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ACTA2 expression identifies pulmonary airway and vascular smooth muscle cells (SMCs) as well
as alveolar myofibroblasts (MYF). Mesenchymal progenitors expressing fibroblast growth factor
10 (Fgf10), Wilms tumor 1 (Wt1), or glioma-associated oncogene 1 (Gli1) contribute to SMC
formation from early stages of lung development. However, their respective contribution and
specificity  to  the  SMC and/or  alveolar  MYF  lineages  remain  controversial.  In  addition,  the
contribution of mesenchymal cells undergoing active WNT signaling remains unknown. Using
Fgf10 CreERT2 , Wt1 CreERT2 , Gli1 CreERT2 , and Axin2 CreERT2 inducible driver lines in
combination with a tdTomato flox reporter line, the respective differentiation of each pool of
labeled progenitor cells along the SMC and alveolar MYF lineages was quantified. The results
revealed that while FGF10 + and WT1 + cells show a minor contribution to the SMC lineage,
GLI1 + and AXIN2 + cells significantly contribute to both the SMC and alveolar MYF lineages, but
with limited specificity. Lineage tracing using the Acta2-CreERT2 transgenic line showed that
ACTA2 + cells labeled at embryonic day (E)11.5 do not expand significantly to give rise to new
SMCs at E18.5. However, ACTA2 + cells labeled at E15.5 give rise to the majority (85%–97%) of
the SMCs in the lung at E18.5 as well as alveolar MYF progenitors in the lung parenchyma.
Fluorescence-activated  cell  sorting-based  isolation  of  different  subpopulations  of  ACTA2  +
lineage-traced cells followed by gene arrays, identified transcriptomic signatures for alveolar
MYF  progenitors  versus  airway  and  vascular  SMCs  at  E18.5.  Our  results  establish  a  new
transcriptional landscape for further experiments addressing the function of signaling pathways
in the formation of different subpopulations of ACTA2 + cells. Stem Cells 2017;35:1566–1578.
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