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Summary

Classically, the development of emphysema in chronic obstructive pulmonary disease is be-
lieved to involve inflammation induced by cigarette smoke and leukocyte activation, including
oxidant-antioxidant and protease-antiprotease imbalances. While there is substantial evi-
dence for this, additional aspects have been suggested by a number of clinical and experimen-
tal observations.

Smokers exhibit signs of premature aging, particularly obvious in the skin. The link between
aging and chronic disease is well-known, e.g., for the brain and musculoskeletal or cardiovas-
cular system, as well as the clinical link between malnutrition and emphysema, and the exper-
imental link to caloric restriction. Interestingly, this intervention also increases lifespan, in
parallel with alterations in metabolism, oxidant burden and endocrine signaling.

Of special interest is the observation that, even in the absence of an inflammatory environ-
ment, lung fibroblasts from patients with emphysema show persistent alterations, possibly based
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on epigenetic mechanisms. The importance of these mechanisms for cellular reprogramming and
response patterns, individual risk profile and therapeutic options is becoming increasingly recog-
nized. The same applies to cellular senescence. Recent findings from patients and experimental
models open novel views into the arena of gene-environment interactions, including the role of
systemic alterations, cellular stress, telomeres, CDK inhibitors such as p16, p21, pRb, PI3K,
mTOR, FOXO transcription factors, histone modifications, and sirtuins.

This article aims to outline this emerging picture and to stimulate the identification of chal-
lenging questions. Such insights also bear implications for the long-term course of the disease
in relation to existing or future therapies and the exploration of potential lung regeneration.
ª 2008 Elsevier Ltd. All rights reserved.
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Introduction

Lung emphysema is a major phenotype of COPD1 and repre-
sents a significant health burden. Even more so since no
causal therapy is available to restore lung architecture. A for-
midable body of evidence has been accumulated regarding
the role of inflammatory factors in the pathogenesis of the
disease. It comprises the now classical concept of protease-
antiprotease and oxidant-antioxidant imbalances.2,3 Tissue
destruction driven by neutrophils and macrophages via these
compounds undoubtedly plays an important role.4 This is sup-
ported by data for hereditary a1-antitrypsin (AT)-deficiency,
which typically leads to severe emphysema relatively early
in life, particularly in the presence of noxious agents.5 More-
over, instillation of elastase into the lung is a well-known
technique for inducing experimental emphysema in animals.6

Intimately linked to the protease-antiprotease disturbance,
oxidative stress originating from compounds of cigarette
smoke or inflammatory cells can overcharge the antioxidative
capacity of pulmonary tissue and further diminish the anti-
protease defense.7

In combination with proinflammatory cytokine produc-
tion and a host of other responses, these influences lead to
apoptosis, necrosis, compensatory proliferation and an
imbalance in the maintenance of cells, ultimately resulting
in alveolar destruction and airway remodeling. While the
importance of inflammation is undeniable, clinical and cell
biological observations suggest mechanisms beyond
inflammation, albeit linked to it, to play a critical role as
well (Fig. 1). These mechanisms include cellular senes-
cence and epigenetic control, which appear of particular
interest in view of the observed systemic alterations and
chronicity of the disease.

The present article aims to provide the clinician with
a comprehensive overview of the multiple facets presenting
from the viewpoint of senescence and epigenetics, as well
as to delineate major mechanistic aspects of this novel
view. In order to truly appreciate the complexity of the
molecular networks involved we refer to specialized re-
views. A large number of missing links still need to be
identified in this area, while the generation of clinically
tractable research questions remains an exciting challenge.

Aging and senescence: basic characteristics

Biological aging involves a variety of cellular, molecular and
structural alterations based on several mechanisms.8 Although
normally linked to chronological age, biological aging can
occur earlier in life, being partially independent from an indi-
vidual’s chronological age (premature aging). Interestingly,
many markers that are used to describe biological aging are
related to (chronic) inflammation, e.g., the serum levels of
IL-6, IL-1b or TNF-a.9 As a result, there seems to be no single,
comprehensive or easily available marker of biological age.

In this article, the term ‘‘senescence’’ is used to
describe aging on the cellular level (cellular aging), which
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Figure 1 Diagram illustrating major factors of aging and se-
nescence that are involved in the development of lung emphy-
sema. The contribution originating as a more or less direct
result of inflammation is summarized by the dashed line.
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comprises a series of cell morphological and functional
alterations including the loss of proliferative activity in
otherwise viable cells (Table 1). This loss is observed in vi-
tro10,11 and is in all likelihood also of relevance in vivo.12,13

To distinguish the cellular process from the aging of whole
organs or organisms, it is denoted more specifically by
‘‘proliferative/replicative senescence.’’ The cell arrest
not only occurs after exhausting the predetermined prolif-
erative capacity (intrinsic senescence), but is also inducible
by external stressors administered in sublethal doses (ex-
trinsic or stress-induced proliferative senescence, SIPS).14

Thus, there are different routes leading to a senescent
phenotype, though potentially sharing common signaling
pathways. It should be kept in mind that senescence can
be interpreted as an evolutionary protective mechanism
against tumor development15 which is particularly relevant
in pre-malignant cells.16 It circumvents eventual irrevers-
ible structural losses due to apoptosis, while avoiding the
Table 1 Major molecular and cellular mechanisms
associated with cellular senescence and aging

Mechanisms of aging

Telomere attrition243

Cumulative DNA damage244

Impairment of DNA repair245

Epimutations in nuclear DNA246

Mutations in mitochondrial DNA112

Increased rigidity of cytoskeleton247

Increased cross-linking of extracellular matrix248

Protein damage249,250

Increased production of free radicals251

Accumulation of waste products252

For each of the listed factors, a reference is given that provides
either a comprehensive overview or an experimental example.
risk associated with the generation of replacement cells
from aged, potentially damaged progenitors. This survival
strategy, however, may still come at the price of impaired
organ function.

