
cAMP Control of HCN2 Channel Mg2+ Block Reveals
Loose Coupling between the Cyclic Nucleotide-Gating
Ring and the Pore
Alex K. Lyashchenko1, Kacy J. Redd2, Peter A. Goldstein3, Gareth R. Tibbs1,3*

1 Department of Anesthesiology, Columbia University, New York, New York, United States of America, 2 Department of Neuroscience, Columbia University, New York,

New York, United States of America, 3 Department of Anesthesiology, Weill Cornell Medical College, New York, New York, United States of America

Abstract

Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current.
As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves
dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward,
displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal
to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further
modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux.
Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block.
A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via
acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel
opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled
in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model) but couple more
loosely (as envisioned in a modular model of protein activation). Importantly, the emergence of second messenger
sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow
these erstwhile ‘‘slow’’ channels with an ability to exert voltage and ligand-modulated control over cellular excitability on
the fastest of physiologically relevant time scales.
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Introduction

HCN channels represent the structural and functional fusion of

two major branches of the potassium channel superfamily -

depolarization-activated, K+-selective, KV channels and the

weakly voltage-sensitive, mono- and divalent cation permeable,

cyclic nucleotide-gated CNG channels.

Gating in both HCN and depolarization-activated Kv channels

involves stabilization of a dilated arrangement of their S6 helical

bundles. In both channel classes this rearrangement is energeti-

cally coupled to motion of the four S1–S4 voltage-sensing domains

and the concomitant reorientation of S4 positive charges with

respect to the transmembrane field - albeit with an inverted

coupling between the orientation of the sensors and opening of the

gate [1,2,3,4,5,6,7,8,9,10,11,12,13,14]. This contrasts with the

weakly voltage sensitive CNG channels whose S4 is somewhat

degenerate with respect to the canonical motif (with acidic residues

often flanking a core that has a reduced number of positive charges

[15]) and whose activation gate lies at the selectivity filter

[16,17,18,19,20,21,22,23,24,25] and not at the S6 bundle crossing

that is dilated even in deactivated CNG channels [17,22,23,26].

Similarly, while HCN channels display only a modest selectivity

for K+ over Na+ (,4: 1), not dissimilar to CNG channels, they

contain a canonical K+-selective CIGYG motif at the selectivity

filter rather than the degenerate filter of CNG channels wherein

the tyrosine and a glycine are deleted [15,27,28,29].

Unlike depolarization-activated Kv channels, opening of HCN

and CNG channels is enhanced by agonist occupancy of cyclic

nucleotide-binding domains (CNBDs). In each channel subunit,

the CNBD is distally connected to the pore-lining S6 helix by an

intervening motif, the C-linker [15,27,30,31]. The architecture

and motions of the cyclic nucleotide gating ring formed by the

CNBDs and C-linkers appears to be well conserved between HCN

and CNG channels [30,32,33,34,35,36,37,38,39]. Such conserva-

tion suggests that propagated changes that alter the pore of CNG

channels may also be conserved and serve to alter the permeability

properties of HCN channels, a hypothesis that has recently

received support at least with respect to blocker binding sites in the

inner vestibule of HCN2 [40].

Despite the many differences, fundamentally similar models are

commonly used to describe activation and opening of all three

classes of channels. Thus, while various forms of sequential

models, each involving cooperative final opening transitions to a

single open state, are the favored descriptions of Kv channel gating

[41,42,43,44,45], such schemes are really only a strongly biased
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subset of the concerted allosteric models (based on the Monod

Wyman and Changeux, MWC, formalism) that are commonly

used to describe gating of HCN [30,34,35,46,47,48,49,50,51] and

CNG channels ([15,30,33,52,53,54] and see [39,55,56] for lucid

discussions) – albeit the differences have important conceptual and

functional consequences.

Evidence supporting the notion that the linkage between voltage

sensors and the gate is weak in HCN and CNG channels is

mounting [50,56,57,58,59]. Importantly, recent work on the

architecture of the cyclic nucleotide gating ring has suggested that

coupling of ring activation and channel opening (implied in

MWC-type cyclic models) may not be as tight as previously

believed. Structural and functional analysis of interactions within

the gating ring indicate that various components of the gating ring

can simultaneously adopt conformations attributed to activated

and deactivated arrangements [30,32,60,61]; analysis of channels

composed of subunits that are competent and incompetent with

respect to agonist binding indicate that the gating ring may

operate as two functional dimers [33,34] while patch clamp

fluorimetry and isothermal titration calorimetry suggests inter-

subunit cooperation maybe yet more complicated [62,63].

Together, these findings suggest that the gating ring may adopt

multiple functionally important and kinetically relevant arrange-

ments. Such complexity is explicitly introduced by adoption of the

modular model [30,60] first used to describe gating of large

conductance calcium-activated K+ channels [55].

It has previously been shown that intracellular Mg2+ acts as a

voltage dependent blocker of open HCN channels [64,65]. The

voltage dependence of the block and its sensitivity to mutation of

residues forming the inner face of the selectivity filter is consistent

with the Mg2+ binding site lying close to or within the selectivity

filter itself. Based on these observations we hypothesized that Mg2+

may act as a probe with which we could analyze the actions of

cAMP on the architecture of the HCN channel pore.

Here, we show that agonist occupancy of the cyclic nucleotide

gating ring does indeed modify the kinetics of Mg2+ block of

HCN2 channels. Importantly, we show that the cAMP acceler-

ation of block is unrelated to the enhancement of the channel’s

open probability (the kinetics of block and gating are so different

that they are functionally decoupled) and that Mg2+ occupancy of

the pore does not overtly alter the channel’s closing reaction.

Together, these findings show that the path to and from the ion’s

binding site discretely controls the microscopic kinetics of Mg2+

block with the clearest effect of cAMP being abolition of a slow

component of the Mg2+ on-rate. These observations can be readily

explained within a modular gating model by simply assuming that

the different kinetics of Mg2+ block are a functional consequence

of the architectural differences in the activated and deactivated

conformations of the components of the nucleotide gating ring

along with loose coupling between the ring and the pore. We

hypothesize that a second messenger sensitivity of rectification

represents a novel, and perhaps physiologically important,

consequence of such plasticity in coupling.

Materials and Methods

Molecular Biology
1–50 ng of HCN2 or HCN2-R591E cRNA was prepared and

injected into Xenopus oocytes as previously described [64].

Electrophysiology
Excised inside-out patch clamp (IOPC) recordings were made

from oocytes using an Axon Instruments Axopatch 200B amplifier

(Foster City, CA) in the resistive mode with analogue compensa-

tion of linear ionic and capacitive currents applied. The 100 kHz

output of the clamp’s 4-pole Bessel filter was digitized at 200 kHz

using an ITC-18 interface (Instrutech Corporation, Port Wash-

ington, NY) controlled by Pulse software (HEKA Elektronik,

Lambrecht/Pfalz, Germany) without additional filtering. In all

experiments, the extracellular solution was (mM) 112 KCl, 1

MgCl2, 1 CaCl2, 10 HEPES-free acid pH 7.4 (KOH). The

intracellular solution was (mM) 112 KCl, 1 EGTA-free acid, 10

HEPES-free acid, pH 7.4 (KOH) that was supplemented with

either 1 EDTA-free acid or MgCl2 at 0.3, 1, 2 or 3 mM and,

where indicated, 30 or 300 mM cAMP (also added as the free

acid). Throughout this manuscript, the concentrations of intracel-

lular Mg2+ are discussed with respect to the added concentration

but the appropriate free concentrations (0.276, 0.924, 1.859 and

2.804 mM as determined by MaxChelator: WebmaxC http://

www.stanford.edu/%7Ecpatton/webmaxc/webmaxcE.htm) were

used in all calculations.

Bath connections and sylgard-coated patch electrodes were as

previously described (Lyashchenko and Tibbs, 2008). As currents

tended to be large, especially at depolarized potentials, we

routinely applied series resistance compensation with the resis-

tance set equal to that of the electrode before seal formation (1–

2 MV), the lag to 20 ms and the correction circuit to 95%. The seal

resistance was typically 3–8 GV. Several lines of evidence indicate

that uncompensated series resistance errors do not contribute to

our descriptions of block. First, the time constant of block was

independent of current amplitude across a .200-fold range (see

File S1). Second, the conversion of block from mono- to bi-

exponential behavior in the presence and absence of cAMP was

independent of the current amplitude and persisted when Na+

replaced K+ as the main external charge carrier, conditions under

which cAMP no longer enhanced the current amplitude (data not

shown).

Paradigms
Three types of voltage paradigm were used in these studies: A

deactivation paradigm, a sequential IV paradigm and a depolar-

ized conditioning envelope paradigm. In each case, the holding

potential was 240 mV. Unless otherwise indicated, channels were

activated by stepping to 2155 mV for 2 s. After the activation

step, the patch was stepped to: 1. +100 mV for 600 ms to follow

both block and channel closing (the deactivation paradigm); 2.

