66 research outputs found

    Ex vivo analysis of the contribution of FGF10<sup>+</sup> cells to airway smooth muscle cell formation during early lung development

    Get PDF
    © 2017 Wiley Periodicals, Inc.Background: Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. Results: FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. Conclusions: Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung

    Parametrization of projector-based witnesses for bipartite systems

    Full text link
    Entanglement witnesses are nonpositive Hermitian operators which can detect the presence of entanglement. In this paper, we provide a general parametrization for orthonormal basis of Cn{\mathbb C}^n and use it to construct projector-based witness operators for entanglement detection in the vicinity of pure bipartite states. Our method to parameterize entanglement witnesses is operationally simple and could be used for doing symbolic and numerical calculations. As an example we use the method for detecting entanglement between an atom and the single mode of quantized field, described by the Jaynes-Cummings model. We also compare the detection of witnesses with the negativity of the state, and show that in the vicinity of pure stats such constructed witnesses able to detect entanglement of the state.Comment: 12 pages, four figure

    The risk factors of prostate cancer: A multicentric case-control study in Iran

    Get PDF
    Prostate cancer (PC), in Iran, is the third most frequently diagnosed visceral cancer among men and the seventh most common underlying cause of cancer mortality. We evaluated the relation between speculated factors and PC risk using data from a multicentric case-control study conducted in Iran from 2005 to 2007 on 130 cases of incident, clinicopathologically confirmed PC, and 75 controls admitted to the same network of hospitals without any malignant disease. Odds ratios(OR) and corresponding 95 confidence intervals (CIs) were estimated using conditional logistic regression models. The risk of PC was increased with aging (OR: 5.35, 95 CI: 2.17-13.19; P<0.0001), and with the number of sexual intercourse �2 times/week (OR: 3.14, 95 CI: 1.2-8.2; P=0.02). One unit elevation in serum estradiol and testosterone concentration was related to increase (OR: 1.04, 95 CI: 1.01-1.06; P=0.006) and decrease (OR: 0.79; 95 CI: 0.64-0.96; P=0.02) of PC risk, respectively. Cases were less likely to have a history of diabetes (OR: 0.34, 95 CI: 0.12-0.98; P=0.04). Increasing in dietary consumption of lycopene and fat was associated with declined (OR: 0.45, 95 CI: 0.09-2.12) and increased (OR: 2.38, 95 CI: 0.29-19.4) PC development, respectively. Other factors including educational level, marriage status, dietary meat consumption, vasectomy and smoking have not been shown to affect PC risk in the Iranian population. Ourstudy adds further information on the potential risk factors of PC and is the first epidemiologic report from Iran. However, justification of these results requires more well-designed studies with a larger number of participants

    Origin and characterization of alpha smooth muscle actin-positive cells during murine lung development

    Get PDF
    © 2017 The Authors Stem Cells published by Wiley Periodicals, Inc. on behalf of AlphaMed PressACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor 10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC formation from early stages of lung development. However, their respective contribution and specificity to the SMC and/or alveolar MYF lineages remain controversial. In addition, the contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using Fgf10CreERT2, Wt1CreERT2, Gli1CreERT2, and Axin2CreERT2 inducible driver lines in combination with a tdTomatoflox reporter line, the respective differentiation of each pool of labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results revealed that while FGF10+ and WT1+ cells show a minor contribution to the SMC lineage, GLI1+ and AXIN2+ cells significantly contribute to both the SMC and alveolar MYF lineages, but with limited specificity. Lineage tracing using the Acta2-CreERT2 transgenic line showed that ACTA2+ cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new SMCs at E18.5. However, ACTA2+ cells labeled at E15.5 give rise to the majority (85%–97%) of the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma. Fluorescence-activated cell sorting-based isolation of different subpopulations of ACTA2+ lineage-traced cells followed by gene arrays, identified transcriptomic signatures for alveolar MYF progenitors versus airway and vascular SMCs at E18.5. Our results establish a new transcriptional landscape for further experiments addressing the function of signaling pathways in the formation of different subpopulations of ACTA2+ cells. Stem Cells 2017;35:1566–1578