Aging as a contributor to chronic disease

Age represents a risk factor for the development of many
diseases, including cardiovascular and metabolic disorders.
Moreover, if a chronic disease is already established, it
constitutes a factor contributing to mortality, e.g., in COPD
and chronic hypercapnic respiratory failure.17

Aging comprises the accumulation of damage from exoge-
nous causes as well as intrinsic, systemic susceptibilities
determining the responses. These factors also determine its
relation to the development of chronic diseases. Aging is known
to be involved in neurodegenerative disorders18 and cardiovas-
cular diseases in which accelerated vascular aging and senes-
cence of endothelial cells19 seem to play a role through both
telomere-dependent (see below) and -independent mecha-
nisms.20 Osteoarthritis21 and the impact of aging on bone
marrow-related therapies22 are further examples. However,
time-dependent losses might occur dissociated from age, as
demonstrated for periodontal disease as a chronic, age-related
disorder,23 again emphasizing the concept of biological versus
chronological age.

For a variety of diseases, mechanistic evidence already
exists which indicates a link to (induced) aging. Moreover,
patients with diabetic nephropathy showed signs of aging of
skin fibroblasts.24 In COPD, some of the comorbidities25 can
be considered as consequences of the lung disease,
whereas others might be based on common susceptibility
traits and linked to aging. COPD itself is a risk factor for
other disorders including cardiovascular disease,26 type II
diabetes,27 or cognitive and functional deteriorations,28

all of which are age-related. Especially the association be-
tween arterial stiffness, osteoporosis and the severity of
airflow obstruction29 has provided supportive evidence on
premature aging in COPD.30 Moreover, reductions in lung
function have been shown to be associated with systemic
inflammation per se und thus potentially with aging, in
addition to smoking.31

Aging and COPD

Structure and function of the human lung show a variety of
alterations as part of the normal aging process (Table 2).32,33

Of particular interest seems to be the rarification of alveolar
structures that is known to occur in older never-smokers.34

Although the structural changes of the senile lung32 are con-
sidered to be nondestructive35 and are rather homogeneous
compared to the more focal alterations in emphysema, the
overall result appears to be similar with regard to the loss
of tissue renewal and regenerative potential. Additionally,
it should be noted that diffuse (senile) emphysema is difficult
to diagnose by lung function indices and its occurrence rate
might therefore be underestimated.

Genetically modified mice have provided additional support
for a relationship between aging and emphysema, while at the
same time demonstrating differences between phenotypes of
the disease, e.g., homogeneous versus focal alterations.36 The



Table 2 Changes in structure and function of the human
lung and respiratory system that occur with age

Age-related alterations of the lung

Rarification of alveolar architecture/enlargement of air
spaces

Vascular remodeling
Altered composition of extracellular matrix
Reduced strength of respiratory muscles
Impaired respiratory mechanics/increased stiffness of chest

wall
Reduction of lung function reserves (volumes, flows)
Heterogeneity of ventilation
Impaired gas exchange capacity

Detailed accounts of the functional aspects can be found in
excellent review articles.32,33
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parallel between both processes has been emphasized be-
fore,37 in view of defects in vascular maintenance in patients
with emphysema 38 and genetically modified rodents. When
interpreting the findings, particularly animal data, it seems
prudent to keep in mind that aging is a multi-faceted process
involving many intimately interwoven factors (Table 1) and
that it might not be evaluated from a single aspect.37,39

The major extrinsic factor in COPD is smoking, pro-
moting alterations of tissue and organ architecture that
resemble those of aging. Prominent manifestations are
cardiovascular or cerebrovascular diseases40 and premature
skin aging41,42 as compared to normal41 or UV-induced
aging.43 Skin aging includes skin wrinkling44 which, interest-
ingly enough, has been reported to exhibit a weak but
significant association with pulmonary emphysema.45 It
also involves an increased proportion of elastic fibers,46,47

associated with lung function impairment.48 Intriguingly,
there are associations between COPD and periodontitis,49

the latter also being a disease of connective tissue medi-
ated by inflammation and promoted by smoking, as in
COPD. The association between periodontitis and age per
se is not particularly strong,50 but this seems to be analo-
gous to the discrete alterations occurring in the senile
lung in the absence of noxious agents.

Cultured lung parenchyma fibroblasts from patients
with emphysema also showed elevated expression of the
senescence-associated b-galactosidase (SA-b-gal) com-
pared to control smokers.51 SA-b-gal, a common marker
of cellular senescence,52 is regularly expressed in senes-
cent cells, though probably as an indicator of stress in
general.53 Corresponding to this finding, in vitro exposure
of human cells to cigarette smoke extract led to increased
expression of SA-b-gal,54,55 similar to exposure of primary
lung fibroblasts.56 Available data suggest that cellular se-
nescence is limited to lung fibroblasts and not present in
skin fibroblasts of patients with lung emphysema,57 which
might underline the importance of local exposure levels.