Potentials between 2200 mV and +200 mV in 50 mV increments

with test steps applied at 4 Hz (the sequential IV paradigm) or 3. +
100 mV for various durations before returning to 2155 mV for

2 s (the depolarized conditioning envelope paradigm). To ensure

test steps were long enough to determine the time constant of

block but short enough to prevent deactivation during the

depolarizing epoch, the durations of the steps in the sequential

IV protocol were increased from 1 ms at +200 mV to 3 ms at

0 mV in 0.5 ms increments then held at 3 ms for all negative

potentials. To eliminate linear capacity and ionic currents not

compensated by the analogue circuitry, in each protocol, we

recorded leak records interlaced with the active records. To this

end, patches were stepped from the holding potential to 2155 mV

for 5 ms before and after each test step during the sequential IV

protocol, to 2155 mV for 5 ms before and 150 ms after the step

to +100 mV during the depolarized conditioning envelope

protocol and 2155 mV for 5 ms before the +100 mV tail step

after which the voltages and durations were as in the cognate

active sweep. Depending on the current amplitude, 2–17 leak

sweeps were averaged and subtracted from the average of the

corresponding, interlaced, 1–16 active sweeps. Throughout this

manuscript, plateau tail current refers to that component of the tail
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that remains after the time required for development of block

(irrespective of whether blocker is present or not) and before the

onset channel of closing.

Microscopic block kinetics
We have previously shown [64] that block of HCN channels by

intracellular Mg2+ does not hew to the predictions of a simple

impermeant block model (Fig. 1A, Scheme I). Specifically, neither

the unblocked probability nor the apparent off rate decline

exponentially ([64], see also below). The traditional, and simplest,

explanation for the emergence of such anomalies accepts that the

blocker is permeant (Fig. 1A, Scheme II - a model first proposed

by Woodhull in 1973 [66]); however, Heginbotham and Kutluay

have shown that such anomalies could arise as a consequence of

changes in ion loading in a multi-ion pore with the blocker

returning to the same compartment from which it arrived [67]. As

the Woodhull scheme is better constrained, we use it as the

framework for our quantitative analysis. A qualitative inspection

shows the main conclusion of the study would not be altered were

the Heginbotham and Kutluay model used instead (see Discus-

sion).

In Scheme II all rates are exponentially described according to

the general form shown in equation 1, the rate equation describing

block is given by equation 2, the time constant of equation 2 is

described by equation 3 and the probability that the channels are

unblocked at equilibrium is given by equation 4 (see File S2 for

derivations).

kn~k0
n e

dnZmFV
RT ð1Þ

Ot~O?z O0-O?ð Þe-t=t ð2Þ

t-1~k1 Mg2z
� �

in
zk2 Mg2z

� �
out

zk-1zk-2 ð3Þ

Pun~
k-1zk-2ð Þ

k1 Mg2z½ �inzk2 Mg2z½ �outzk-1zk-2

� � ð4Þ

Here k0
n is the rate of the nth step in the absence of an applied

field; Zm the valence of Mg2+; dn the effective electrical distance

Mg2+ travels across the field (V) to reach the appropriate step’s

transition state assuming that all the effect of the field arises from a

discrete effect on the Mg2+ ion. The sign of the exponent is

negative for k21 and k2 and positive for k1 and k22. Throughout

the manuscript, R, T and F have their usual meaning. O0, Ot and

O‘ are, respectively, the occupancies of the unblocked open state

at the onset of the test step, at time t after the beginning of that

step and at an interval long enough for block to have equilibrated.

To determine the block time constant, we fit the pre-

deactivation phase of the tail current with either equation 2 (with

observed currents, I0, It and I‘ in place of occupancies) or a double

exponential version thereof in the presence or absence of cAMP,

respectively.

Equation 3 show that linear regression of plots of t21 versus

[Mg2+]in discretely yields k1 and that the ordinate intercept of such

a regression analysis reports a compound rate constant k999 =

k2[Mg2+]out+k21+k22. Inspection of equation 4 shows that the

product of the unblocked probability and t21 yields a different

compound rate constant k99 = k21+k22. While we cannot

unequivocally determine the unblocked probability at any

particular voltage (Pv
un), we know that it is directly proportional

to current and, therefore, that the fraction of current remaining at

t = ‘ with respect to that at t = 0 (at any particular test voltage) is

equal to the ratio of unblocked probabilities (equation 5).

Iv
?

IV
0

~
Pv

un ?

Pv
un 0

ð5Þ

The unblocked current at equilibrium (Iv
? ) is determined from

the asymptote of the exponential fit. Iv
0 the instantaneous current

at the onset of the blocking step, can be estimated one of two ways:

1) by extrapolation of the exponential fit of the decaying current to

t = 0 or 2) by scaling the leak subtracted amplitude of the inward

current immediately prior to the onset of the block step by the

appropriate ratio of outward to inward currents derived from a

block-free IV curve collected in the absence of intracellular

divalent ions. We elected to use the scaling approach because this

offered the better constrained measure, we indicate this by

rewriting Iv
0 as I�v0 . Similarly, Pv

un 0 can be replaced with P{155
un ? the

unblocked probability at 2155 mV. If we assume that this is close

to 1, that is k2 is small compared to k21 at 2155 mV, then we can

use equations 3, 4 and 5 to obtain equation 6. That the IV relation

is strongly inwardly rectifying in the presence of essentially

symmetrical K+ and Mg2+ concentrations but essentially linear

upon removal of internal Mg2+ supports the above assumption.

k{1zk{2%
Iv
?

Iv
0

t{1 ð6Þ

Evaluating the difference between the regression analysis

compound rate constant (that includes k2[Mg2+]out) and the

compound constant defined by equation 6 offers a way to estimate

k2[Mg2+]out at depolarized potentials.

Although block parameters will be best determined if both fast

and slow components of block equilibrate before deactivation

begins, optimizing the conditions to isolate the slow component (a

high Mg2+ concentration at a strongly depolarized potential) will

degrade measurement of the fast component (particularly of its

amplitude) while lower concentrations and potentials will reduce

the precision with which the slow component’s time constant can

be determined as it lengthens towards the duration of the pre-

deactivation phase of the tail.

To monitor the extent to which extrapolation of the

exponentials may compromise the estimate of relative amplitudes,

we followed the ratio of the amplitude determined from

extrapolation of the exponential fit function to I�V0 (as defined

above). To explore the extent to which imperfect series resistance

compensation may compromise quantification of block kinetics,

we examined the correlation between the observed time constants

(normalized with respect to the mean value at that Mg2+

concentration and voltage) and the current amplitude (as

measured at 2155 mV immediately prior to the depolarizing

block step).
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Modeling and simulations of gating and block
To examine whether the effect of cAMP on Mg2+ blocking

kinetics arose from a ligand-mediated change in the channel open

probability and/or gating kinetics rather than through an effect of

cAMP on block kinetics per se, we simulated activation and block in

the presence and absence of cAMP using a 20-state model

depicted schematically in Figure 1B. In this model, we assume

that: 1.There are four identical and independent activation steps

such that n represents the number of activated voltage sensors (and

varies between 0 and 4), a and b represent the voltage dependent

forward and reverse rate constants (defined by equations 7 and 8,

respectively) and deactivated and activated states are depicted by

subscripts r (resting) and a (activated); 2. Opening is a concerted

reaction leading from either closed resting (Cr) or closed activated

(Ca) states to open resting (Or) or open activated (Oa) states and c
and d define the basal opening and closing rate constants; 3. A and

B are variables that define how opening modifies the activation

rate constants (a and b) while C and D are variables that define

how activation modifies the rate constants underlying opening (c
and d); 4. cAMP binding alters activation and opening if the

variables W, X, G and H have non-unity values; 5. The K+

conductance of all unblocked open states (Or and Oa with n of 0

to 4) was assumed to be equivalent while the blocked open states

(OrB and OaB with n of 0 to 4) were assumed to be non-

conducting. As the opening and block/tail phases of the

simulations were each at single potentials, we did not convert

these values to currents as the conversion would not alter the shape

of the traces while the amplitudes of the two phases do not carry

any relevant information; 6. Mg2+ binding is inherently insensitive

to the absence or presence of cAMP.

Figure 1. Schema and models describing HCN channel gating and Mg2+ block. A. Mg2+ block of HCN channels may occur via a simple bi-
molecular process (Scheme 1) or via more complex processes (e.g., Scheme 2). For further details see Methods, Results and Discussion. B. Schematic
representation of an allosteric gating reaction wherein Mg2+ can bind to and block the open channel (reactions going back into the plane of the
page) but does so without altering the energetics of either activation (horizontal steps in the plane of the page) or opening (vertical steps). Further
details of the model and the methods used to optimize the rate constants associated with gating are given in the methods section. C. Schematic
representation of the modular model of gating. Here, as in the basic concerted model shown in panel B, voltage sensors can activate irrespective of
the status of the pore and the pore can open whether the voltage sensors are activated or not but voltage sensor activation and pore opening results
in a reciprocal stabilization when the allosteric coupling factor, E is .1. Furthermore, tighter binding of agonist when the gating ring is activated
leads to a reciprocal stabilization of the ring and bound agonist if the allosteric factor W is .1. The critical divergence between the concerted and
modular models is that in the latter case elements of the gating ring can be either activated or deactivated when the pore is open. As shown, pore
opening is coupled to the status of the C-linker such that the open pore and the activated C-linker are reciprocally stabilized when the coupling
factor Q is .1. Coupling between other modules is not excluded [55] but is not required for, nor included in, our simulations.
doi:10.1371/journal.pone.0101236.g001
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a~a0 e{ ZaFV=RTð Þ ð7Þ

b~b0 e
ZbFV=RT

� �
ð8Þ

A~
CD

B
ð9Þ

C~
d PMAX CONT

c D4 1-PMAX CONTð Þ

� 	1=4

ð10Þ

W~
d PMAX cAMP

c X C4D4 1-PMAX cAMPð Þ
ð11Þ

a0 and b0 are the forward and reverse rate constants for

movement of the voltage sensors in the absence of an applied field;

Za and Zb are the charges associated with the forward and reverse

motions of the voltage sensors. Conformation of the model to

microscopic reversibility was achieved by defining the indicated

parameters according to equations 9 to 11 during optimization.

