25 research outputs found

    Global 3D Simulations of Disc Accretion onto the classical T Tauri Star V2129 Oph

    Full text link
    The magnetic field of the classical T Tauri star V2129 Oph can be modeled approximately by superposing slightly tilted dipole and octupole moments, with polar magnetic field strengths of 0.35kG and 1.2kG respectively (Donati et al. 2007). Here we construct a numerical model of V2129 Oph incorporating this result and simulate accretion onto the star. Simulations show that the disk is truncated by the dipole component and matter flows towards the star in two funnel streams. Closer to the star, the flow is redirected by the octupolar component, with some of the matter flowing towards the high-latitude poles, and the rest into the octupolar belts. The shape and position of the spots differ from those in a pure dipole case, where crescent-shaped spots are observed at the intermediate latitudes. Simulations show that if the disk is truncated at the distance of 6.2 R_* which is comparable with the co-rotation radius, 6.8 R_*, then the high-latitude polar spots dominate, but the accretion rate obtained from the simulations is about an order of magnitude lower than the observed one. The accretion rate matches the observed one if the disk is disrupted much closer to the star, at 3.4 R_*. However, the octupolar belt spots strongly dominate. Better match has been obtained in experiments with a dipole field twice as strong. The torque on the star from the disk-magnetosphere interaction is small, and the time-scale of spin evolution, 2 x10^7-10^9 years is longer than the 2x10^6 years age of V2129 Oph. The external magnetic flux of the star is strongly influenced by the disk: the field lines connecting the disk and the star inflate and form magnetic towers above and below the disk. The potential (vacuum) approximation is still valid inside the Alfv\'en (magnetospheric) surface where the magnetic stress dominates over the matter stress.Comment: 15 pages, 15 figures, after major revision, added 3 figures, 2 tables. Accepted to MNRA

    Global 3D Simulations of Disc Accretion onto the classical T Tauri Star BP Tauri

    Full text link
    The magnetic field of the classical T Tauri star BP Tau can be approximated as a superposition of dipole and octupole moments with respective strengths of the polar magnetic fields of 1.2 kG and 1.6 kG (Donati et al. 2008). We adopt the measured properties of BP Tau and model the disc accretion onto the star. We observed in simulations that the disc is disrupted by the dipole component and matter flows towards the star in two funnel streams which form two accretion spots below the dipole magnetic poles. The octupolar component becomes dynamically important very close to the star and it redirects the matter flow to higher latitudes. The spots are meridionally elongated and are located at higher latitudes, compared with the pure dipole case, where crescent-shaped, latitudinally elongated spots form at lower latitudes. The position and shape of the spots are in good agreement with observations. The disk-magnetosphere interaction leads to the inflation of the field lines and to the formation of magnetic towers above and below the disk. The magnetic field of BP Tau is close to the potential only near the star, inside the magnetospheric surface, where magnetic stress dominates over the matter stress. A series of simulation runs were performed for different accretion rates. They show that an accretion rate is lower than obtained in many observations, unless the disc is truncated close to the star. The torque acting on the star is about an order of magnitude lower than that which is required for the rotational equilibrium. We suggest that a star could lose most of its angular momentum at earlier stages of its evolution.Comment: 11 pages, 13 figures, submitted to MNRA

    Modeling interaction of relativistic and nonrelativistic winds in binary system PSR 1259-63/SS2883. I.Hydrodynamical limit

    Full text link
    In this paper, we present a detailed hydrodynamical study of the properties of the flow produced by the collision of a pulsar wind with the surrounding in a binary system. This work is the first attempt to simulate interaction of the ultrarelativistic flow (pulsar wind) with the nonrelativistic stellar wind. Obtained results show that the wind collision could result in the formation of an "unclosed" (at spatial scales comparable to the binary system size) pulsar wind termination shock even when the stellar wind ram pressure exceeds significantly the pulsar wind kinetical pressure. Moreover, the post-shock flow propagates in a rather narrow region, with very high bulk Lorentz factor (γ100\gamma\sim100). This flow acceleration is related to adiabatical losses, which are purely hydrodynamical effects. Interestingly, in this particular case, no magnetic field is required for formation of the ultrarelativistic bulk outflow. The obtained results provide a new interpretation for the orbital variability of radio, X-ray and gamma-ray signals detected from binary pulsar system PSR 1259-63/SS2883.Comment: 11 pages, 13 figures, submitted to MNRA

    Magneto-centrifugally driven winds: comparison of MHD simulations with theory

    Get PDF
    Stationary magnetohydrodynamic (MHD) outflows from a rotating, conducting Keplerian accretion disk threaded by B-field are investigated numerically by time-dependent, axisymmetric (2.5D) simulations using a Godunov-type code. A large class of stationary magneto-centrifugally driven winds are found where matter is accelerated from a thermal speed at the disk to much larger velocity, greater than the fast magnetosonic speed and larger than the escape speed. The flows are approximately spherical outflows with only small collimation within the simulation region. Numerical results are shown to coincide with the theoretical predictions of ideal, axisymmetric MHD to high accuracy. Investigation of the influence of outer boundary conditions, particularly that on the toroidal component of magnetic field shows that the commonly used ``free'' boundary condition leads to artificial magnetic forces which can act to give spurious collimation. New boundary conditions are proposed which do not generate artificial forces. Artificial results may also arise for cases where the Mach cones on the outer boundaries are partially directed into the simulation region.Comment: 19 pages, 18 figures, emulapj.sty is use