In addition, proliferation rate and capacity, as major
markers of senescence, were reduced in parenchymal lung
fibroblasts of patients with emphysema compared to
control smokers, although cells were grown under stan-
dardized conditions in the absence of inflammation.51,58,59

While in these experiments the culture medium contained
serum and thus a mixture of growth factors, the response
to defined stimulation by TGF-b and IL-1b was also found
to be altered in emphysema.60 Fibroblasts also showed
a dysregulation of decorin production,61 a molecule
involved in collagen assembly and related to aging.62

Mechanisms of cellular senescence and
evidence in COPD

Telomere loss

For protective purposes, the ends of chromosomes carry
noncoding DNA repeats called telomeres. In each DNA
reduplication, about 35e100 base pairs are lost (end
replication problem) implying a countdown mechanism
and loss of replicative potential as telomeres shorten.
Telomere shortening is a major determinant of cellular
senescence, although currently it is not clear whether by
the shortest telomere or mean telomere length.63

Many studies have demonstrated that telomere length of
human skin fibroblasts64 and blood leukocytes65 decreases
with age, with considerable variability inter- and intra-
individually66e68 and within cell populations.69 The rate of
telomere erosion can also differ between organs or cell
populations, such as lymphocytes,70 as well as between
males and females.67 Since telomere length appears to be
a heritable trait,71 it could be a key factor for the individual
rate of aging and the disposition to develop age-related dis-
eases.72 Importantly, short telomeres can limit tissue re-
newal capacity73 and thus are likely to affect the
maintenance of organs. Based on this, telomeres rank
among the most suitable markers of biological age, which
integrate both intrinsic and extrinsic aging.

In addition to the end replication problem and sporadic
telomere deletion, telomeres can be directly damaged by
free radicals that target G-triplets74 and induce single
strand breaks. Apparently, oxidants enhance telomere
loss primarily during mitosis75; it is not clear whether this
also occurs in the absence of cell division.

Immortalized cells often, though not always, show an
increase in the activity of telomerase, a ribonucleoprotein
that can restore telomeres.76,77 Alternative mechanisms of
telomere lengthening (ALT) exist, and segments of telo-
meres can be copied from neighboring DNA strands.77,78

Moreover, proteins involved in chromosome recombination
were detected in telomerase-negative tumor cells, which
obviously utilized this mechanism to gain unlimited replica-
tice capacity. Conversely, senescent fibroblasts often
though not always show shortened telomeres.79

Regarding their association with disease, telomere
length in blood leukocytes has been found to be related
to disease activity or chronicity e.g., in kidney diseases12

including chronic renal insufficiency.80,81 Their dysfunction
also seems to be a predisposing factor for renal cancer.82

Telomere dysfunction may also affect the immune system83

and thus have implications beyond a single organ. It is also
closely linked to other mechanisms that control cellular
aging (see below). As a result of premature aging induced
by external factors, telomere length can be reduced in
response to accumulated stress, as shown for blood leuko-
cytes and the oxidative stress of smoking,84 or chronic
psychological stress.85
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With specific regard to COPD, telomere length in
alveolar type II cells and endothelial cells in situ has been
found to differ between emphysema and control patients.86

In contrast, cultured parenchymal lung fibroblasts from
patients with emphysema did not show altered telomere
lengths despite unequivocal signs of cellular senescence.51

Thus, as a point calling for methodological caution, differ-
ent mechanisms of senescence could be active in the
majority of cells found in histological sections of lung pa-
renchyma as opposed to cells obtained by outgrowth
cultures from such samples. Hence, the contribution of lo-
cal or cell-specific telomere shortening to senescence in
emphysema is currently difficult to quantify. It is also un-
known whether telomere shortening is directly due to cel-
lular stress and to what extent it is a consequence of
increased cellular turnover due to inflammatory processes.
Inflammation, role of proteases and oxidative
stress, mitochondrial dysfunction

According to the common view, protease-antiprotease
imbalances are involved in the development of
COPD.2,3,87 In line with this, smokers show upregulation of
the fibroblast collagenase MMP-1 in the skin88 which can
mediate the degradation of interstitial collagen. In addition
to the observations in patients, exposures of animals and
cell cultures provided valuable insights. The upregulation
of MMP-1 could be mimicked by in vitro exposure to
cigarette smoke89,90 or UV light, inducing a senescent cellu-
lar phenotype.91 Cigarette smoke elicited further effects in
cultured human lung fibroblasts, such as an increase in the
activity of MMP-2,92 as well as induction of cyclooxygenase-
2 and microsomal prostaglandin E2 synthase.93 It also af-
fected fibroblasts in terms of their ability to contract94

and deteriorated epithelial cell repair capacity,95 leading
to the hypothesis that a disturbance in repair underlies
the development of emphysema.96 There is a close link to
aging in which prostanoids97,98 are involved, as well as
MMPs which are implicated, e.g., in the age-related remod-
eling of vascular walls.99 Age also implies a general de-
crease in the ability for tissue repair, as demonstrated, in
liver regeneration for example.100

In addition to protease-antiprotease imbalance, oxida-
tive stress originating from reactive oxygen species (ROS) is
believed to drive chronic obstruction and emphysematous
changes.87,101 Oxidants arise from cigarette smoke and
from inflammatory cells which might be additionally stimu-
lated by recurrent respiratory tract infections.102 From in
vitro exposures, it is well established that oxidants such
as H2O2 can induce proliferative senescence in fibro-
blasts,103,104 which is, however, not necessarily driven by
telomeres.105 Parallel results have been obtained for ciga-
rette smoke exposure, showing a reduction in proliferation
rate or capacity as one requisite of cellular senescence.106

This can be induced in vitro by continuous or repeated,54 or
even a single, temporary exposure of human primary lung
fibroblasts.56 Hence, there is evidence from various sources
that cigarette smoke-induced effects observed in vitro or in
vivo resemble those of aging. Moreover, cigarette smoke
might exert parallel effects in different organs, possibly
on the basis of an intrinsic susceptibility that differs
between individuals, since only a minority of smokers
develop clinically relevant emphysema.