We first optimized the activation and opening rate constants by

simultaneously fitting the front plane of the model (no Mg2+ block)

to open probability time courses in the absence and presence of a

saturating concentration of cAMP using the Berkeley Madonna

program. For these fits, we took HCN2 IOPC currents obtained in

response to 10 s steps applied at 10 mV increments between 2115

and 2155 mV (in the absence of cAMP) 295 and 2135 mV (in

the presence of cAMP) and tail currents obtained at +100 mV in

the absence and presence of cAMP. Inward currents were

recorded in the presence of 1 mM internal Mg2+ while tail

currents were recorded in the absence of intracellular Mg2+. These

current records were converted into open probabilities as follows.

Each sweep was: 1. Normalized to vary between 0 (channels

closed) and 1 (maximal channel opening in that sweep); 2.

Corrected to the appropriate fractional activation as determined

from the Boltzmann equation wherein the V1/2 and slope were set

equal to the observed values for these records (2125.6 and

3.3 mV in the absence of cAMP and 2109.5 and 2.8 mV in the

presence of the agonist); 3. Corrected to the activated open

probability by multiplying the normalized corrected waves by 0.7

or 0.98 for data in the absence or presence of cAMP, respectively.

These maximal open probabilities were obtained by non-

stationary fluctuation analysis ([68,69,70]; data not shown). Note

that normalizing the data in this manner assumes that deactivated

opening is very unfavorable, a finding that is in keeping with prior

observations [47,70,71]. As only a single tail voltage was used,

error from that current was given a weight of 5 times that of the

five activation sweeps. In the initial fitting cycles, we allowed both

PMAX and the deactivated opening equilibrium constant, L0, to

vary. Although these parameters will clearly be constrained to be

large and small, respectively (as a consequence of the data

normalization we performed), their final fit determined values will,

nonetheless, be strongly influenced by the gating kinetics at

intermediate potentials. The values listed in Table 1 are those that

appeared to allow for the best solutions from such time course

fitting. In one series of fits, cAMP was assumed to only act on the

opening isomerization (G and H were constrained to 1) while in a

second series of fits G and H were also allowed to vary. The gating

charges associated with the forward and reverse reactions were

allowed to vary but were constrained such that they were

equivalent in the absence and presence of cAMP.

We then asked whether the cAMP-dependence of gating could

account for the appearance of a cAMP-dependence of block. To

do so, we first set both gating and block parameters in our 20-state

model (Fig. 1B) to those determined in the presence of nucleotide

(where kON equals k1[Mg2+]in and kOFF the sum of k21 and k22

with k1, k21 and k22 being exponentially-distributed with respect

to voltage, as per equation 1, see Results for detailed description of

parameter determination). We then adjusted the gating parame-

ters, and only the gating parameters, to their control values and

examined whether this change altered block.

To examine how an explicit cAMP-sensitivity of Mg2+ block

may emerge, we simulated the gating behavior of HCN2 channels

using the modular model developed by Horrigan and Aldrich [55]

and Craven and Zagotta [30,60]. This simplified expansion of the

four dimensional modular model (which does not account for the

tetrameric nature of the channels) can be envisioned as two nested

cubes wherein horizontal transitions represent movement of the

voltage sensors, vertical transitions represent the opening isomer-

ization and movements from the front plane to the back represent

C-linker activation. Connections between the corners of the inner

and outer cubes represent cyclic nucleotide binding.

In this model (see Fig. 1C), J, L, M and K represent the

equilibrium constants for activation of the voltage sensors (as per

equation 12 where J0 is the equilibrium constant for voltage sensor

activation in the absence of an applied field and ZJ is the gating

charge moved by the sensors), the opening of the pore, activation

of the C-linker and nucleotide binding to the CNBD while E, Q

and W represent the allosteric coupling factors linking these

equilibria. Values of factors were: J0 = 1.1610212, ZJ = 5.3,

L = 361026, M = 2.361024, K = 1.96106, E = 2.36105,

Q = 16104, W = 60. In equations 12–15, G = 1+K[cAMP],

H = 1+WK[cAMP], X = G+MH, Y = G+MQH.

J~J0 e
{

ZJFV

RT

� �
ð12Þ

PMAX~
1

1z
X

LEY


 � ð13Þ

V1=2~
RT

ZJF
1n J0-1n

LYzXð Þ
LEYzX


 �
ð14Þ
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PLR~
1

1z
MQH

G


 � ð15Þ

Equations 13 to 15 define how PMAX, V1/2 and PLR (the

probability that the C-linker of an open channel is in its resting

conformation) vary as a function of the cAMP concentration,

[cAMP]. As this model describes the uncoupling of the activation

status of the linker and the pore, we assign fast versus slow block to

the status of the linker but the model remains valid even if another

component of the modal machinery is the actual determinant of

the barrier to the Mg2+ binding site.

Fitting and statistical analysis
Data analysis was performed in PulseFit (HEKA Elektronik) or

with user generated functions in IgorPro (Wavemetrics Corpora-

tion, Lake Oswego, OR). SigmaStat V3.1 (Systat Software, Point

Richmond, CA) was used to perform Student’s t-tests (differences

between two populations) and one-way ANOVA with post hoc

Holm-Sidak analysis (comparison of multiple populations). A P ,

0.05 was considered significant. Data are presented as mean 6

SEM except for quotients of means which are reported with

respect to their 95% confidence interval.

Reagents
Electrophysiology reagents were of the highest purity from

Sigma.

Results

cAMP-accelerates intracellular Mg2+ block of open HCN2
channels

Figure 2A shows representative HCN2 currents recorded at 2

155 mV in the absence, presence and following washout of 30 mM

cAMP. Inspection shows that the presence of the ligand reversibly

accelerated channel activation and enhanced the amplitude of the

inward current. These observations are consistent with cAMP

acting to enhance a rate limiting voltage-independent opening

reaction [47] and stabilize a relatively unfavorable opening

equilibrium (data not shown; see also [47,57,60]).

Figure 2B shows expanded views of the early phase of the tail

currents from the records in Figure 2A. The initial time course of

the tails is, as previously reported [64,65], dominated by a voltage-

dependent block of the outward current by intracellular Mg2+.

Surprisingly, inclusion of 30 mM cAMP appears to reversibly

Table 1. Optimized values of rate constants and gating modifier variables used in the simulations shown in Figure 8.

Opening and activation Opening only

-cAMP +cAMP -cAMP +cAMP

a0 1.661027 2.261027 s21

Za 3.0 3.4

b0 2.7 4.4 s21

Zb 0.5 0.6

c 0.003 0.002 s21

d 1400 864 s21

A 46.7 (#9) 23.9 (#9)

B 0.7 1.3

C 4.9 (#10) 4.8 (#10)

D 7 6.3

W 1 120 (#11) 1 151 (#11)

X 1 3.7 1 7.0

G 1 1.3 1 1

H 1 0.6 1 1

. 1.0646106 M21 s21

d1 0.164 0.164

k0
{1 . 4346 s21

d-1 0.306 0.306

k0
1 .k0

2 . 0 M21 s21.

d2 — —

k0
{2 . 21 s21

d22 0.303 0.303

I‘/I0 0.046 0.046

Gating parameters were estimated using time course fitting of HCN2 currents while those describing Mg2+ block kinetics were derived from block in the presence of
cAMP as shown in figures 4 and 5 (see methods for details). Where plus or minus cAMP parameter windows are left blank, the values are constrained to be equivalent to
that shown in the other condition for that model. Superscripted #’s refer to the appropriate equations in the methods that were used to determine the value of the
indicated parameter.
doi:10.1371/journal.pone.0101236.t001
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accelerate the block. This impression is reinforced by comparison

of the records after scaling each record to the maximal current

amplitude observed in the presence of the nucleotide (Fig. 2C). To

quantify the effect of cAMP on the Mg2+ block kinetics, we fit the

initial phase of the tail currents with a single exponential function

(solid red lines superimposed on the data in Figs. 2B and C). A plot

of the time constants of block as a function of the depolarizing step

potential shows that cAMP doubled the rate of the blocking

reaction at all potentials (Fig. 2C inset).

cAMP-acceleration of intracellular Mg2+ block is
mediated via ligand occupancy of the cyclic nucleotide
gating ring

Are the effects of cAMP on block due to activation of the gating

ring or does this arise from a non-specific effect of the ligand (such

as the introduction of a low concentration of a contaminating

cation that has a high affinity for the Mg2+ site)? To address this

question, we performed two tests. First, we determined the effect of

30 mM cAMP on HCN2-R591E, an HCN2 channel wherein a

critical arginine residue in the cyclic nucleotide-binding domain

has been replaced with a glutamate rendering the channel

insensitive to mM levels of cAMP while leaving basal gating

unaltered [34,72]. Second, we compared the effects of 30 mM

cAMP with those of 300 mM cAMP on the block kinetics in wild

type HCN2 (note that both concentrations of agonist exceed that

required to saturate the CNBD as reported by the effect of ligand

on channel gating, data not shown and [34,72]). If the effect of

cAMP addition is mediated via a contaminating particle, we would

predict that the block kinetics of HCN2-R591E will be as sensitive

to 30 mM cAMP as are the block kinetics of HCN2 while a 10-fold

increase in cAMP concentration should result in an equivalent

further acceleration of the block kinetics of HCN2. To explore

these questions we used the sequential IV voltage paradigm as that

allowed us to isolate the block kinetics at a series of test potentials

while simultaneously monitoring the activation and deactivation

kinetics at potentials where block was less marked (see Methods for

details).

