysters. This study was part of the World Harbour Project, a program that received funding from the Ian Potter Foundation, the Harding Miller Foundation, and the New South Wales Government Office of Science Research.

For Arraial do Cabo: Hector Fabian Messano, Rafael Menezes and José Eduardo A. Gonçalves for field support as well as Biotecmar team. Port of Forno Authority for access and permission for the fieldwork in the area. Lais Naval-Xavier was supported by a Master's scholarship from State of Rio de Janeiro Foundation for Research (FAPERJ) and Ricardo Coutinho was financed by FAPERJ and Brazilian National Council of Research (CNPq).

For Chesapeake Bay: RS and KK would like to thank personnel from the Community Ecology and Marine Conservation Ecology labs at the Virginia Institute of Marine Science, particularly Michael Seebo, Gabrielle Saluta, Alison Smith, and undergraduate interns, Jennifer Gonzalez, Cynthia Harris, for field and laboratory help.

 For Coquimbo: Ariel Rojas, Leslie Ortiz and Francisco Pantoja. MAA was financed by Fondecyt grant #1160223.

For Dublin: Thanks to Dublin Port Authority for granting access and permissions to work in Dublin Port. Thanks to Jen Coughlan, Martina

Caplice and many others from SBES, UCD for assistance over the duration of the work.

Funding was provided by College of Science, University College Dublin.

For East London: FP, SM, PP acknowledge use of infrastructures provided by the South African Institute for Aquatic Biodiversity Research Platform - National Research Foundation of South Africa and thank members of the Coastal and Ocean Sciences Team (COST); Transnet National Port Authority in East London for granting access to the Port and Andre Bok at the East London Pure Ocean Facility for providing logistic support during the preparation of the experimental tiles and monthly sampling.

For Herzliya Marina, Israel: Tomer Hadari and Barak Saar are acknowledged for their support in data collection and analysis. We thank The

Herzliya Municipal Tourism Development Corporation Ltd. For the warm hospitality, and for granting access to work in the Marina.

For Hong Kong: Chung-sum Lam, Chung-hoi Li, Chun-ning Ma, and Katie W.Y. Yeung are acknowledged for their hard work and contribution to the project. The Civil Engineering and Development Department (CEDD) of the HKSAR Government is acknowledged for the provision of two study sites. Both Chung-hoi Li and Edward Lau were partially supported by a research grant provided by the CEDD (project no.: FM 03/2016) to Kenneth Leung. Gray Williams is thanked for his professional advice on experimental setup and supply of field-work equipment.

The work in Penang, Malaysia, was funded by The Rufford Small Grants, E&O Bhd., MDC Sdn. Bhd.

For Plymouth: Richard Ticehurst, Roger Haslam, Charlotte Underwood, Ally Evans. KKS was supported by a University of Plymouth PhD studentship and LBF was supported by British Ecological Society small grant (5546-6590) and Royal Society International Exchanges Grant (IE150435)

For Ravenna: Paolo Comandini, Francesco Mugnai and Joanne Wong are most warmly acknowledged. We also thank Massimo Ponti, Matteo Bitonto, Ferrante Grasselli, Elena Piccioni, Roberto Buonomo, Sara Scapinello, Eva Turicchia, Federica Costantini, Marina Colangelo and many other students of the Master Degree in Marine Biology of the University of Bologna and as well as of the MARECOL team.

Thanks to the Autorità di Sistema portuale del Mare Adriatico centro settentrionale and The Capitaneria di Porto di Ravenna for granting access and permissions to work in the Port of Ravenna Funding came from project TETRIS - Observing, modelling and Testing synergies and TRade-offs for the adaptive management of multiple

Impacts in coastal Systems" (PRIN 2010-2011 grant 2010PBMAXP_003, Italian Ministry of Education, University and Research). FP Mancuso