ROS or ultraviolet (UV) radiation are known to particu-
larly affect DNA integrity107 and DNA damage signaling cas-
cades.108 They can also induce multiple other changes,109

including cellular reprogramming and epigenetic mecha-
nisms. For example, oxidative stress can induce cellular
senescence via forkhead box O (FOXO) transcription factors
and the deacetylase SIRT1, but the balance in this response
can also be turned towards apoptosis110 (see below). Nota-
bly, systemic inflammation and oxidant-antioxidant imbal-
ance could favor changes in cellular phenotype throughout
the organism, implying impaired maintenance in more
than one organ.

Mitochrondrial dysfunction involves the production of
ROS within the respiratory chain. These can directly
damage proteins, RNA, and genomic or mitochondrial
DNA,111 which is generally considered an important contrib-
utor to aging.112 Moreover, mitochondria exert indirect
effects on cell survival, e.g., by mediating apoptosis.
Though considered particularly important in neurodegener-
ative disorders, they are also probably involved in the aging
of other organs, and accumulation of mutations in mito-
chondrial DNA leads to a decline in respiratory chain
function.113

It is, however, not fully clear to what extent the loss of
mitochondrial fidelity is causative for aging and to what
extent it results from a decline in other functions. A causal
contribution is suggested by the existence of mouse strains
bearing mutations of mitochondrial DNA and showing the
phenotype of premature aging. Currently, there seem to be
no detailed data regarding mitochondrial dysfunction in
COPD. Interestingly, in vitro exposure of lung epithelial
cells to the supernatants from senescent lung fibroblasts
reduced their protective capacity against mitochondrial
dysfunction and increased ROS production.114 This suggests
that senescent cells can exert detrimental effects on other
cells, a finding which is underscored, for example, by the
observation that senescent fibroblasts can enhance the
formation of tumors in mice.115

Major cell cycle regulators

The progress of the cell cycle is basically controlled via
cyclins, cyclin-dependent kinases (CDK) and their inhibi-
tors, as well-known from tumor biology. Senescent dermal
fibroblasts, and even more so lung fibroblasts, exhibit
increased expression of the CDK inhibitor p16INK4a and the
effector protein pRb. During the normal cell cycle,
p16INK4a seems to serve as a constant braking mecha-
nism.116 Prior to senescence, cells exhibit an increase in
p21Cip1/Waf1 expression, another important CDK inhibitor.
This is controlled by the tumor suppressor and transcription
factor p53, which plays a major role in the induction of cel-
lular senescence (Fig. 2). When reaching senescence,
p21Cip1/Waf1 expression decreases, while that of p16INK4a

increases. In accordance with this, primarily p16INK4a and
its pathway are considered to be responsible for the final
irreversible proliferation stop.117,118

Thus, p21Cip1/Waf1 can initiate senescence e primarily
telomere-dependent e which is then maintained and estab-
lished by p16INK4a. Additionally, pRb is involved in the
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in cellular senescence, with emphasis on cyclin-dependent
kinases (CDK) and their inhibitors such as p16 and p21. Details
on the multiple relationships and an explanation of abbrevia-
tions can be found in the text.
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control of genes responsible for cell cycle progression and
other functions, by recruitment of the histone deacetylase
(HDAC) 1119 and HDAC complexes120 (see below). This is
apparently related to heterochromatin formation as an epi-
genetic mechanism that permanently suppresses crucial
growth-promoting genes.121 Conversely, suppression of
p16INK4a expression can increase proliferative capacity,
provided that cells contain functional p16INK4a.122 Further
regulators of p16INK4a, e.g., transcription factors,122 can
act directly on the p16INK4a promoter.

Another protein controlling mitotic activity and encoded
by the gene locus INK4a, ARF (p14ARF), can prevent p53
degradation and act as a link between diverse pathways
of senescence. Accordingly, enhanced expression of
p16INK4a and p14ARF was found in aging mammals including
humans,123 e.g., in pancreas islands, kidney, spleen, skin
and lung.121 While playing a central role in senescence in-
duction, INK4a itself is subject to various control mecha-
nisms, and there are links to metabolic status, since
caloric restriction (see below) could, e.g., increase the ex-
pression of another CDK inhibitor, p27kip1.124 The involve-
ment of p16INK4a and p53 in maintaining senescence is
underscored by the observation that pre-malignant lesions
show a loss of these and other senescence markers when
turning into malignancy.125

CDK inhibitors might well be involved in the develop-
ment of cellular senescence in emphysema. Evidence on
this has been provided by the observation that endothelial
cells and alveolar type II cells from patient lungs showed
increased expression of p16INK4a and p21Cip1/Waf1. Moreover,
p16INK4a expression was opposite to that of the proliferation
marker PCNA.86 These markers were also linked to the
impairment of lung function, as a cumulative result of
destruction and remodeling. Similar evidence arose from
exposures of mice in vivo and human cells in vitro to ciga-
rette smoke causing increased expression of p21Cip1/Waf1.55

The expression of p16INK4a and p21Cip1/Waf1 could also be
increased by cigarette smoke extract in a human fibroblast
cell line.54 Such effects might, however, not be specific to
cigarette smoke, since e.g., alveolar epithelial type II cells
of rats exposed to bleomycin also exhibited signs of cellular
senescence, e.g., p21Cip1/Waf1 and SA-b-gal expression.126 It
might be of interest that induced cellular senescence,
probably by reperfusion ischemia, can also affect the func-
tion of transplanted organs,127,128 and increased expression
of p16INK4a has been observed in transplanted kidneys.129

Cellular senescence seems to be a part of many disorders,
as underlined by the fact that bleomycin is established
for the induction of fibrotic lesions but not emphysema.130

It might be speculated that an overshooting injury repair af-
ter bleomycin originates from a subpopulation of resistant
cells which lack control by the other, now senescent, cells.