Figure 3A–C show data from a representative recording

obtained with HCN2-R591E in the presence of 1 mM intracel-

lular Mg2+ in the absence, presence and following washout of

30 mM cAMP. As anticipated, the presence of cAMP did not alter

either activation or deactivation kinetics (see expanded and

superimposed views of the opening time courses at 2155 mV

and the closing reaction at 240 mV - left and right panels of

Figure 3B, respectively). Importantly, superimposed views of

currents recorded at +50 mV (Fig. 3C right) and +200 mV

(Fig. 3C left) indicate that block of HCN2-R591E was also

insensitive to the presence or absence of cAMP.

The mean single exponential time constants of block deter-

mined at varying potentials in the presence of 1 mM intracellular

Mg2+ for HCN2-R591E and HCN2 are shown in Figure 3D and

E, respectively. In agreement with the data presented in Figure 2,

cAMP accelerated Mg2+ block in HCN2 (time constants observed

in both 30 or 300 mM cAMP were significantly different from

control at all voltages). Importantly however, the kinetics of block

of HCN2 in the presence of 300 mM cAMP were indistinguishable

from those observed in the presence of 30 mM nucleotide while the

kinetics of block of HCN2-R591E were not affected by the

Figure 2. cAMP accelerates [Mg2+]in block of HCN2 channels. A. HCN2 channels activated at 2155 mV and deactivated at +100 mV in the
presence of 2 mM intracellular Mg2+ and the absence (Pre), presence (Plus) and following washout (Post) of 30 mM cAMP. Arrows indicate the
instantaneous tail current amplitudes in the absence and presence of cAMP (determined by zero time extrapolation of fits of a single exponential
function – e.g,. as shown in B and C). Records are active sweeps before subtraction of flanking leak sweeps acquired using the deactivation protocol
(see Methods). B. Expanded views of the initial 2 ms of the +100 mV tails from A following subtraction of the averaged interlaced leak sweeps
(shown in blue). Solid red lines represent fits of a single exponential function. The residuals from the fits are shown vertically offset for clarity. In this
and all other figures, dashed red lines represent the zero current level. C. Current records (and exponential fits thereunto) normalized to the observed
peak amplitude of the plus 30 mM cAMP tail current. Inset: the time constants of decay of the initial phase of the HCN2 tail currents in the presence of
2 mM Mg2+ and the absence (open symbols) or presence (closed symbols) of 30 mM cAMP (10 to 27 determinations per point) are significantly
different at each potential (Student’s t-tests). Data acquired from deactivation and sequential IV protocols (see Methods) were pooled in this plot.
doi:10.1371/journal.pone.0101236.g002
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presence or absence of cAMP and were not different to the block

kinetics of HCN2 in the absence of ligand (comparisons were by

one-way ANOVA at each voltage). These data reveal that cAMP

acts to modify block via its association with the CNBD. It is

interesting to note that that these data also act to support the

contention that mutation of the conserved arginine in the CNBD

does not perturb the overall architecture of HCN channels.

In the absence of cAMP, Mg2+ block is biphasic
Figure 4A and B show representative HCN2 pre-deactivation

tail currents obtained in the presence of 3 mM Mg2+ and absence

and presence of 30 mM cAMP at +100 (Fig. 4A) and +200 mV

(Fig. 4B). In keeping with the data presented above, the rapidly

decaying component of the HCN2 tail current is monophasic in

the presence, but not the absence, of cAMP. In the absence of

nucleotide, the early component is well fit by a bi-exponential

function.

We can consider three simple explanations for this behavior: 1.

The blocking mechanism in the absence and presence of cAMP is

different; 2. The blocking mechanism in the absence and presence

of cAMP is equivalent but, due to a mass action effect of closed

channels, a slow second component appears when the open

probability is significantly less than unity; 3. In the absence of

nucleotide, there are two slowly interconverting populations of

channels each of which block according to a similar reaction but

do so with different kinetics. Below, we present evidence that the

third interpretation is correct.

Analysis of microscopic Mg2+ blocking kinetics suggests
cAMP occupancy of the CNBD eliminates a slow blocking
configuration of HCN2 channels

In Figure 4C–E, the inverse time constants describing current

decay due to development of block (single exponential in the

presence of cAMP but double exponential in the nucleotide’s

absence) are plotted as a function of [Mg2+]in. Figure 5A plots the

slopes of the regression lines in Figure 4C–E; within Scheme II,

these data report k1 as a function of voltage (see equation 3). We

obtained estimates of k0
1 and d1 of 1.0646106 M21 s21 and 0.164

in the presence of AMP and 0.8226106 M21 s21 and 0.165 and

7.66104 M21 s21 and 0.189 for the fast and slow components

observed in the absence of agonist. Figure 5B and C report the

ordinate intercepts (zero [Mg2+]in) of the regression lines in

Figure 4C–E; within Scheme II these data report the compound

rate constant k999 which is equal to k2[Mg2+]out+k21+k22 as per

equation 3. Figure 5B additionally reports k99 (obtained by

equation 6 and, within Scheme II, approximately equal to k21+
k22) as well as the inverse time constant of relief of block at 2

155 mV. The difference between k999 and k99 defines the

Figure 3. cAMP acceleration of [Mg2+]in block is mediated via ligand occupancy of the cyclic nucleotide-gating ring. A. Average of 8
consecutive active sweeps acquired from a patch expressing HCN2-R591E channels in response to the sequential IV voltage paradigm. Intracellular
Mg2+ was 1 mM. B. Expanded view of activation (Left panel) and deactivation (at the holding potential of 240 mV; Right Panel) of HCN2-R591E
obtained in the absence (Pre), presence (Plus) and following washout (Post) of 30 mM cAMP. Records are from same patch as A and are each averages
of 8 sweeps acquired in response to the active paradigm before subtraction of the averaged interlaced leak records. C. Expanded views of the leak
subtracted currents recorded at +50 and +200 mV (as indicated) in the absence, presence and following washout of 30 mM cAMP (traces and legend
as in B). Red lines are fits of a single exponential function. Residuals are shown vertically offset for clarity. D,E. Time constant of block by 1 mM
intracellular Mg2+ of HCN2-R591E (D) and HCN2 (E) in the absence or presence of 30 or 300 mM cAMP. For HCN2 but not the cAMP-disabled
construct, HCN2-R591E, block kinetics in the presence of cAMP were significantly different from block in the absence of cAMP while the speed of
block of HCN2-R591E in the absence or presence of cAMP was not different from that of block of HCN2 in the absence of the nucleotide (one-way
ANOVA at each voltage with 11–20 determinations per point).
doi:10.1371/journal.pone.0101236.g003
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maximum allowed value of the external Mg2+ on rate (at 1 mM

[Mg2+]out) at each voltage. As the difference is the smallest at lower

voltages (where k2 should be at its largest) the data show this term

contributes little, if at all to the observed block behavior across the

depolarized domain. Accordingly, k2 was assumed to be zero at

depolarized potentials and ,,k21 at hyperpolarized potentials.

Note that k99 cannot be determined in the absence of cAMP as it is

not possible to unequivocally parse PUN between the fast and slow

components. The behavior of equilibrium block is plotted in

Figures 5D–F. Several things are apparent from these data.

First, in the presence of cAMP, block closely hews to the

predictions of the single site permeant block model depicted in

Scheme II wherein external Mg2+ has very poor access to the

blocking site. Thus: 1) The on rate of block is linearly related to

[Mg2+]in (Fig. 4C); 2) When it moves from the cytoplasm to its

transition state, Mg2+ experiences ,0.16 of the field (as derived

from the slope of the lines in Figure 5A), suggesting the transition

site is within the pore but towards the inner face of the vestibule; 3)

The compound rate constants k999 and k99 both display a concave

relationship with voltage and are essentially identical. This identity

is inconsistent with an alternative hypothesis, that residual current

represents incomplete block of K+ flux through Mg2+ occupied

channels; such flux would result in gross overestimation of k99 but

would not affect k999. As k2 decreases with increasing voltage, the

correspondence between k99 and k999 allows us to further conclude

that k2[Mg2+]out is effectively zero in the depolarized domain. As

such, we set k2 to zero in fitting and modeling routines. The

modest deviation between estimates of k99 and k999 at +200 mV

does not contradict these conclusions; at +200 mV the contribu-

tion of k2 should be at its smallest not its largest; 4) An estimation

of PUN from the fitted values of the rate constants of Scheme II

coincides closely with the observed value of the fraction of current

that remains unblocked (Fig. 5D), demonstrating that the

Figure 4. Bi-exponential behavior of [Mg2+]in block in the absence of cAMP. A,B. Expanded views of leak subtracted currents recorded at +
100 (A) and +200 mV (B) in the presence of 3 mM Mg2+ and absence (gray) or presence (black) of 30 mM cAMP before (upper) and after (lower)
normalization to the observed peak tail current. Red lines are fits of single or double exponential functions (30 and 0 mM cAMP, respectively). Blue
lines represent the slow component of the double exponential fits. Residuals are shown offset below the current records in the upper panels. Data
acquired with the sequential IV protocol (see Methods). C–E. Plot of 1/tBLOCK versus voltage at the indicated Mg2+ concentrations in the presence (C)
and absence (D,E) of cAMP. D and E plot the data for the fast and slow phases of block in the absence of cAMP, respectively. The dashed lines in D
are the fit lines from C. r2 values for fits to 50, 100, 150 and 200 mV data are C: 0.9974, 0.9997, 0.9991 and 0.9997; D: 0.9985, 0.9676, 0.9782 and
0.9854; E: 0.1004, 0.8165, 0.7023 and 0.9966. Data are from 7–26 and 7–27 separate patches for plus and minus cAMP, respectively.
doi:10.1371/journal.pone.0101236.g004
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parameter estimates for the model account well for all aspects of

the observed block behavior.