was covered by a post-doctoral grant of the University of Bologna

References

- Aguirre, J. D., Bollard-Breen, B., Cameron, M., Constantine, R., Duffy, C. A., Dunphy, B., . . . Jeffs, A. (2016). Loved to pieces: Toward the sustainable management of the Waitematā Harbour and Hauraki Gulf. *Regional Studies in Marine Science*, *8*, 220-233.
- Airoldi, L., Ponti, M., & Abbiati, M. (2016). Conservation challenges in human dominated seascapes: the harbour and coast of Ravenna. *Regional Studies in Marine Science*, *8*, 308-318.
- Almeida, A., Souza, F. B., Gordon, D. P., & Vieira, L. M. (2015). The non-indigenous bryozoan Triphyllozoon (Cheilostomata: Phidoloporidae) in the Atlantic: morphology and dispersion on the Brazilian coast. *Zoologia (Curitiba), 32*(6), 476-484.
- Banks, J., Hedge, L., Hoisington, C., Strain, E., Steinberg, P., & Johnston, E. (2016). Sydney Harbour: Beautiful, diverse, valuable and pressured. *Regional Studies in Marine Science*, *8*, 353-361.
- Birch, G., Lee, J.-H., Tanner, E., Fortune, J., Munksgaard, N., Whitehead, J., ... Taylor, U. (2020). Sediment metal enrichment and ecological risk assessment of ten ports and estuaries in the World Harbours Project. *Marine Pollution Bulletin*, 155, 111129.
- Bishop, M., & Hutchings, P. (2011). How useful are port surveys focused on target pest identification for exotic species management? *Marine pollution bulletin, 62*(1), 36-42.
- Bracewell, S. A., Spencer, M., Marrs, R. H., Iles, M., & Robinson, L. A. (2012). Cleft, crevice, or the inner thigh: 'Another Place' for the establishment of the invasive barnacle Austrominius modestus (Darwin, 1854). *PLoS One, e48863*.
- Bugnot, A. B., Coleman, R. A., Figueira, W. F., & Marzinelli, E. M. (2014). Patterns of the non-indigenous isopod *Cirolana harfordi* in Sydney Harbour. *PLoS One*, *9*(1), e86765.
- Council, A. (2012). Antifouling biocides in marinas: Measurement of copper concentrations and comparison to model predictions for eight Auckland sites.

Global Ecology and Biogeography

ranthom-Costa, L. V., Ferreira, C. G. W., & Dias, G. M. (2016). Biodiversity of ascidians in a heterogeneous bay from southeastern Brazil.
Management of Biological Invasions, 7(1), 5-12.
nights, A. M., Firth, L. B., Thompson, R. C., Yunnie, A. L., Hiscock, K., & Hawkins, S. J. (2016). Plymouth—a world harbour through the ages. <i>Regional Studies in Marine Science</i> , <i>8</i> , 297-307.
ai, R. W., Perkins, M. J., Ho, K. K., Astudillo, J. C., Yung, M. M., Russell, B. D., Leung, K. M. (2016). Hong Kong's marine environments: History, challenges and opportunities. <i>Regional Studies in Marine Science</i> , <i>8</i> , 259-273.
ing, S., Davey, A., Reeves, S., Gaylard, S., Davies, P., Stuart-Smith, R., & Edgar, G. (2018). Pollution signature for temperate reef biodiversity is short and simple. <i>Marine Pollution Bulletin, 130</i> , 159-169.
ópez, M. S., Lavrado, H. P., & Coutinho, R. (2014). Structure of intertidal sessile communities before and after the invasion of Isognomon bicolor (CB Adams, 1845)(Bivalvia, Isognomonidae) in southeastern Brazil. Aquatic Invasions, 9(4). 457-465.
facleod, C., & Coughanowr, C. (2019). Heavy metal pollution in the Derwent estuary: History, science and management. <i>Regional Studies in Marine Science</i> (33), 100866.
"Neil, J., Newton, R., Bone, E., Birney, L., Green, A., Merrick, B., Fraioli, A. (2020). Using urban harbors for experiential, environmental literacy: Case studies of New York and Chesapeake Bay. <i>Regional Studies in Marine Science</i> , 33, 100886.
ainbow, P. S. (2000). Barnacles as biomonitors of trace metal availabilities in Hong Kong coastal waters: 1998 update. <i>The Marine Flora and Fauna of Hong Kong and Southern China V, 5</i> , 385.
liwa, C., Migus, S., McEnnulty, F., & Hayes, K. R. (2009). Marine bioinvasions in Australia. In <i>Biological Invasions in Marine Ecosystems</i> (pp. 425-437): Springer.
oares-Gomes, A., Da Gama, B. A. P., Neto, J. B., Freire, D., Cordeiro, R., Machado, W., Pereira, R. (2016). An environmental overview of Guanabara Bay, Rio de Janeiro. <i>Regional Studies in Marine Science</i> , <i>8</i> , 319-330.
teger, K. K., & Gardner, J. P. (2007). Laboratory experiments on the effects of variable suspended sediment concentrations on the ecophysiology of the porcelain crab <i>Petrolisthes elongatus</i> (Milne Edwards, 1837). <i>Journal of Experimental Marine Biology and Ecology</i> , <i>344</i> (2), 181-192.
ilbrook, K. J., & Gordon, D. P. (2016). Checklist of Singaporean Bryozoa and Entoprocta. <i>Raffles Bulletin of Zoology, 34</i> , 593-603.