This also underlines a further important issue in studying
cellular senescence, namely the heterogeneity of cell
populations.131 Single cell analysis has revealed that cell
populations exhibit a broad range of activities at a single
time point. Critical decisions, such as between apoptosis
and senescence, depend on a balance between opposing
factors that is likely to result in stochastic behavior of cells
within the population (see, e.g., the discussion on FOXOs
below). Even more importantly, the known heterogeneity
of pulmonary fibroblasts132 is likely to imply different
responses to environmental stress.133 It is therefore not un-
expected that emphysema, as lung fibrosis, often starts as
a spatially heterogeneous disorder which only attains
a more homogeneous pattern of damage in later stages.134

Heterogeneity in early stages might also have implications
for regenerative therapy by being linked to the reversibility
of structural changes.

Role of PI3K and mTOR

Throughout a wide range of cell types, including pulmonary
cells, phosphatidylinositol 3-kinase (PI3K) is one of the
key regulators of survival and mitosis. PI3K has stimulated
much interest, particularly in the understanding of tumor
development. It controls longevity and robustness by
phosphorylating the proapoptotic enzyme Bax.135,136 Corre-
spondingly, apoptosis is inducible via inhibition of the
PI3K/Akt pathway,137 which is mediated by FOXO type
transcription factors (see below). A further level of control
is exerted by the proapoptotic Bad,138 a relative of Bax,
which is influenced by cytokines such as GM-CSF and
TNF-a. Interestingly, in lung epithelial cells PI3K could be
activated by low concentrations of nicotine,139 and the con-
comitant anti-apoptotic effect might be linked to malignant
neoplasia. Importantly, PI3K is antagonized by the phospha-
tase PTEN, acting as a tumor suppressor.140

PI3K plays a central role in the increase in cell size that
typically precedes mitosis, and in cell cycle initiation.141

Among the various effects of PI3K142 those mediating the
combination of cellular hypertrophy and blocked mitotic
activity appear to be especially relevant for senescent
cells.143 In the absence of mitogenic signals cellular growth
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leads to cellular hypertrophy.144 With regard to PI3K, the
relation between senescence, aging and longevity is ex-
tremely complex and might depend on the species studied.145

It is, however, clear that cell cycle arrest and a senescent
phenotype can be induced by PI3K inihibitors.146,147

The Janus-faced position of PI3K in the control of mitosis
is evident in the distinction between its anti-apoptotic
action potentially entailing abnormal mitotic activity and
tumorigenesis, and the induction of cellular senescence as
characterized by abolished mitotic activity. Thus, switching
of PI3K from metastable cellular states to opposing di-
rections could also provide a link between senescence and
tumorigenesis, particularly since cell populations are prob-
ably more heterogeneous in the disease rather than the
healthy state.131 This also appears interesting in view of the
association between emphysema and lung cancer.148

Moreover, since PI3K is activated via the insulin re-
ceptor,149 it offers a direct link to cell metabolism and nu-
trition which are known to be relevant factors in
emphysema and COPD.150 Interaction between the insulin
pathway and PI3K or their homologs is essential for meta-
bolic homeostasis.151,152 PI3K also mediates mechanisms
by which insulin adjusts the activity of FOXO transcription
factors153 (see below), thereby affecting senescence induc-
tion on many levels.154

A further important player in growth and cell cycle
control is the kinase mTOR.155 It is related to CDK inhibitors
(see above), and its inhibition causes increased expression
of p16INK4a.156 Of particular interest among its multiple
functions seem to be its action on adipocyte differentiation
via the transcription factor PPAR-g157 and its involvement in
cellular stress responses including ROS.158 These mecha-
nisms could provide links between local lung disease and
systemic alterations such as cachexia, a common phenome-
non in emphysema.159 Blocking of mTOR has been proposed
as a therapeutic option to attenuate age-related malfunc-
tion,160 but at present it is not clear whether this is feasible
in emphysema, or whether interference with such a central
enzyme results in significant negative side-effects.

Epigenetic mechanisms and senescence

Epigenetics is increasingly recognized as a key to the
understanding of gene-environment interactions, including
the ontogenetic and (partially) transgenerational memory
of gene expression patterns. The impact of epigenetic
mechanisms on the senescent phenotype and altered
regulation of mitotic activity has not yet been illuminated
in much detail, but current evidence suggests that this
regulation might, at least in part, rely on such mechanisms.

In its proper sense, the term ‘‘epigenetics’’ designates
heritable changes in gene expression without changes in DNA
sequence. In a broader sense, it is often used to describe
a variety of regulatory mechanisms, basically including
histone modifications and DNA methylation irrespective of
their degree of heritance. While DNA sequences are
essentially identical in all cells of an individual, patterns of
epigenetic modification occur in multiple variants, some of
them short-lived, some of them long-lived, e.g., in the
determination of cell type or in imprinting.161 Much research
is currently devoted to a detailed understanding of these
modes of control and the corresponding epigenetic codes.162
There are different types and levels of epigenetic
control. On its lowest level, DNA methylation represents
a mechanism of gene expression regulation163 that is thought
to be particularly important in tumor cells characterized by
virtually unlimited mitotic capacity. Correspondingly, in
lung tumors suppression of p16INK4a expression (see above)
via methylation of the promotor DNA is regularly found.164