Second, the fast component of block in the absence of cAMP

has very similar properties to block in the presence of cAMP.

Thus, k1 for the two conditions essentially superimpose (Fig. 5A –

open versus filled circles). This observation accords with the

correspondence in the t21 plots in Figure 4C and D. While we

cannot discretely probe the external on rate of the fast component

by evaluating k999 minus k99 (k99 cannot be determined in the

absence of cAMP as it is not possible to unequivocally parse PUN

Figure 5. cAMP abolishes a slow blocking population of channels. A. k1 determined from the slopes of the regression lines in Figure 4C–E
plotted against the depolarizing step potential in the presence or absence of cAMP. Dashed lines represent fits of equation 1 (see text for details).
B,C. Compound rate constants determined in the presence (B) and absence (C) of cAMP. Black symbols: k999 (equal to k2[Mg2+]out+k21+k22 at 1 mM
[Mg2+]out) as obtained from the y-intercepts in Figure 4C–E. Teal and blue symbols: k99 (equal to k21+k22 obtained according to equation 6) at 2 mM
and 3 mM [Mg2+]in, respectively. The red symbol at 2135 mV is set to 105 s21 in keeping with the observation that recovery of current is faster than
the time constant of the clamp at that voltage [64]. The long and short dashed lines (B) represent the optimized behavior of k21 and k22, respectively
obtained from fits to the black and red circles. This fit reported k0

{1~4346 s21, d-1 = 0.306, k0
{2~21 s21 and d22 = 0.303. D. Black and grey symbols

show the fractional unblocked current. The ratios at 0 mV are omitted as this potential is close to the reversal potential and, therefore, poorly defined.
Teal and blue lines: the probability channels are unblocked (equation 4) using the scheme II parameters determined in A–C. The black line is a fit of
equation 4 wherein both k2 and k22 are zero; it represents the predicted exponential behavior if Mg2+ block were to accord to Scheme I. E,F. Plots of
the fractional unblocked current and the relative amplitude of the fast component of block (zero time extrapolation of the fast component with
respect to the sum of zero time amplitudes of the fast and slow components, Af and As respectively – right hand aspect of F). Open red symbols (F)
represent the estimates obtained in the presence of 2 mM Mg2+ and absence of cAMP when a block window of 10 ms was employed in place of the
normal 2 ms window. The dashed line (F) is the mean of the fractional fast amplitude determined in the presence of 0.3, 1, 2 and 3 mM Mg2+ at
200 mV.
doi:10.1371/journal.pone.0101236.g005
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between the fast and slow components) the close correspondence

in terms of t21 and k1 suggests fast block in the absence of cAMP

is essentially identical to block in the presence of nucleotide.

Third, the clearest effect of removing cAMP is to generate a

slow phase of block that has an approximately 10-fold lower on-

rate but which has an essentially unaltered voltage dependence

(Fig. 5A open squares). Although less well determined, Figure 5C

suggests that k999 for the slow component of block in the absence of

cAMP is also slowed; the validity of this interpretation is reinforced

by the fact that we see no clear difference in equilibrium block

behavior in the presence and absence of cAMP (Fig. 5D). It is

noteworthy though that, as predicted by a single site model such as

Scheme II, the intracellular Mg2+ on rate of this component

(k1[Mg2+]in) is still linearly dependent on [Mg2+]in at least at the

higher potentials (Fig. 4E). We attribute the increased scatter at

lower potentials and [Mg2+]in to inaccuracies arising from the

brevity of the window available to determine the block kinetics.

Fourth, while the permeant block model of Woodhull can

account for all aspects of block in the presence of cAMP, the

presence of the additional, extracellular, route for Mg2+ entry and

egress is, alone, insufficient to account for bi-exponential block in

the absence of cAMP; inspection of equations 2 and 3 show that at

any particular set of Mg2+ concentrations and voltage block will be

inherently single exponential. This demonstrates that an additional

behavior of the channels must impinge on the blocking mechanism

in the absence of nucleotide.

Relative amplitudes of the fast and slow blocking
populations in the absence of cAMP

Figures 5E and F plot the fractional unblocked current and the

relative contribution of the fast component of block as a function

of both step potential and Mg2+ concentration in the presence and

absence of cAMP, respectively. The relative amplitudes in

Figure 5F are plotted for only those voltages and Mg2+

concentrations where fits reliably settled to the fully blocked

current level. At voltages where block appears to be fully

developed (the fractional unblocked current settles to a value of

,5%), the relative amplitude of the slow component in the

absence of cAMP is estimated to be ,20% (right hand plot of

Fig. 5F). However, the latter value may be an underestimate.

Thus, at the higher potentials and Mg2+ concentrations, extrap-

olation of exponential fits to the tail current as block develops (e.g.

Figs. 2C and 4A and B) appears to overestimate the instantaneous

amplitude (1.4260.06, 1.5260.06, 1.3760.05, and 1.4660.17 for

3, 2, 1 and 0.3 mM Mg2+ at 200 mV, respectively – see methods

for details) and this overestimation will tend to predominantly

reflect an error in extrapolation of the fast component of block. To

test whether the blocking reaction in the absence of cAMP is near

equilibrium at 2 ms, we extended the block window to 10 ms.

Figure 5F shows lengthening the block window did not alter the

parameter estimates.

cAMP-acceleration of intracellular Mg2+ block is
mediated via ligand control of block kinetics and not via
cAMP-sensitive changes in channel open probability

Above, we analyzed the data assuming that slow block in the

absence of cAMP represented Mg2+ association with a separate

population of channels. An alternative interpretation of the data

(albeit one that would not be without physiological relevance) is

that cAMP alters block kinetics as a secondary consequence of its

ability to increase the channel open probability and slow channel

closing. Indeed, while we have previously shown that in the

presence of cAMP the recovery of current upon return to negative

potentials is essentially instantaneous [64], inspection of the

Figure 3A shows a sag in the HCN2-R591E current during the

inter-pulse intervals in the sequential IV paradigm. Not only was

such a reopening phase seen with HCN2-R591E in the absence or

presence of cAMP, it was also apparent with HCN2 in the absence

of cAMP (data not shown). Such an observation could be evidence

that closing in such recordings is sufficiently fast that it

contaminates the block records at depolarized potentials.

Here, we use both experimental and modeling approaches to

demonstrate that 1. Block and opening are kinetically decoupled

such that modulation of these two processes by cAMP represents

effectively independent mechanisms of control of channel function

and 2. The origin of the observed sag lies in the cyclic nature of

HCN2 channel gating reactions (including expansions of the basic

10-state gating scheme shown in Figure 1B to incorporate a modal

behavior of the voltage-sensors; [50,51,73]) and not an overlap of

gating and blocking kinetics.

To address the first point we asked if 1. The absence or presence

of intracellular Mg2+ altered the maximal closing rate of HCN2

channels (a rate that has been shown to be independent of voltage

at very depolarized potentials and is, thus, expected to be

insensitive to the effect of an altered Mg2+ concentration acting

via a change in the surface potential); 2. cAMP alters closing

kinetics within the window when block develops; 3. A decrease in

open probability through manipulation of the activation step

introduces a slow component of block in the presence of cAMP

and 4. Block, deactivation and closing could be decoupled within a

kinetically realistic model of HCN2.

Figure 6A shows normalized mean tail currents recorded at +
100 mV in the absence and presence of 2 mM Mg2+. This

comparison shows the potent effect the alkaline earth metal has on

the current carrying capacity of HCN2 channels at depolarized

potentials but does not permit the effect of the divalent cation on

the voltage independent deactivation kinetics to be readily

considered. To explore this, we performed further tests. First, we

scaled the mean normalized tail current obtained from recordings

in the absence of Mg2+ and superimposed this scaled trace on the

slow phase of the tail current recorded in the presence of Mg2+

(Fig. 6B). Second, we compared the deactivation time course in the

presence of Mg2+ (observed by determination of the instantaneous

tail envelope at 2155 mV; representative recordings obtained

with our deactivation envelope paradigm are shown below) with

that in the absence of Mg2+ (observed by following either the

instantaneous tail envelope at 2155 mV or the continuous tail

current at +100 mV; Fig. 6C). These data show that while the

presence of Mg2+ serves to blunt the amplitude of the tail it does

not overtly alter the rate of channel closure. Note also that the

factor by which the Mg2+-free tail current is scaled to superimpose

on the residual deactivating current observed in the presence of

Mg2+, 0.058, is very similar to the estimate of the residual current

determined in analysis of the microscopic kinetics of block above

(Fig. 5). These findings indicate that the closing phase in the

presence of Mg2+ discretely represents closure of channels that are

at steady state with respect to Mg2+ occupancy and that

interaction of Mg2+ with the pore does not alter the energy of

closure of the gate. Such insensitivity of deactivation gating to

Mg2+ occupancy allows us to use the kinetics of deactivation in the

absence of Mg2+ to ask whether closing in the absence of cAMP is

likely to affect the observation of block.

