We present results of fully three-dimensional MHD simulations of disk
accretion to a rotating magnetized star with its dipole moment inclined at an
angle Theta to the rotation axis of the disk. We observed that matter accretes
from the disk to a star in two or several streams depending on Theta. Streams
may precess around the star at small Theta. The inner regions of the disk are
warped. The warping is due to the tendency of matter to co-rotate with inclined
magnetosphere. The accreting matter brings positive angular momentum to the
(slowly rotating) star tending to spin it up. The corresponding torque N_z
depends only weakly on Theta. The angular momentum flux to the star is
transported predominantly by the magnetic field; the matter component
contributes < 1 % of the total flux. Results of simulations are important for
understanding the nature of classical T Tauri stars, cataclysmic variables, and
X-ray pulsars.Comment: 26 pages, 22 figures, LaTeX, macros: emulapj.sty, avi simulations are
available at http://www.astro.cornell.edu/us-rus/inclined.ht