DNA methylation and histone modification are intimately in-
tertwined.165 For example, silencing of p16INK4a could be re-
versed through cooperative action between histone
deacetylase (HDAC) inhibitors and inhibitors of DNA methyl-
ation,166 and cell proliferation could be antagonized.167

DNA is arranged on nucleosomes in a form resembling
a series of pearls on a bead. The building blocks of
nucleosomes are histones, while the entire chromatin
scaffold comprises many other proteins. Each nucleosome
is an octamer assembled from histones H2A, H2B, H3 and
H4. The DNA double-helix is wound around this histone
core, and nucleosomes are connected by so-called ‘‘linker
DNA.’’ The tails of the histones that protrude from the
globular nucleosome can be altered by post-translational
modifications, such as acetylation, methylation, phosphor-
ylation, and their multiple combinations.168 Their complex
local state controls the binding of regulator proteins and
the accessibility of DNA for transcription, probably being
the key for short- and long-term gene regulation.169

For example, acetylation of lysine residues in histone
tails generally facilitates the access to DNA, while deace-
tylation corresponds to a nonaccessible, silenced state.
Specific enzymes mediate the different modifications, such
as histone acetyltransferases (HAT) and HDACs which can
partially control each other. According to the present view,
histone acetylation represents a dynamic balance between
HATs and HDACs, while it seems that certain methylations
have the greatest potential for mediating persistent
alterations.170

The involvement of histone modifications in induced
senescence is currently not fully understood. Links are
provided by the finding that the expression of p16INK4a and
p21Cip1/Waf1 is, at least partially, controlled through histone
acetylation within promoter regions.171,172 For example, in-
creased p21Cip1/Waf1 transcription through HDAC inhibition
is linked to increased H3 acetylation in that region.173e175

Such effects are thought to play a role in the anti-tumor
effects of HDAC inhibitors, which are currently under
investigation.176

In addition to nucleosomes, there are further levels of
control, such as chromatin remodeling machines and
complexes,177 which can interact with HAT complexes to
mediate gene expression.178 This also seems to play a role
in senescence by controlling both p16INK4a and p21Cip1/Waf1

expression regardless of telomere shortening.178,179 Regula-
tion is also mediated by histone variants180 substituting for
other histones. All of these factors contribute to the parti-
tioning between transcriptionally silent heterochromatin
and transcriptionally competent, though not necessarily ac-
tive, euchromatin. Silencing of DNA in cellular senescence
can even be recognized macroscopically in terms of con-
densed, senescence-associated heterochromatic foci
(SAHF) which comprise genes relevant for proliferation.181

HDAC inhibitors arrest the cell cycle not as a result of
telomere shortening or uncapping. Their effect requires
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functional p16INK4a, but is hardly influenced by p53.182

Possibly, stabilization of DNA damage signals underlies
this arrest. The reason is that telomere uncapping occurs
physiologically in every mitosis, where it might induce tran-
sient activation of DNA damage signals. These are
controlled by histone acetylation and could be perpetuated
in the presence of HDAC inhibitors. In accordance with this,
cells often resume proliferation after removal of the HDAC
inhibitor.

Since various agents including cigarette smoke can induce
a persistent cell cycle arrest associated with increased
acetylation, the high degree of reversibility of acetylation
calls for further lock-like mechanisms. While in vivo persis-
tence might be supported through chronic inflammation,
this would not explain increased acetylation in cultured cells
outside the inflammatory environment.183 It is currently not
clear according to which timeframes senescence-relevant
modifications of histones take place and which of them sur-
vive the disassembly of nucleosomes upon DNA replication,
thus being transmitted to daughter cells.

Irrespective of these uncertainties, the involvement of
epigenetic memory mechanisms is strongly suggested by
the persistently altered gene expression profiles of exper-
imental animals exposed to cigarette smoke184 as well as
airway of epithelial cells of ex-smokers.185 Correspondingly,
elevated global acetylation of H3 has been detected in the
lung epithelium of ex-smokers with COPD and of H4 in
current smokers,186 specifically covering the IL-8 promoter
region in COPD. 187 The same is true for cultured lung fibro-
blasts of patients with emphysema.183 These findings are
supplemented by data from rats after cigarette smoke ex-
posure188 and from cultured human lung fibroblasts studied
immediately after in vitro exposure to cigarette smoke
extract,183 although the acetylation had disappeared 2
days after exposure. At present, the observed patterns of
histone modifications do not allow safe conclusions as to
whether they represent an intermediate state and cellular
senescence is maintained by other mechanisms, or whether
they basically underlie the persistence of senescence.

Sirtuins and FOXOs as integrators of multiple
pathways

Within the group of HDACs, sirtuins maintain a special
position since they are structurally different from other
HDACs and are inhibited by different compounds.189 Sirtuins
act on histones similarly to other HDACs thereby mediating
gene silencing. Of particular interest in mammals is SIRT1
with its yeast homolog Sir2 that is known to deacetylate de-
fined lysines in histones for gene silencing.190,191 Impor-
tantly, SIRT1 also targets other proteins than histones,
especially transcription factors. It can, for example,
down-regulate p53-mediated senescence via deacetylation
of p53.192 Such effects seem relevant, since depletion of
the pool of renewable cells by p53-mediated apoptosis
and senescence could contribute to organismal aging.193

