203 research outputs found

    The canonical effect in statistical models for relativistic heavy ion collisions

    Get PDF
    Enforcing exact conservation laws instead of average ones in statistical thermal models for relativistic heavy ion reactions gives raise to so called canonical effect, which can be used to explain some enhancement effects when going from elementary (e.g. pp) or small (pA) systems towards large AA systems. We review the recently developed method for computation of canonical statistical thermodynamics, and give an insight when this is needed in analysis of experimental data.Comment: 4 pages, 3 figures. Talk given in Strangeness in Quark Matter, Frankfurt am Main 2001. Submitted to J. Phys. G: Nucl. Part. Phy

    Effects of periodic matter in kaon regeneration

    Get PDF
    We study the effects of periodic matter in kaon regeneration, motivated by the possibility of parametric resonance in neutrino oscillations. The large imaginary parts of the forward kaon-nucleon scattering amplitudes and the decay width difference ΔΓ\Delta\Gamma prevent a sizable enhancement of the KLKSK_L\to K_S transition probability. However, some interesting effects can be produced using regenerators made of alternating layers of two different materials. Despite the fact that the regenerator has a fixed length one can obtain different values for the probability distribution of the KLK_L decay into a final state. Using a two-arm regenerator set up it is possible to measure the imaginary parts of the K0(Kˉ0)K^0(\bar{K}^0)-nucleon scattering amplitudes in the correlated decays of the ϕ\phi-resonance. Combining the data of the single-arm regenerator experiments with direct and reverse orders of the matter layers in the regenerator one can independently measure the CP violating parameter δ\delta

    Oulun luonnon monimuotoisuus, VILMO - Viheralueverkosto ja luonnon monimuotoisuus

    Get PDF

    Particle Number Fluctuations in Statistical Model with Exact Charge Conservation Laws

    Full text link
    Even though the first momenta i.e. the ensemble average quantities in canonical ensemble (CE) give the grand canonical (GC) results in large multiplicity limit, the fluctuations involving second moments do not respect this asymptotic behaviour. Instead, the asymptotics are strikingly different, giving a new handle in study of statistical particle number fluctuations in relativistic nuclear reactions. Here we study the analytical large volume asymptotics to general case of multispecies hadron gas carrying fixed baryon number, strangeness and electric charge. By means of Monte Carlo simulations we have also studied the general multiplicity probability distributions taking into account the decay chains of resonance states.Comment: 4 pages, 2 figures. The report of the talk given in Strangeness in Quark Matter 2004, Cape Town. Submitted to J. Phys. G: Nucl. Part. Phy

    Canonical aspects of strangeness enhancement

    Get PDF
    Strangeness enhancement (SE) in heavy ion collisions can be understood in the statistical model on the basis of canonical suppression. In this formulation,SE is a consequence of the transition from canonical to the asymptotic grand canonical limit and is predicted to be a decreasing function of collision energy. This model predictions are consistent with the recent NA49 data on Λ\Lambda enhancement at plab=40,80,158p_{lab}=40, 80, 158 GeV.Comment: 4 pages, 4 figures. To appear in the proceedings of Quark Matter 2002 (Nantes, France

    Exact Baryon, Strangeness and Charge Conservation in Hadronic Gas Models

    Get PDF
    Relativistic heavy ion collisions are studied assuming that particles can be described by a hadron gas in thermal and chemical equilibrium. The exact conservation of baryon number, strangeness and charge are explicitly taken into account. For heavy ions the effect arising from the neutron surplus becomes important and leads to a substantial increase in e.g. the π/π+\pi^-/\pi^+ ratio. A method is developed which is very well suited for the study of small systems.Comment: 5 pages, 5 Postscript figure

    On the exact conservation laws in thermal models and the analysis of AGS and SIS experimental results