    卒後13年目の研修医

    Get PDF
    © 2015. Published by The Company of Biologists Ltd. Lipid-containing alveolar interstitial fibroblasts (lipofibroblasts) are increasingly recognized as an important component of the epithelial stem cell niche in the rodent lung. Although lipofibroblasts were initially believed merely to assist type 2 alveolar epithelial cells in surfactant production during neonatal life, recent evidence suggests that these cells are indispensable for survival and growth of epithelial stem cells during adulthood. Despite increasing interest in lipofibroblast biology, little is known about their cellular origin or the molecular pathways controlling their formation during embryonic development. Here, we showthat a population of lipid-droplet-containing stromal cells emerges in the developing mouse lung between E15.5 and E16.5. This is accompanied by significant upregulation, in the lung mesenchyme, of peroxisome proliferator-activated receptor gamma (master switch of lipogenesis), adipose differentiation-related protein (marker of mature lipofibroblasts) and fibroblast growth factor 10 (previously shown to identify a subpopulation of lipofibroblast progenitors). We also demonstrate that although only a subpopulation of total embryonic lipofibroblasts derives from Fgf10+ progenitor cells, in vivo knockdown of Fgfr2b ligand activityand reduction in Fgf10 expression lead to global reduction in the expression levels of lipofibroblast markers at E18.5. Constitutive Fgfr1b knockouts and mutants with conditional partial inactivation of Fgfr2b in the lung mesenchyme reveal the involvement of both receptors in lipofibroblast formation and suggest a possible compensation between the two receptors. We also provide data from human fetal lungs to demonstrate the relevance of our discoveries to humans. Our results reveal an essential role for Fgf10 signaling in the formation of lipofibroblasts during late lung development

    Ex vivo analysis of the contribution of FGF10<sup>+</sup> cells to airway smooth muscle cell formation during early lung development

    No full text
    © 2017 Wiley Periodicals, Inc.Background: Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. Results: FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. Conclusions: Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung

    Ex vivo analysis of the contribution of FGF10<sup>+</sup> cells to airway smooth muscle cell formation during early lung development

    No full text
    © 2017 Wiley Periodicals, Inc.Background: Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. Results: FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. Conclusions: Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung

    Ex vivo analysis of the contribution of FGF10<sup>+</sup> cells to airway smooth muscle cell formation during early lung development

    Get PDF
    © 2017 Wiley Periodicals, Inc.Background: Airway smooth muscle cells (ASMCs) have been widely studied during embryonic lung development. These cells have been shown to control epithelial bifurcation during branching morphogenesis. Fibroblast growth factor 10-positive (FGF10+) cells, originally residing in the submesothelial mesenchyme, contribute to ASMC formation in the distal lung. The reported work aims at monitoring the response of FGF10+ progenitors and differentiated ASMCs to growth factor treatment in real time using lineage tracing in the background of an air-liquid interface (ALI) culture system. Results: FGF ligands impose divergent effects on iterative lung branching in vitro. Moreover, time-lapse imaging and endpoint analysis show that FGF9 treatment leads to amplification of the FGF10+ lineage and represses its differentiation to ASMCs. Sonic hedgehog (SHH) treatment reduces the amplification of this lineage and leads to decreased lung branching. Finally, differentiated ASMCs in proximal regions fail to expand upon FGF9 treatment. Conclusions: Our data demonstrate, in real time, that FGF9 is an important regulator of amplification, migration, and subsequent differentiation of ASMC progenitors during early lung development. The attained results agree with previous findings regarding ASMC formation and highlight the complexity of growth factor signaling networks in controlling mesenchymal cell-fate decisions in the developing mouse lung

    Evaluation of lipid ratios and triglyceride-glucose index as risk markers of insulin resistance in Iranian polycystic ovary syndrome women

    No full text
    Background: Insulin resistance has a vital role in the pathophysiology of polycystic ovary syndrome (PCOS). Previous investigations have shown that some lipid ratios could be a simple clinical indicator of insulin resistance (IR) in some disorders and ethnicities. The present study was conducted to evaluate the correlation between triglyceride to HDL-cholesterol (TG/HDL-C), total cholesterol to HDL-cholesterol (TC/HDL-C), as well as fasting triglyceride-glucose (TyG) indices with IR (as measured by homeostasis model assessment of IR (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and fasting glucose to insulin ratio (FGIR)) among the Iranian women diagnosed with PCOS. Methods: In the current study, a total of 305 women with PCOS were evaluated. TG/HDL-C, TC/HDL-C, and TyG indices were calculated. Fasting insulin level was measured using ELISA technique. IR was defined as a HOMA-IR value of �2.63, FG-IR value of < 8.25, and QUICKI value of < 0.33. Results: The insulin-resistant (IR) and insulin-sensitive (IS) groups, established by the HOMA-IR, FG-IR, and QUICKI values were different in terms of TG/HDL-C, TC/HDL-C, and TyG indices. These indices were associated with IR even after adjusting for age and BMI. ROC curve analyses showed that TyG, TG/HDL-C, and TC/HDL-C strongly predicted HOMA-IR with area under the curve (AUC) of 0.639, 0.619, and 0.623, respectively (P < 0.05). Further, TC/HDL-C was a good predictor of FG-IR with AUC of 0.614 (P = 0.04). Conclusion: TyG, TG/HDL-C, and TC/HDL-C indices might be good indicators of IR among Iranian women diagnosed with PCOS. © 2020, The Author(s)
    corecore