Figure 6D overlays normalized mean tail currents recorded at +
100 mV in the absence of internal divalent cations and the

absence or presence of a saturating concentration of cAMP. These

data show that during the initial 2 ms window there is no marked

change in the HCN2 channel open probability in either the
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absence or presence of cAMP. This conclusion is consistent with

the results of our modeling studies (see below).

We next asked whether lowering the open probability alone

would mimic the effect of removing cAMP. Figure 7A shows the

block phase of HCN2 tail currents obtained in the presence of

cAMP following channel activation at 2155 mV and at potentials

that elicit submaximal activation (see inset for the corresponding

inward currents). Figure 7B shows the block phase of the tail

currents each normalized to their instantaneous tail current

amplitude. Inspection suggests that block following activation at

submaximal voltages was qualitatively indistinguishable from that

observed upon activation at 2155 mV. To examine this

quantitatively, we fit these records (and similar data from four

other patches) with a single exponential function and plotted

the recovered time constants as a function of the amplitude of the

instantaneous tail current relative to the amplitude of the

instantaneous tail current obtained with the initial 2155 mV,

2 s sweeps - a surrogate measure of the open probability. Figure 7C

shows that the time constant of block is invariant when the open

probability is changed. These results confirm that activation of the

gating ring controls block kinetics directly and not via a cAMP-

sensitivity of the open probability.

The implication of the above findings is that the kinetics of

activation and opening are so different to those of block that the

two processes are effectively decoupled. To consider this explicitly,

we developed a 20-state kinetic model (Fig. 1B) wherein kON and

kOFF (see Methods) were set to the values describing block in the

presence of cAMP and the gating parameters varied between those

that describe gating in the presence of cAMP to those that describe

gating in the absence of cAMP (see Table 1 for values). The

resulting simulations (Fig. 8) show two important features. First, as

observed experimentally, channels did not close during the initial

2 ms at +100 mV (solid black lines in the upper families of traces

in Figures 8C and D) irrespective of whether the effect of cAMP on

gating was restricted to the opening isomerization (Fig. 8C) or was

allowed to partition between that reaction and the activation

transitions (Fig. 8D). Second, the normalized block time course

(lower families of traces in Figures 8C and D) was indeed

insensitive to the cAMP-mediated changes in the much slower

gating reactions (plus and minus cAMP traces in the lower families

of Figure 8C and D superimpose).

Figure 6. [Mg2+]in does not modify closing kinetics and closing does not intrude into the block time domain. A,B. Leak sweep
subtracted tail currents in the absence or presence of 2 mM Mg2+ and absence of cAMP normalized to the peak amplitude of each recording then
averaged (A: 10 and 16 separate recordings) or same records after scaling of the 0 Mg2+ record (B). The SEM of these averaged records is included as
a pixilated halo around the records in A and D. C. Deactivation envelopes determined in the absence (open circles) and presence (filled circles) of
2 mM Mg2+ (3–8 determinations per point). The continuous line represents a mean +100 mV tail current (14 separate recordings each normalized to
the peak amplitude before averaging). At no time were the envelope amplitudes in the absence and presence of Mg2+ significantly different
(Student’s t-tests). D. The initial 2 ms of +100 mV tail currents collected in the absence of internal Mg2+ and the absence or presence of cAMP
(normalized to the peak amplitude during the 2 ms window then averaged).
doi:10.1371/journal.pone.0101236.g006
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Finally, we examined the origin of the inter-pulse sag present in

sequential IV recordings in the absence of cAMP activation of the

gating ring (Fig. 3A). To explore this question, we used the

depolarized conditioning envelope paradigm (see Methods).

Figure 9A and B show representative recordings obtained from

a cell expressing HCN2 (Fig. 9A) or from an un-injected cell from

the same donor frog (Fig. 9B) when the +100 mV conditioning

step was 10 ms long and both Mg2+ and cAMP were absent from

the bath solution. Although this record suggests that ,40% of the

channels have closed during the 10 ms at +100 mV, consideration

of the channel’s behavior immediately before, during and after the

brief step to +100 mV indicates this is not the case.

Figure 9C and E show the active, leak and net (upper records

only) currents observed during the initial phase of the step to +
100 mV and during the return to 2155 mV (‘‘On’’ and ‘‘Off’’

transients, respectively) for recordings from the un-injected cell

(lower records) and the HCN2 expressing cell (upper records).

Figure 9D shows the leak-subtracted net currents observed before,

during and after the conditioning step to +100 mV in the absence

(black) and following inclusion of the HCN selective inhibitor

ZD7288 (gray). Note first that this approach faithfully isolates the

HCN2 current. Thus, subtraction of the leak from the active traces

in the recording from the un-injected cell revealed no ZD7288-

sensitive current component (in the lower records in Figure 9D the

black and gray traces are flat and superimpose around zero

current) whereas the current obtained from the HCN2 patch

showed a robust asymmetric current (black trace in the upper

family of traces in Figure 9D) that was completely eliminated by

ZD7288 (gray trace). Importantly, we see that the 10 ms +100 mV

step closes only ,18–20%, not 40%, of the channels as measured

at either the tail potential (where IMAX and I are the amplitudes at

the beginning and end of the +100 mV step) or at 2155 mV

(where IMAX is the current before the step to +100 mV and I is the

current immediately upon return to 2155 mV). Rather, much of

the closing occurred over the subsequent 10–20 ms with I/IMAX at

2155 mV declining to 0.59. Figure 9F and G plot the 2155 mV

instantaneous and delayed I/IMAX ratios with reference to channel

closing at +100 mV (monitored by the continuous tail currents,

Itail) while Figure 9H plots the apparent time constant of the

anomalous 2155 mV closing phase (in the absence and presence

of cAMP as indicated). Note that similar results were observed

when Mg2+ was present in the internal solution (data not shown).

These experiments reveal that the sag observed in Figure 3A

(when the depolarizing window is much shorter) is due to channels

that close after the block has developed and not from closing that is

proceeding synchronously with block. Parenthetically, while such

hysteresis does not uniquely define the pattern of connectivity, it is

most consistent with models wherein open and closed states

communicate irrespective of the activation status of the gating

apparatus (see the Introduction and Discussion for further

Figure 7. Slow block is controlled by cAMP occupancy of the gating ring and not open probability. A. +100 mV leak sweep subtracted
pre-deactivation HCN2 tail currents observed immediately following activation (see inset for opening trajectories) at 2155 mV for 2 s (black traces) or
14 s (blue) or for 14 s at either 2100 mV (red) or 295 mV (pink) in the presence of 2 mM intracellular Mg2+ and 30 mM cAMP. Superimposed smooth
lines are fits of each trace with a single exponential function. The V1/2 and slope factor determined from a fit of the Boltzmann function to an
activation curve constructed from 10 s sweeps were 2105.7 and 4.5 mV, respectively (data not shown). B. Sweeps and fits from the block records
shown in A each normalized to the instantaneous amplitude determined from the cognate exponential fit. C. Single exponential time constants of
block from five patches such as that shown in A–B (gray shaded symbols). These are compared to the mean (6 SEM) time constants of block by
2 mM Mg2+ following activation at 2155 mV for 2 s in the presence (filled circle, n = 22) or absence (open symbols, n = 27) of cAMP (open circle and
square: fast and slow components of a two exponential fit). Submaximal activation voltages varied between 295 and 2115 mV (in 5 mV increments)
while times varied between 5, 8 or 14 s at the submaximal voltages and between 2 or 14 s at 2155 mV. For clarity, and because varying the
durations and activation voltages had no effect on block kinetics (other than altering the open probability at the onset of the block epoch - see, for
example, A and B), we do not differentiate between short and long activation pulses or the various activation potentials in this plot.
doi:10.1371/journal.pone.0101236.g007
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consideration) and its amplitude and kinetic properties will aid in

constraining a more general gating model of HCN channels.

Residual current at depolarized potentials is carried
primarily by K+ and not Mg2+

It has been suggested that the HCN pore is divalent ion

permeable [74,75,76] and that this may represent a chemical

signaling role for these channels in addition to their conventional

role as electrical transducers. To add to this debate, we next sought

to use our data to quantify the maximum contribution that Mg2+

can make as a charge carrier.