    Get PDF
    The production of hadrons in relativistic heavy ion collisions is studied using a statistical ensemble with thermal and chemical equilibrium. Special attention is given to exact conservation laws, i.e. certain charges are treated canonically instead of using the usual grand canonical approach. For small systems, the exact conservation of baryon number, strangeness and electric charge is to be taken into account. We have derived compact, analytical expressions for particle abundances in such ensemble. As an application, the change in K/πK/\pi ratios in AGS experiments with different interaction system sizes is well reproduced. The canonical treatment of three charges becomes impractical very quickly with increasing system size. Thus, we draw our attention to exact conservation of strangeness, and treat baryon number and electric charge grand canonically. We present expressions for particle abundances in such ensemble as well, and apply them to reproduce the large variety of particle ratios in GSI SIS 2 A GeV Ni-Ni experiments. At the energies considered here, the exact strangeness conservation fully accounts for strange particle suppression, and no extra chemical factor is needed.Comment: Talk given at Strangeness in Quark Matter '98, Padova, Italy (1998). Submitted to J.Phys. G. 5 pages, 2 figure

    Enrichment of cancer-predisposing germline variants in adult and pediatric patients with acute lymphoblastic leukemia

    Get PDF
    Despite recent progress in acute lymphoblastic leukemia (ALL) therapies, a significant subset of adult and pediatric ALL patients has a dismal prognosis. Better understanding of leukemogenesis and recognition of germline genetic changes may provide new tools for treating patients. Given that hematopoietic stem cell transplantation, often from a family member, is a major form of treatment in ALL, acknowledging the possibility of hereditary predisposition is of special importance. Reports of comprehensive germline analyses performed in adult ALL patients are scarce. Aiming at fulfilling this gap of knowledge, we investigated variants in 93 genes predisposing to hematologic malignancies and 70 other cancer-predisposing genes from exome data obtained from 61 adult and 87 pediatric ALL patients. Our results show that pathogenic (P) or likely pathogenic (LP) germline variants in genes associated with predisposition to ALL or other cancers are prevalent in ALL patients: 8% of adults and 11% of children. Comparison of P/LP germline variants in patients to population-matched controls (gnomAD Finns) revealed a 2.6-fold enrichment in ALL cases (CI 95% 1.5-4.2, p = 0.00071). Acknowledging inherited factors is crucial, especially when considering hematopoietic stem cell transplantation and planning post-therapy follow-up. Harmful germline variants may also predispose patients to excessive toxicity potentially compromising the outcome. We propose integrating germline genetics into precise ALL patient care and providing families genetic counseling.Peer reviewe

    Canonical Strangeness and Distillation Effects in Hadron Production

    Full text link
    Strangeness canonical ensemble for Maxwell-Boltzmann statistics is reconsidered for excited nuclear systems with non-vanishing net strangeness. A new recurrence relation method is applied to find the partition function. The method is first generalized to the case of quantum strangeness canonical ensemble. Uncertainties in calculation of the K+/pi+ excitation function are discussed. A new scenario based on the strangeness distillation effect is put forward for a possible explanation of anomalous strangeness production observed at the bombarding energy near 30 AGeV. The peaked maximum in the K+/pi+ ratio is considered as a sign of the critical end-point reached in evolution of the system rather than a latent heat jump emerging from the onset of the first order deconfinement phase transition.Comment: 20 pages, 2 figures; typos corrected, 2 references added, minor corrections in text and figure

    Overpopulation of Ωˉ\bar \Omega in pp collisions: a way to distinguish statistical hadronization from string dynamics

    Full text link
    The Ωˉ/Ω\bar{\Omega}/\Omega ratio originating from string decays is predicted to be larger than unity in proton proton interactions at SPS energies (ElabE_{\rm lab}=160 GeV). The anti-omega dominance increases with decreasing beam energy. This surprising behavior is caused by the combinatorics of quark-antiquark production in small and low-mass strings. Since this behavior is not found in a statistical description of hadron production in proton proton collisions, it may serve as a key observable to probe the hadronization mechanism in such collisions.Comment: 4 pages, 4 figure
    corecore