3,127 research outputs found

    VisGenome: visualization of single and comparative genome representations

    Get PDF
    VisGenome visualizes single and comparative representations for the rat, the mouse and the human chromosomes at different levels of detail. The tool offers smooth zooming and panning which is more flexible than seen in other browsers. It presents information available in Ensembl for single chromosomes, as well as homologies (orthologue predictions including ortholog one2one, apparent ortholog one2one, ortholog many2many) for any two chromosomes from different species. The application can query supporting data from Ensembl by invoking a link in a browser

    Biology of pancreatic stellate cells—more than just pancreatic cancer

    Get PDF
    Pancreatic stellate cells, normally quiescent, are capable of remarkable transition into their activated myofibroblast-like phenotype. It is now commonly accepted that these cells play a pivotal role in the desmoplastic reaction present in severe pancreatic disorders. In recent years, enormous scientific effort has been devoted to understanding their roles in pancreatic cancer, which continues to remain one of the most deadly diseases. Therefore, it is not surprising that considerably less attention has been given to studying physiological functions of pancreatic stellate cells. Here, we review recent advances not only in the field of pancreatic stellate cell pathophysiology but also emphasise their roles in physiological processes

    Enhanced relativistic-electron beam collimation using two consecutive laser pulses

    Full text link
    The double laser pulse approach to relativistic electron beam (REB) collimation has been investigated at the LULI-ELFIE facility. In this scheme, the magnetic field generated by the first laser-driven REB is used to guide a second delayed REB. We show how electron beam collimation can be controlled by properly adjusting laser parameters. By changing the ratio of focus size and the delay time between the two pulses we found a maximum of electron beam collimation clearly dependent on the focal spot size ratio of the two laser pulses and related to the magnetic field dynamics. Cu-K alpha and CTR imaging diagnostics were implemented to evaluate the collimation effects on the respectively low energy ( MeV) components of the REB

    Gender, media, and mixed martial arts in Poland: the case of Joanna Jędrzejczyk

    Get PDF
    Recent growth in the media visibility of female combat sport athletes has offered a compelling site for research on gender and sport media, as women in deeply masculinized sports have been increasingly placed in the public spotlight. While scholars in the Anglophone West have offered analyses of the media framing of this phenomenon, little work has been done outside these cultural contexts. Thus, in this paper we offer a qualitative exploration of how Joanna Jędrzejczyk, a Polish champion of the Ultimate Fighting Championship, has been represented in Polish media. Our findings reveal a relatively de-gendered, widely celebratory account, primarily framed by nationalistic discourse–findings we ascribe to both the particularities of the sport of mixed martial arts as well as the historic nature of Jędrzejczyk’s success

    The integration of optical interconnections on ceramic substrates

    Get PDF
    High heat conductivity and high heat capacity make ceramic substrates indispensable to the manufacture of Multi-Chip Modules (MCM) and power electronics. In this paper a detailed description of the integration process of optical lines on to ceramic substrates is presented. The manufacturing of microgrooves in ceramic substrates and the process of integration of optical fibres and active elements is described. Coupling active elements to optical fibre is also presented. Through such an integrated optical line a 4 Gbps signal was transmitted. © 2016 Elsevier B.V. All rights reserved

    Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake

    Get PDF
    Acute biliary pancreatitis, caused by bile reflux into the pancreas, is a serious condition characterised by premature activation of digestive enzymes within acinar cells, followed by necrosis and inflammation. Bile acids are known to induce pathological Ca2+ signals and necrosis in acinar cells. However, bile acid-elicited signalling events in stellate cells remain unexplored. This is the first study to demonstrate the pathophysiological effects of bile acids on stellate cells in two experimental models: ex vivo (mouse pancreatic lobules) and in vitro (human cells). Sodium cholate and taurocholate induced cytosolic Ca2+ elevations in stellate cells, larger than those elicited simultaneously in the neighbouring acinar cells. In contrast, taurolithocholic acid 3-sulfate (TLC-S), known to induce Ca2+ oscillations in acinar cells, had only minor effects on stellate cells in lobules. The dependence of the Ca2+ signals on extracellular Na+ and the presence of sodium-taurocholate cotransporting polypeptide (NTCP) indicate a Na+-dependent bile acid uptake mechanism in stellate cells. Bile acid treatment caused necrosis predominantly in stellate cells, which was abolished by removal of extracellular Ca2+ and significantly reduced in the absence of Na+, showing that bile-dependent cell death was a downstream event of Ca2+ signals. Finally, combined application of TLC-S and the inflammatory mediator bradykinin caused more extensive necrosis in both stellate and acinar cells than TLC-S alone. Our findings shed new light on the mechanism by which bile acids promote pancreatic pathology. This involves not only signalling in acinar cells but also in stellate cells

    Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation

    Get PDF
    The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies
    • …
    corecore