139 research outputs found

    cAMP Control of HCN2 Channel Mg2+ Block Reveals Loose Coupling between the Cyclic Nucleotide-Gating Ring and the Pore

    Get PDF
    Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile “slow” channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales

    Investigation of two-photon 2s -> 1s decay in one-electron and one-muon ions

    Full text link
    We have studied the radiative decay of the 2s state of one-electron and one-muon ions, where the two-photon mechanism plays an important role. Due to the nuclear size corrections the radiative decay of the 2s state in the electron and muon ions is qualitatively different. Based on the accurate relativistic calculation, we introduced a two-parameter approximation, which makes it possible to describe the two-photon angular-differential transition probability for the polarized emitted photons with high accuracy. The emission of photons with linear and circular polarizations was studied separately. We also investigated the transition probabilities for the polarized initial and final states. The investigation was performed for ions with atomic numbers 1 < Z < 120.Comment: 18 pages, 8 figure

    Diagnosis of Tuberculosis in the Wild Boar (Sus scrofa): A Comparison of Methods Applicable to Hunter-Harvested Animals

    Get PDF
    To obtain robust epidemiological information regarding tuberculosis (TB) in wildlife species, appropriate diagnostic methods need to be used. Wild boar (Sus scrofa) recently emerged as a major maintenance host for TB in some European countries. Nevertheless, no data is available to evaluate TB post-mortem diagnostic methods in hunter-harvested wild boar. METHODOLOGY/PRINCIPAL FINDINGS: Six different diagnostic methods for TB were evaluated in parallel in 167 hunter-harvested wild boar. Compared to bacteriological culture, estimates of sensitivity of histopathology was 77.8%, gross pathology 72.2%, PCR for the MPB70 gene 66.7%, detection of acid-fast bacilli (AFB) in tissue contact smears 55.6% and in histopathology slides 16.7% (estimated specificity was 96.7%, 100%, 100%, 94.4% and 100%, respectively). Combining gross pathology with stained smears in parallel increased estimated sensitivity to 94.4% (94.4% specificity). Four probable bacteriological culture false-negative animals were identified by Discriminant Function Analysis. Recalculating the parameters considering these animals as infected generated estimated values for sensitivity of bacteriology and histopathology of 81.8%, gross pathology 72.7%, PCR for the MPB70 gene 63.6%, detection of AFB in tissue contact smears 54.5% and in histopathology slides 13.6% (estimated specificity was 100% for gross pathology, PCR, bacteriology and detection of AFB in histopathology slides, 96.7% for histopathology and 94.4% for stained smears). CONCLUSIONS/SIGNIFICANCE: These results show that surveys for TB in wild boar based exclusively on gross pathology considerably underestimate prevalence, while combination of tests in parallel much improves sensitivity and negative predictive values. This finding should thus be considered when planning future surveys and game meat inspection schemes. Although bacteriological culture is the reference test for TB diagnosis, it can generate false-negative results and this should be considered when interpreting data.This study was funded by laboratory funds from Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript

    Mycobacterium tuberculosis Lipolytic Enzymes as Potential Biomarkers for the Diagnosis of Active Tuberculosis

    Get PDF
    BACKGROUND: New diagnosis tests are urgently needed to address the global tuberculosis (TB) burden and to improve control programs especially in resource-limited settings. An effective in vitro diagnostic of TB based on serological methods would be regarded as an attractive progress because immunoassays are simple, rapid, inexpensive, and may offer the possibility to detect cases missed by standard sputum smear microscopy. However, currently available serology tests for TB are highly variable in sensitivity and specificity. Lipolytic enzymes have recently emerged as key factors in lipid metabolization during dormancy and/or exit of the non-replicating growth phase, a prerequisite step of TB reactivation. The focus of this study was to analyze and compare the potential of four Mycobacterium tuberculosis lipolytic enzymes (LipY, Rv0183, Rv1984c and Rv3452) as new markers in the serodiagnosis of active TB. METHODS: Recombinant proteins were produced and used in optimized ELISA aimed to detect IgG and IgM serum antibodies against the four lipolytic enzymes. The capacity of the assays to identify infection was evaluated in patients with either active TB or latent TB and compared with two distinct control groups consisting of BCG-vaccinated blood donors and hospitalized non-TB individuals. RESULTS: A robust humoral response was detected in patients with active TB whereas antibodies against lipolytic enzymes were infrequently detected in either uninfected groups or in subjects with latent infection. High specifity levels, ranging from 93.9% to 97.5%, were obtained for all four antigens with sensitivity values ranging from 73.4% to 90.5%, with Rv3452 displaying the highest performances. Patients with active TB usually exhibited strong IgG responses but poor IgM responses. CONCLUSION: These results clearly indicate that the lipolytic enzymes tested are strongly immunogenic allowing to distinguish active from latent TB infections. They appear as potent biomarkers providing high sensitivity and specificity levels for the immunodiagnosis of active TB

    Differential Gene Repertoire in Mycobacterium ulcerans Identifies Candidate Genes for Patho-Adaptation

    Get PDF
    The emerging human disease Buruli ulcer, caused by Mycobacterium ulcerans, is of increasing challenge for public health systems in many countries, mainly in West and Central sub-Saharan Africa. Genetic differentiation of patient isolates, a prerequisite for scientific studies on and intervention of disease transmission and dispersal, is hampered by an exceptional lack of genetic diversity within this species. Comparative genomics on M. ulcerans of worldwide geographical origin has already allowed for distinguishing several haplotypes separated into two distinct lineages. Differences in prevalence and incidence of Buruli ulcer were already suspected, but biological relevance for this was unclear. Here, we show newly identified hot spot regions of genomic instability, a biased silencing of coding sequences belonging to distinct functional groups, and a differential gene repertoire across M. ulcerans strains. Gene inactivation mediated by different mechanisms in M. ulcerans adds to the concept of anti-virulence genes observed in an increasing number of bacterial species. According to this concept, loss of such genes—in addition to gain of function—may confer a selective advantage for a pathogen radiating into a new niche. In the case of M. ulcerans, a distinct set of disrupted genes may enhance virulence, particularly in the classical lineage

    Unconventional Low-Cost Fabrication and Patterning Techniques for Point of Care Diagnostics

    Get PDF
    The potential of rapid, quantitative, and sensitive diagnosis has led to many innovative ‘lab on chip’ technologies for point of care diagnostic applications. Because these chips must be designed within strict cost constraints to be widely deployable, recent research in this area has produced extremely novel non-conventional micro- and nano-fabrication innovations. These advances can be leveraged for other biological assays as well, including for custom assay development and academic prototyping. The technologies reviewed here leverage extremely low-cost substrates and easily adoptable ways to pattern both structural and biological materials at high resolution in unprecedented ways. These new approaches offer the promise of more rapid prototyping with less investment in capital equipment as well as greater flexibility in design. Though still in their infancy, these technologies hold potential to improve upon the resolution, sensitivity, flexibility, and cost-savings over more traditional approaches
    corecore