Given a single channel conductance of 2.4 pS and an essentially

linear single channel IV (in the absence of [Mg2+]in block - see File

S3); a reversal potential of ,0 mV (which is as expected and

confirmed experimentally); and a residual current of ,5% of the

unblocked value (see Figs. 4, 5 and 6 and associated text), we

calculate that the time averaged residual single channel current is

24 fA at +200 mV. At 200 mV, the compound rate constant k999

is ,2500 s21 (at 1 mM [Mg2+]out; Fig. 5B). If we assume that at

Figure 8. cAMP control of [Mg2+]in block and channel opening are kinetically decoupled processes. A,B. Simulated HCN2 currents at 2
155 mV (Left) and +100 mV (Right) in the absence (Gray) and presence (Black) of cAMP and the absence of intracellular Mg2+. The current records
were simulated using the rate constants shown in Table 1 wherein cAMP did (B) or did not (A) alter activation transitions. C,D. Probability of
occupancy of sum of open and open blocked states with the indicated number of activated voltage sensors (upper panels) and open unblocked
probability (lower panels) when cAMP alters only the opening isomerization (C) or both activation and opening reactions (D). In all panels, the
probabilities were normalized to the initial maximal open probability under the specified conditions to simplify comparison of simulations generated
in the presence and absence of cAMP. Note that the plus and minus cAMP traces in the lower panels superimpose.
doi:10.1371/journal.pone.0101236.g008
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this potential this is solely due to k22 (an outward Mg2+ flux), this

would represent a charge transfer of 5000 elementary charges per

second or 0.8 fA. That is, the maximal Mg2+ transfer rate can

account for no more than 3.3% of the observed residual current.

This calculation suggests the bulk of the residual current is carried

by K+ transiting channels that are temporarily unblocked and that

divalent ion transfer through the HCN pore is paltry (at least with

respect to Mg2+) at best.

Figure 9. Inter-pulse sag arises from cAMP-dependent anomalous closure at hyperpolarized potentials, not closure at +100 mV.
A,B. Averaged active records obtained in response to the depolarized conditioning envelope paradigm (wherein the +100 mV sojourn was 10 ms)
from a cell expressing HCN2 (A) or an un-injected cell from the same donor frog (B) before (Black) and after (Gray) inclusion of 300 mM ZD7288 in the
bath. In each case, the inset shows the tail currents at +100 mV obtained after the second 2155 mV epoch. C–E. Records obtained before (C), during
(D) and after (E) the conditioning 10 ms step to +100 mV from the HCN2 (Upper traces) and un-injected (Lower traces) recordings shown in A and B,
respectively. Yellow and blue traces are the averaged active and leak records. Where included, the black and gray traces are the difference currents
obtained before (Black) and after (Gray) inclusion of 300 mM ZD7288. F,G. Leak sweep subtracted continuous +100 mV tail currents (normalized to
the peak amplitude of each recording then averaged; 14 and 13 separate recordings in the absence and presence of cAMP, respectively) and the
normalized amplitudes of the instantaneous (Inst) and delayed (delay) envelope currents upon return to 2155 mV following steps of varying
duration to +100 mV (3–11 determinations per point) are each plotted with respect to time at +100 mV. The instantaneous and delayed amplitudes
were determined from fits of a single exponential (e.g., red line in A and D) and plotted as a function of the current amplitude at 2155 mV
immediately prior to the +100 mV conditioning step. H. Time constant of the 2155 mV closing phase as a function of preceding +100 mV
conditioning interval.
doi:10.1371/journal.pone.0101236.g009
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Discussion

We have investigated the coupling between the cyclic nucleotide

gating ring and the permeation path of HCN2 channels. We have

examined this by analyzing the kinetics of Mg2+ block. In the

absence of cAMP, Mg2+ block has both fast and slow components;

the presence of cAMP eliminates slow block independently of the

nucleotide’s effect on gating. Importantly, the slow block is

associated with a slowing of both the Mg2+ on-rate and the metal’s

off rate (albeit the latter is better observed by the lack of effect of

gating ring activation on Mg2+ equilibrium binding than in the

relatively poorly defined off rate per se) with no marked difference

in the voltage dependencies. The simplest interpretation of these

observations is that the energy barriers Mg2+ experiences in transit

to and from its binding site at the selectivity filter is controlled by

the activation status of the gating ring; the barriers are higher

when the ring is deactivated and lower when the ring is activated.

Kinetic control of blocker binding with no discernible effect on the

Mg2+ binding site per se accords with the observation that Mg2+

occupancy does not alter cAMP association energetics [40].

cAMP-sensitive bi-exponential Mg2+ block – Is
interpretation of this as Mg2+ binding to two channel
populations reasonable?

The observation of an anomalous relief of voltage-dependent

block wherein neither equilibrium block nor the apparent off rate

decline exponentially (as observed herein) is commonly viewed as

evidence that the blocker has a finite, albeit modest, ability to transit

the channel (Scheme II – from [66]). We have shown that this model

offers an adequate description of HCN block by Mg2+ in the

presence or absence of cAMP provided the bi-exponential behavior

in the absence of agonist is interpreted through the lens of there

being two populations of channels. This constraint is imposed

because such a model predicts block will be inherently single

exponential at any particular voltage and divalent ion concentration

if it is kinetically decoupled from any linked process such as gating.

As noted earlier, there is an alternative explanation for

anomalous relief of voltage dependent block, specifically that

altered repulsion within a multi-ion pore can lead to the blocker

being repelled back to the side from which it entered [67].

Accordingly, it is reasonable to ask whether analyzing our data

within the formalism of that model would have altered the

principal conclusion of our study that cAMP binding alters the

open pore in a way that enhances the access of Mg2+ to its binding

site. At the heart of the Heginbotham and Kutluay model is the

idea that the Mg2+ site changes as a function of Mg2+ occupancy;

to wit, the presence of the blocker changes ion loading in adjacent

sites and alters the repulsive forces acting on the bound Mg2+ ion.

That is, it postulates that channels are in one of two configurations.

As such, it clearly allows for the emergence of bi-exponential block

(the two sites are, by definition, different). However, the only way

this model can explain the observation that one behavior

predominates in the presence of cAMP but both contribute in

the absence of ligand is to once again posit that gating ring

activation leads to a propagated change that is sensed by ion

binding sites in the pore. It would seem that such a consideration

can be extended to any pore block model.

The cyclic nucleotide dependence of intracellular Mg2+

block is evidence for loose coupling between the HCN
channel gating ring and the pore

A number of studies have revealed that HCN channel gating is

best reconciled with cyclic allosteric models (such as shown in

Fig. 1B) wherein voltage-sensors can move irrespective of whether

the pore is open or closed [30,34,35,46,47,48,49,50,51]. However,

other findings suggest that such a model is inadequate. Thus, the

extent of hysteresis under non-equilibrium conditions (such as in

Fig. 9 and [51,77]) and the sensitivity of tail current shape to

activation strength [47,51,73,77,78] appear to be greater than

anticipated within such a scheme while a reverse Cole-Moore

effect is not explicable at all [57,79]. Such findings have led to

expansions of the model wherein the energetics of S4 motion are

altered upon activation and/or opening [50,51,73] and coupling

of the voltage sensors and activation gate can undergo a form of

desensitization [57,79]. In addition, it has been suggested there is

at least one open state that lies off the activation path entirely [71].

However, none of these schemes can account for the cAMP-

dependence of Mg2+ block observed here. Thus, in the basic

concerted model and the voltage sensor ‘‘desensitized’’ model, all

the open states are equivalent (although one could imagine that

Mg2+ is sensing the different arrangements of the voltage sensors

that lie at the heart of these models, this seems unlikely; see below).

Similarly, while opening in different S4 modes and opening to the

activation-decoupled arrangement can both incorporate distinct

open states, S4 mode shifting is insensitive to cAMP while the

agonist is reported to increase the probability of otherwise rare

sojourns into the activation-decoupled open state

[50,51,71,73,80].

An attractive alternative is offered from the work of Craven and

Zagotta [30,60]. To account for the influence of inter- and intra-

subunit salt bridges within the cyclic nucleotide gating ring of

HCN and CNG channels, these authors proposed that gating of

HCN channels was better represented by a modular model

(Fig. 1C) derived from that formulated by Horrigan and Aldrich to

describe gating of the large conductance calcium-activated K+

channels [55]. This model is attractive because it explicitly

partially decouples the activation status of components of the

gating ring from the opening of the pore. Moreover, if we assume

the resting configuration of the C-linker is synonymous with the

slow blocking state (an idea considered further below), physiolog-

ically reasonable values of the equilibrium constants and allosteric

factors can quantitatively describe both channel gating (V1/2 and

PMAX of opening in the absence and presence of cAMP as well as

the apparent affinity for modification of the V1/2 by cAMP; [72])

and the presence of a slow blocking population in the absence, but

not presence, of nucleotide (Fig. 10A).

What could be the molecular origin of the slow blocking
configuration?

There are two simple ideas we can consider: 1) There is some

form of CNG channel-like propagated rearrangement wherein

gating ring activation alters a barrier at, or above, the S6 bundle

crossing. Such an effect of gating ring activation, wherein ion

binding sites in the filter and vestibule are altered, is attractive

because it is consistent with the effects of the gating ring observed

in CNG channels and because there is an energetic coupling

between the HCN channel selectivity filter and channel activation

and/or opening ([81,82,83] and our unpublished observations). 2)

The gating ring forms part of the permeation path itself and acts as

the principal barrier for Mg2+ movement between the cytoplasm

and its binding site. Thus, we can imagine that either the C-linker

or the CNBD, when deactivated, act as part of the pore and

restrict Mg2+ access. Clearly, the idea that this cytoplasmic

extension of S6 can directly control Mg2+ block accords with the

mechanism of polyvalent ion block observed in Kir channels

[84,85,86]. One possible path through the HCN gating ring is

represented by a negative charge-lined canal that lies directly
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below, and in line with, the S6 lined transmembrane pore. While

mutagenesis experiments indicate that this path does not provide a

significant barrier to permeant ions [87], such findings do not

preclude the possibility that residues lining this canal could

influence the progress of Mg2+.

