580 research outputs found

    Loschmidt-amplitude wave function spectroscopy and the physics of dynamically driven phase transitions

    No full text
    We introduce the Loschmidt amplitude as a powerful tool to perform spectroscopy of generic many-body wave functions and use it to interrogate the wave function obtained after ramping the transverse field quantum Ising model through its quantum critical point. Previous results are confirmed and a more complete understanding of the population of defects and of the effects of magnon-magnon interaction or finite-size corrections is obtained. The influence of quantum coherence is clarified

    Investigation of the coupling asymmetries at double-slit interference experiments

    Full text link
    Double-slit experiments inferring the phase and the amplitude of the transmission coefficient performed at quantum dots (QD), in the Coulomb blockade regime, present anomalies at the phase changes depending on the number of electrons confined. This phase change cannot be explained if one neglects the electron-electron interactions. Here, we present our numerical results, which simulate the real sample geometry by solving the Poisson equation in 3D. The screened potential profile is used to obtain energy eigenstates and eigenvalues of the QD. We find that, certain energy levels are coupled to the leads stronger compared to others. Our results give strong support to the phenomenological models in the literature describing the charging of a QD and the abrupt phase changes.Comment: conference paper, 50th anniversary of Aharonov-Bohm effec

    Mesoscopic to universal crossover of transmission phase of multi-level quantum dots

    Full text link
    Transmission phase \alpha measurements of many-electron quantum dots (small mean level spacing \delta) revealed universal phase lapses by \pi between consecutive resonances. In contrast, for dots with only a few electrons (large \delta), the appearance or not of a phase lapse depends on the dot parameters. We show that a model of a multi-level quantum dot with local Coulomb interactions and arbitrary level-lead couplings reproduces the generic features of the observed behavior. The universal behavior of \alpha for small \delta follows from Fano-type antiresonances of the renormalized single-particle levels.Comment: 4 pages, version accepted for publication in PR

    Aging and induced senescence as factors in the pathogenesis of lung emphysema

    Get PDF
    SummaryClassically, the development of emphysema in chronic obstructive pulmonary disease is believed to involve inflammation induced by cigarette smoke and leukocyte activation, including oxidant-antioxidant and protease-antiprotease imbalances. While there is substantial evidence for this, additional aspects have been suggested by a number of clinical and experimental observations.Smokers exhibit signs of premature aging, particularly obvious in the skin. The link between aging and chronic disease is well-known, e.g., for the brain and musculoskeletal or cardiovascular system, as well as the clinical link between malnutrition and emphysema, and the experimental link to caloric restriction. Interestingly, this intervention also increases lifespan, in parallel with alterations in metabolism, oxidant burden and endocrine signaling.Of special interest is the observation that, even in the absence of an inflammatory environment, lung fibroblasts from patients with emphysema show persistent alterations, possibly based on epigenetic mechanisms. The importance of these mechanisms for cellular reprogramming and response patterns, individual risk profile and therapeutic options is becoming increasingly recognized. The same applies to cellular senescence. Recent findings from patients and experimental models open novel views into the arena of gene-environment interactions, including the role of systemic alterations, cellular stress, telomeres, CDK inhibitors such as p16, p21, pRb, PI3K, mTOR, FOXO transcription factors, histone modifications, and sirtuins.This article aims to outline this emerging picture and to stimulate the identification of challenging questions. Such insights also bear implications for the long-term course of the disease in relation to existing or future therapies and the exploration of potential lung regeneration

    Tuning the Josephson current in carbon nanotubes with the Kondo effect

    Full text link
    We investigate the Josephson current in a single wall carbon nanotube connected to superconducting electrodes. We focus on the parameter regime in which transport is dominated by Kondo physics. A sizeable supercurrent is observed for odd number of electrons on the nanotube when the Kondo temperature Tk is sufficiently large compared to the superconducting gap. On the other hand when, in the center of the Kondo ridge, Tk is slightly smaller than the superconducting gap, the supercurrent is found to be extremely sensitive to the gate voltage Vbg. Whereas it is largely suppressed at the center of the ridge, it shows a sharp increase at a finite value of Vbg. This increase can be attributed to a doublet-singlet transition of the spin state of the nanotube island leading to a pi shift in the current phase relation. This transition is very sensitive to the asymmetry of the contacts and is in good agreement with theoretical predictions.Comment: 5 pages, 4 figure

    Josephson current through a single Anderson impurity coupled to BCS leads

    Full text link
    We investigate the Josephson current J(\phi) through a quantum dot embedded between two superconductors showing a phase difference \phi. The system is modeled as a single Anderson impurity coupled to BCS leads, and the functional and the numerical renormalization group frameworks are employed to treat the local Coulomb interaction U. We reestablish the picture of a quantum phase transition occurring if the ratio between the Kondo temperature T_K and the superconducting energy gap \Delta or, at appropriate T_K/\Delta, the phase difference \phi or the impurity energy is varied. We present accurate zero- as well as finite-temperature T data for the current itself, thereby settling a dispute raised about its magnitude. For small to intermediate U and at T=0 the truncated functional renormalization group is demonstrated to produce reliable results without the need to implement demanding numerics. It thus provides a tool to extract characteristics from experimental current-voltage measurements.Comment: version accepted for publication in PR

    Quantitative analytical theory for disordered nodal points

    Get PDF
    Disorder effects are especially pronounced around nodal points in linearly dispersing band structures as present in graphene or Weyl semimetals. Despite the enormous experimental and numerical progress, even a simple quantity like the average density of states cannot be assessed quantitatively by analytical means. We demonstrate how this important problem can be solved employing the functional renormalization group method, and, for the two-dimensional case, we demonstrate excellent agreement with reference data from numerical simulations based on tight-binding models. In three dimensions our analytic results also improve drastically on existing approaches

    A renormalization group approach to time dependent transport through correlated quantum dots

    Full text link
    We introduce a real time version of the functional renormalization group which allows to study correlation effects on nonequilibrium transport through quantum dots. Our method is equally capable to address (i) the relaxation out of a nonequilibrium initial state into a (potentially) steady state driven by a bias voltage and (ii) the dynamics governed by an explicitly time-dependent Hamiltonian. All time regimes from transient to asymptotic can be tackled; the only approximation is the consistent truncation of the flow equations at a given order. As an application we investigate the relaxation dynamics of the interacting resonant level model which describes a fermionic quantum dot dominated by charge fluctuations. Moreover, we study decoherence and relaxation phenomena within the ohmic spin-boson model by mapping the latter to the interacting resonant level model
    corecore