Deactivation of p53 by Sir2 was also capable of raising cel-
lular resistance to oxidative stress. However, cells without
functional p53 still showed increased resistance after Sir2
activation, e.g., by resveratrol.194,195 Obviously, there are
several different mechanisms of stress response regulation
controlled by sirtuins.
Sirtuin action depends on NADþ and is therefore coupled
to the energy or redox state. This link might be relevant for
emphysema, which is associated with metabolic imbalances.
In addition to its supply function, NADH plays major regula-
tory roles. This is reflected in the fact that its energy is not
needed for deacetylation, but probably spent for chromatin
remodeling.196 At present, the question remains open
whether NADþ itself is decisive in the control of sirtuins, as
studies have not detected appreciable changes in the
NADþ/NADH ratio in senescent cells or cells studied under
various stress conditions.191 Nicotinamide, a source of NADþ

metabolism, is an inhibitor of Sir2, suggesting that possibly
the overall put-through rate of NADþ processing is crucial.189

Among the most noteworthy recent findings appears to
be the link between SIRT1 and FOXO transcription factors
which are key players in the determination of cell fate.
Depending on the type of activation, FOXOs can exert
diverse, even opposite, effects including induction of cell
cycle arrest, cell differentiation, removal of ROS, activa-
tion of DNA repair, and induction of apoptosis.197,198 FOXOs
are negatively regulated by PI3K (see above), which acti-
vates the kinase Akt that phosphorylates FOXOs. This is
accompanied by the export of FOXOs from the nucleus
and loss of their transcriptional activity.199 SIRT1 can re-
duce FOXO3a and FOXO4 activity and their ability to induce
apoptosis.198 It intervenes with FOXO3a on different levels,
either indirectly suppressing the induction of proapoptotic
genes,197 or directly by deacetylating histones at the pro-
motor regions of FOXO3a target genes.198 At the same
time SIRT1 can inhibit growth through p27kip1 (see above)
in connection with FOXO-induced stress responses, such
as induction of manganese superoxide dismutase.195 For
this reason, SIRT1 may occupy a critical position in switch-
ing stress responses executed by FOXOs, ranging from upre-
gulation of cellular defense through cell cycle arrest
towards eventual apoptosis.197 Pathways involving critical,
possibly stochastic, decisions between divergent outcomes
are of particular interest in COPD when considering the het-
erogeneity of the disease within the lung and between
patients, as well as the systemic manifestations.

Recent data have indicated a role for SIRT1 in the
regulation of inflammatory cells, in particular macrophages,
when exposed to components of cigarette smoke200 and
SIRT1 activity in lung tissue has been found to be reduced
in COPD and smokers.201 Thus sirtuins, particularly SIRT1,
are of great interest not only as general integrators of aging,
longevity, stress responses, metabolic state, insulin signal-
ing, and epigenetic mechanisms but also specifically due to
their altered expression in COPD. Moreover, their regulation
by specific compounds e e.g., resveratrol202 e might provide
an opportunity to move cells, and possibly organisms, into
a state of higher stress resistance and increased lifespan.
The multiple links also suggest that sirtuins may be effective
candidates for mediating the relationship between lung dis-
order and systemic alterations, which are of major clinical
importance.203
Links to energy metabolism/caloric restriction

The term ‘‘caloric restriction’’ designates reduced energy
intake without malnutrition, a condition of great interest as
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it is linked to longevity, aging and disease development or
progression. At least in humans, however, the underlying
molecular network is still far from being elucidated in
sufficient detail to draw safe conclusions. Caloric restric-
tion elicits multiple changes in terms of a regulated
response of cellular metabolism and signaling. Among other
effects, it leads to an increase in SIRT1 activity204 and
attenuates insulin or insulin-like growth factor (IGF-1) sig-
naling, while promoting longevity in many species including
probably primates.205,206 These effects are intimately
linked to the action of FOXO transcription factors, PI3K
and Akt (see above, Fig. 3).207 Conversely, enhanced insulin
signaling is thought to be associated with aging.208

On the cellular level, caloric restriction is capable of
antagonizing the loss of replicative capacity that occurs
with increasing age both in vivo and in vitro.209,210 More-
over, it can provide cellular protection by interfering with
basic mechanisms involved in senescence, such as oxidative
damage, telomere shortening, and changes in the hormone
system.211 However, the question, whether and under
which conditions the effects of caloric restriction can
enhance instead of attenuate those of cigarette smoke,
has not yet been clarified.

Despite its ability to increase lifespan, caloric restriction
has long been known to lead to alveolar rarification within
a short time in rodents,212,213 although it is not fully clear to
what extent this is equivalent to diffuse lung emphy-
sema.213 Remarkably, the findings in animals are in agree-
ment with the CT-morphological rarification of pulmonary
tissue reported in young patients with Anorexia nerv-
osa.214,215 Despite unresolved issues regarding the interpre-
tation of this observation,216 it remains challenging, since it
does not easily fit into the concept of the inflammatory
origin of emphysema. Even more interesting is that the
emphysema-like alterations induced by caloric restriction
may disappear in mice within a short time after
refeeding.217

The fact that caloric restriction can lead to reversible
emphysema in rodents emphasizes the distinction between
temporary, potentially reversible and chronic, in all likelihood,
irreversible effects. The similarity e at least superficially e
differential
regulation

pulmo

caloric
restriction

o

proteases > antiproteases

SIRT1 FOXOs

antiprolif

cell

longevity

PI3K/AktmTOR

insulin signaling

stress-ind

Figure 3 Diagram providing details on the links between import
interactions and an explanation of abbreviations are given in the t
between pulmonary alterations in hunger and cigarette
smoke-induced emphysema raises the question about shared
versus divergent pathways. In humans, there are currently no
comparative data on this; results from mice suggest that at
least elastase- and hunger-induced emphysema bear different
biochemical and functional characteristics.218 Intriguingly, this
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seems to be accelerated under malnutrition,219 the predic-
tive power of body weight for mortality in severe COPD17,220