Could different arrangements of the voltage sensors account for

the cAMP sensitivity of block kinetics by influencing the

electrostatic landscape the ions traverse? This seems unlikely

because the amplitude of the slow block component is similar

across a 100 mV range (compare the limiting values of Af/Af + As

between +100 mV and +200 mV in Figure 5F).

Finally, it is important to note that while the modular model

shown in Figure 1C explicitly incorporates an activation step of the

C-linker and we equate the effect of gating ring on the Mg2+

transition state as being due to the status of the C-linker, there is

an implicit activation step for the CNBD as well but this is

convolved with the ligand binding reaction for simplicity.

Does loose coupling between the gating ring and pore
help shape the response of HCN channels to
pharmacological and natural product inhibitors?

A number of organic pore-block inhibitors of HCN channels

have been described, including ivabradine (therapeutically mar-

keted as Procoralan), nicotine, and ZD7288 (see [88] for review).

While the nature of nicotine’s high-affinity inhibition is presently

based only on molecular modeling with respect to ZD7288 [89],

observation suggests inhibition by ivabradine and ZD7288

depends on the architecture of the conduction path and/or the

cAMP gating ring [2,40,90]. Thus, ivabradine-mediated inhibition

exhibits a complex relationship to current flow [90], block by

ZD7288 can have both reversible and irreversible components [2],

and not only is the time course of block cAMP-sensitive [90] but

ZD7288 binding perturbs association of the channel with cAMP

[40].

Although superficially supportive of the hypothesis that loose

coupling between the HCN pore and the gating ring may have a

pharmacological correlate, the extant data do not allow this

conclusion to be drawn. Thus, ivabradine binding has not been

shown to have a cAMP-sensitivity while the coupling between

nucleotide and ZD7288 can be readily explained within a strictly-

coupled model. Unlike Mg2+, ZD7288 binds more tightly to closed

HCN channels than open ones (albeit it can only access its site

when the intracellular activation gate is open [2]). Given that

cAMP biases the HCN opening reaction to the right while

ZD7288 biases the same reaction to the left, thermodynamic

interaction is to be expected though the interaction may yet be

more complex [2,40]. While these observations do not exclude a

more nuanced basis for coupling between cAMP and the organic

blockers, one that is predicated on the loose coupling described

here, the slower kinetics of the larger inhibitors will make

examination of this hypothesis difficult as an overlap with the

kinetics of gating will make isolation of the blocking reaction

problematic.

Is there a chemical signaling role for divalent ion passage
through HCN channels?

It has been suggested that alkaline earth metals are able to pass

through the atypical HCN channel pore [74,75,76]. While our

findings can be considered in terms of such a process, it is

important to note that the magnitude of Mg2+ transport required

to account for the anomalous off rate we observe would not

represent a significant chemical flux. Does this suggest that the

HCN pore has an unexpected selective permeability for Ca2+ over

Mg2+? We think not. Rather, we suspect that the increase in

intracellular Ca2+ concentration reported by Yu and colleagues

[74,75] arises from reversal of Na+-Ca2+ exchange in response to

an HCN-mediated increase in internal Na+ while the Ca2+

permeable single channels analyzed by the Hoppe group

[76,91,92] exhibit such atypical single channel and ensemble

properties that assignment of this to HCN channels seems likely to

be incorrect. Moreover, in light of the findings of Heginbotham

and Kutluay [67], it is not even necessary to conclude that the

anomalous relief we observe is necessarily a demonstration that

Mg2+ passes through the channel at all.

Figure 10. A modular model describes the cAMP enhancement of HCN2 activation and acceleration of [Mg2+]in block. A. Observed
(obs) and model generated (model) values of the V1/2 and PMAX of channel activation and PCL (the probability that the linker is in the resting
configuration which we assume is reported as the slow component of block) each in the absence and presence of cAMP. The observed apparent
affinities (K1/2) were either determined by fits of the Hill equation to model-generated concentration response curves or, for the observed K1/2 of
cAMP modulation of gating, taken from published values [72]. B. Predicted behavior of tFAST (thick line) and tSLOW (thin line) as a function of the
membrane potential. Curves were generated using equation 3 with k2 set to zero (see text for details).
doi:10.1371/journal.pone.0101236.g010
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Physiological roles of cAMP dependent kinetics of Mg2+

block – implications with respect to the HCN subunit
identity?

Figure 10B shows how the time constants of the fast and slow

components of block will vary as a function of voltage at an

‘‘effectively physiological’’ Mg2+ concentration. For the simulation

of the rapidly blocking component we used the values of k0
1, d1,

k0
{1 d-1, k0

{2, d22, determined in the presence of cAMP (see

Table 1). To generate the behavior of the slow blocking

component observed in the absence of cAMP, we used the values

of k0
1 and d1 determined for the slow component combined with

the values k0
{1, d-1, k0

{2 and d22, as used above. This

approximation was both necessary (we do not have separate

estimates of the off rates for the fast and slow components of block

in the absence of cAMP) and reasonable (the off rates are less

obviously altered by cAMP – see Figure 5B). For both solutions,

we set the free Mg2+ concentration equal to 1.859 mM as it is only

at this concentration that the equilibrium block in IOPC is as

efficacious as is observed in intact cells [64]. It is apparent that

cAMP unbound channels will block more slowly around or above

action potential threshold than will cAMP bound channels. Such

an observation suggests second messenger sensitivity of HCN

channel rectification could contribute to control of a spike’s shape

and, in so doing, offer a novel way by which cellular excitability

can be fine-tuned.

The gating properties of the four different HCN isoforms and

heteromeric assemblies thereof show marked differences with

respect to cAMP regulation of gating. Thus, HCN2 and 4 form

channels whose slow (hundreds of milliseconds) and very slow

(seconds) activation is strongly enhanced by cAMP

[93,94,95,96,97,98], HCN1 forms channels whose activation is

relatively fast (tens to hundreds of milliseconds) but only modestly

promoted by cAMP [97,98,99] while HCN3 channels have basal

kinetics similar to HCN2 [98,100,101,102] but they have the

unusual property of being either insensitive to [101], or inhibited

by, cAMP [102]. It will be interesting to determine whether Mg2+

block of each subunit, especially HCN3, tracks the cAMP-

sensitivity of gating of the various isoforms or displays a distinct

behavior. Given that the auxiliary protein, TRIP8b associates with

the C-terminus of HCN channels and alters cAMP responsiveness

[103,104,105,106], the nature of cAMP-regulated Mg2+ block in

the presence of this protein is of particular interest.

Conclusion
The results presented here are consistent with the hypotheses

that the gating ring of HCN channels is partially decoupled from

channel opening as envisioned within a modular model and that

the gating ring exerts a CNG channel-like propagated effect on the

ion interaction landscape within the HCN channel pore. That this

second messenger-mediated control of rectification may represent

a novel expansion of the repertoire of cellular regulation exerted

by the otherwise slow HCN channels is an intriguing possibility.

Supporting Information

File S1 Independence of the block time constant and
current amplitude. Single exponential block time constants,

each relative to the mean value at the cognate Mg concentration

and voltage, are plotted as a function of the amplitude of the

inward current observed at 2155 mV immediately prior to the

block step. Data are from 63 independent patches recorded in the

presence of cAMP. Lines represent linear regressions to the data

obtained at 50, 100, 150 and 200 mV according to the gray scale

indicated in the legend. The R2 values for each regression were

0.0038, 0.0402, 0.0228 and 0.0255.

(PDF)

File S2 Derivations of equations describing block
models.

(PDF)

File S3 HCN2 single channel conductance-voltage prop-
erties as determined by non-stationary fluctuation
analysis. A. Representative plot of 300 consecutive outward

HCN2 tail currents obtained in the absence of internal Mg and the

presence of 30 mM cAMP (red traces). The activating voltage step

was 1 s at 2155 mV. Tails were recorded at +40 mV. The inter-

pulse interval was 8 s. Records were filtered at 10 kHz and

sampled at 50 kHz. Residual leak current not eliminated by

analogue circuitry was subtracted from each record before display

here or analysis for NSFA. The black trace is the mean of these

records. B. The variance (obtained from 0.5 times the mean of the

squared difference between sequential pairs of sweeps [68,69]) of

the final ,10% of the deactivating records is plotted as a function

of current amplitude. The superimposed straight line fit yields a

single channel current of 95 fA corresponding to a single channel

conductance of 2.4 pS. The background variance (1.48610224 A2)

has been subtracted from the raw data and fit line for clarity. From

a number of such recordings, the mean single channel conduc-

tance of HCN2 was determined to be 2.1 pS60.4, n = 5 and

2.7 pS60.6, n = 4 in the presence and absence of cAMP

respectfully. As these values are not statistically different, we use

an average value of 2.4 pS in all calculations. In doing so, we

assume that the outward single channel IV relationship is linear.

This seems reasonable given that measures of the single channel

conductance at hyperpolarized potentials are similar to the above

values. Thus, we find that at 2155 mV the single channel

conductance is 2.1 pS60.2, n = 9 and 2.3 pS60.3, n = 5 in the

presence and absence of cAMP respectfully, values that are in

close agreement with reported values of 1.5 to 2.9 pS for HCN2 at

hyperpolarized potentials [87,107].

(PDF)
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