    Three-dimensional Simulations of Disk Accretion to an Inclined Dipole: I. Magnetospheric Flow at Different Theta

    Full text link
    We present results of fully three-dimensional MHD simulations of disk accretion to a rotating magnetized star with its dipole moment inclined at an angle Theta to the rotation axis of the disk. We observed that matter accretes from the disk to a star in two or several streams depending on Theta. Streams may precess around the star at small Theta. The inner regions of the disk are warped. The warping is due to the tendency of matter to co-rotate with inclined magnetosphere. The accreting matter brings positive angular momentum to the (slowly rotating) star tending to spin it up. The corresponding torque N_z depends only weakly on Theta. The angular momentum flux to the star is transported predominantly by the magnetic field; the matter component contributes < 1 % of the total flux. Results of simulations are important for understanding the nature of classical T Tauri stars, cataclysmic variables, and X-ray pulsars.Comment: 26 pages, 22 figures, LaTeX, macros: emulapj.sty, avi simulations are available at http://www.astro.cornell.edu/us-rus/inclined.ht

    Possible Quasi-Periodic Oscillations from Unstable Accretion: 3D MHD Simulations

    Full text link
    We investigate the photometric variability of magnetized stars, particularly neutron stars, accreting through a magnetic Rayleigh-Taylor-type instability at the disk-magnetosphere interface, and compare it with the variability during stable accretion, with the goal of looking for possible quasi-periodic oscillations. The lightcurves during stable accretion show periodicity at the star's frequency and sometimes twice that, due to the presence of two funnel streams that produce antipodal hotspots near the magnetic poles. On the other hand, lightcurves during unstable accretion through tongues penetrating the magnetosphere are more chaotic due to the stochastic behaviour of the tongues, and produce noisier power spectra. However, the power spectra do show some signs of quasi-periodic variability. Most importantly, the rotation frequency of the tongues and the resulting hotspots is close to the inner-disk orbital frequency, except in the most strongly unstable cases. There is therefore a high probability of observing QPOs at that frequency in longer simulations. In addition, the lightcurves in the unstable regime show periodicity at the star's rotation frequency in many of the cases investigated here, again except in the most strongly unstable cases which lack funnel flows and the resulting antipodal hotspots. The noisier power spectra result in the fractional rms amplitudes of the Fourier peaks being smaller. We also study in detail the effect of the misalignment angle between the rotation and magnetic axes of the star on the variability, and find that at misalignment angles 25\gtrsim 25^\circ, the star's period always appears in the lightcurves.Comment: 14 pages, 16 figures, accepted by MNRAS. v2 comments: significant revision. v3 comments: after referee report. Rewrote QPO section (4.5). v4 comments: final versio

    Accretion Disks and Dynamos: Toward a Unified Mean Field Theory

    Full text link
    Conversion of gravitational energy into radiation in accretion discs and the origin of large scale magnetic fields in astrophysical rotators have often been distinct topics of research. In semi-analytic work on both problems it has been useful to presume large scale symmetries, necessarily resulting in mean field theories. MHD turbulence makes the underlying systems locally asymmetric and nonlinear. Synergy between theory and simulations should aim for the development of practical mean field models that capture essential physics and can be used for observational modeling. Mean field dynamo (MFD) theory and alpha-viscosity accretion theory exemplify such ongoing pursuits. 21st century MFD theory has more nonlinear predictive power compared to 20th century MFD theory, whereas accretion theory is still in a 20th century state. In fact, insights from MFD theory are applicable to accretion theory and the two are artificially separated pieces of what should be a single theory. I discuss pieces of progress that provide clues toward a unified theory. A key concept is that large scale magnetic fields can be sustained via local or global magnetic helicity fluxes or via relaxation of small scale magnetic fluctuations, without the kinetic helicity driver of 20th century textbooks. These concepts may help explain the formation of large scale fields that supply non-local angular momentum transport via coronae and jets in a unified theory of accretion and dynamos. In diagnosing the role of helicities and helicity fluxes in disk simulations, each disk hemisphere should be studied separately to avoid being misled by cancelation that occurs as a result of reflection asymmetry. The fraction of helical field energy in disks is expected to be small compared to the total field in each hemisphere as a result of shear, but can still be essential for large scale dynamo action.Comment: For the Proceedings of the Third International Conference and Advanced School "Turbulent Mixing and Beyond," TMB-2011 held on 21 - 28 August 2011 at the Abdus Salam International Centre for Theoretical Physics, Trieste, http://users.ictp.it/~tmb/index2011.html Italy, To Appear in Physica Scripta (corrected small items to match version in print

    Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity

    Full text link
    corecore