primarily reflects the overall physical reserves. The same is
true for fat-free mass,221 a phenomenological measure of
body composition222,223 that is associated with lung func-
tion.224 Cachexia is often viewed as a consequence of sys-
temic processes including TNF-a-driven inflammation,225

not as a factor which itself might promote lung destruction.
In advanced disease, it is certainly extremely difficult to
disentangle the threads corresponding to cause and effect.
In this regard, it is, however, striking that smokers with
slightly elevated body weight have been reported to exhibit
a lower relative risk for developing COPD.226 Energy deple-
tion can be caused by starving or by wasting, and energy
consumption might be raised in smokers, at least during
light activity.227 The evidence on a raised total energy ex-
penditure in COPD is mixed, but the wasting of skeletal
muscles and other tissues is likely to induce an imbalance
between energy intake and need.228 Sirtuins are more likely
to be induced by starving than by wasting. Under caloric
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this mechanism seems to be secondary in the lung,123 which
might therefore be especially susceptible to the effects of
malnutrition.

Converse to caloric restriction, in overweight persons
accelerated aging and shortened telomeres have been
described,229 potentially indicating an elevated rate of cell
turnover. Among the factors linked to the metabolic (cata-
bolic versus anabolic) state, especially in aging and disease,
are dehydroepiadrosterone sulphate (DHEAS) and cortisol
levels.230,231 Particularly for DHEAS, multiple associations
with longevity and age-related changes have been re-
ported.232,233 The interplay between nutrition, body weight,
aging and disease risk also seems to be manifest in the serum
level of leptin, a multipotent adipokine.234 Adipokines are of
interest with regard to their pleiotropic effects beyond
a single organ, and it is meanwhile recognized that adipose
tissue can influence lifespan and aging through cell non-
autonomous regulation.235 Noteworthy is that the differenti-
ation and function of adipocytes is partially controlled by
SIRT1,236 and that adipocyte performance might be
hampered by cigarette smoke.237
Conclusion and outlook

In recent years, aging and cellular senescence have come
into focus as contributors to disease development and
organ dysfunction that could provide considerable insight
into the processes involved. The parallel between clinical
signs of aging in smokers or patients with emphysema and
findings on the cellular and biochemical level is striking,
although the database is still limited. Animal experiments
and in vitro exposure of human cells, including cells from
the lung, have provided evidence that cigarette smoke
compounds are capable of exerting effects that bear the
signature of cellular senescence. Corresponding findings
are available from immunohistological examinations of
samples obtained from patients with emphysema, or from
the analysis of lung cells taken in culture. The altered ex-
pression of key cell cycle regulators and mediators of
growth arrest or proliferative responses, and the reduction
in proliferative capacity indicate multi-faceted changes in
the maintenance of cell and organ integrity. It is important
to acknowledge that the notion of cellular senescence
covers a multitude of causes and consequences, requiring
a careful analysis in each individual condition.

Although it is impossible to draw a coherent picture at
present, the multiple links between aging, longevity, stress
responses, metabolic state, insulin signaling, sirtuins and
epigenetic mechanisms render it likely that senescence
based on these factors adds to, if not even underlies the
pathogenesis of emphysema. Owing to its integrative ca-
pacity, the concept of senescence will substantially improve
the understanding of the development and progression of
this chronic disease. This is especially true since there
seems to be a close link between senescence and epigenetic
mechanisms. Such mechanisms are, among others, also of
eminent importance in lung cancer, whose risk is associated
with COPD. It is also worth considering the potential
interference between cellular senescence and the action
of pharmacological compounds. This should be one of the
keys for unravelling their impact on long-term structural
changes in the lung. Recent work, for example, on the anti-
inflammatory efficacy of corticosteroids in relation to gene
expression control by histone acetylation238 has the poten-
tial to be extended in the direction of senescence and aging.
This fascinating perspective is reinforced by the fact that
multipotent molecular players are involved, providing
a link between environment, individual disposition, local
lung disease, and systemic alterations.

These factors might also bear implications for the
regenerative biology of the lung. Whether targeted
interference with cell cycle and differentiation control,
either by activation of resident cells or by indirect effects
of stem cells, is a therapeutic option in lung emphysema
remains a topic for future investigations, particularly since
additional morphogenetic guidance is likely to be needed.
Interventions involving epigenetic, senescence-related
mechanisms might at least be an option to help slow
down the disease progression, and sirtuins are particularly
interesting in view of their broad networking abilities. If
regenerative therapies would be feasible in future, it is
likely that the (partial) reconstitution of lung architecture
has to deal not only with unfavorable inflammatory,
structural and mechanical239 conditions in the diseased or-
gan, but also with a potential inherent resistance of the
resident cells to support reconstitution. Some of these lim-
itations might be of evolutionary origin and manifested as
genetic module-dependent ontogenetic constraints, and
some might be due to (induced) cellular senescence.
That regeneration in terms of recallable complex morpho-
genetic programs, in contrast to simple growth, is not en-
tirely switched off in humans, is illustrated by the
possibility of nearly complete restoration of fingertips in
children, which also provides valuable insight into the con-
trast between wound healing and regeneration.240 It is
noteworthy that some species exhibit impressive persis-
tent abilities of morphogenesis throughout much of their
life, as demonstrated by the growth of antlers in deer,
or of limbs241 and even complete lung lobes in newts.242

In this regard, it seems sensible to perform detailed com-
parisons between the morphogenetic programs and regula-
tory modules across species of different evolutionary
position. This could provide crucial information for the in-
duction of regeneration in situ in humans and for the (ex-
tracorporal) generation of replacement organs, as well as
for counteracting the constraints caused by cellular
senescence.
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