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Abstract Pancreatic stellate cells, normally quiescent, are ca-
pable of remarkable transition into their activated
myofibroblast-like phenotype. It is now commonly accepted
that these cells play a pivotal role in the desmoplastic reaction
present in severe pancreatic disorders. In recent years, enor-
mous scientific effort has been devoted to understanding their
roles in pancreatic cancer, which continues to remain one of
the most deadly diseases. Therefore, it is not surprising that
considerably less attention has been given to studying physi-
ological functions of pancreatic stellate cells. Here, we review
recent advances not only in the field of pancreatic stellate cell
pathophysiology but also emphasise their roles in physiolog-
ical processes.
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Introduction

The diffuse stellate cell system is composed of star shaped
cells woven into various mammalian organs including, but
not limited to, the liver, pancreas or kidney [26, 32, 136].
Despite some tissue-specific differences, so-called quiescent

stellate cells are uniformly characterised by their ability to
store retinoids—vitamin A and its analogues—mainly in a
form of lipid droplets scattered in the cytosol [2, 34, 136].
These lipid-packed cells normally possess only a limited ca-
pacity to proliferate and migrate within the parenchymal tissue
and show no detectable expression of α-smooth muscle actin
(α-SMA) [2, 32]. Importantly, loss of retinoid droplets, along
with increased expression of α-SMA, is a concomitant of
stellate cell transition to an activated myofibroblast-like phe-
notype [26] in response to inflammatory or carcinogenic pro-
cesses [5, 8, 122]. As a result, activated stellate cells not only
become capable of intensive proliferation and migration, but
also get heavily involved in the extracellular matrix (ECM)
protein turnover, contributing towards tissue remodelling [5].
However, continued tissue injury may interfere with the nor-
mal healing processes, leading to an extended presence of
activated stellate cells and resulting in excessive tissue scar-
ring [113]. Interestingly, this may impact not only on physio-
logical functions of the affected tissue but also on its biome-
chanical properties [101]. For example, stellate cell-mediated
fibrosis of the vocal folds could impair the normal tissue flex-
ibility required for emission of voice [35], a problem not un-
common for singers or broadcast personnel.

In the pancreas, pancreatic stellate cells (PSCs) build up
only about 4–7% of the organ [2] and, in contrast to the more
abundant acinar cells or islets, neither secrete digestive en-
zymes nor hormones. However, in chronic pancreatitis and
pancreatic ductal adenocarcinoma (PDAC), it is the activated
PSCs that deposit collagen fibres and contribute to the devel-
opment of pancreatic fibrosis [5, 26]. Activated PSCs have
recently been the focus of multiple studies and continue to
attract a lot of interest, especially in relation to pancreatic
cancer, often perceived as a death sentence. PSCs have not
only been shown to form a dense fibrotic stroma and interact
with cancer cells, but may also be capable of travelling within
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the body to colonise distant metastases [122, 131]. Despite
this substantial progress made in the past two decades, to date
surprisingly little is known about the physiological roles of
quiescent PSCs in the healthy tissue. Here, we highlight the
advances in the PSC field, predominantly in respect of the
function of these cells in the normal tissue, their roles in acute
and chronic pancreatitis as well as in pancreatic cancer. Also,
we would like to draw particular attention to the involvement
of ion channels in PSC biology.

Discovery

Although the discovery of hepatic stellate cells (HSCs) is
commonly attributed to Carl von Kupffer [32], who also in-
troduced the term Bstellate cells^ (1876), more than one re-
search group contributed to the identification of PSCs. The
first documented observation most likely describing what we
know today as PSCs was published by Watari et al. in 1982
[126]. In the pancreata isolated from mice fed with retinoids,
the authors noticed vitamin A-loaded cells either scattered
randomly in the tissue or located in the vicinity of the blood
capillaries [126]. Even though not explicitly referred to as
PSCs, periacinar fibroblast-like cells were first isolated and
cultured in 1997 by Saotome et al. [99]. However, most of
the credit for identification of PSCs has been given to two
independent research papers accepted for publication a year
later [2, 6]. Both those studies, byApte et al. and Bachem et al.
[2, 6], applied density gradient centrifugation to isolate quies-
cent rat PSCs, a procedure previously used for purification of
HSCs [33, 34, 66]. Bachem et al. also introduced the out-
growth method that yielded activated PSCs, neatly grown
out of small tissue blocks of either rat or human origin [6].
PSC research has been further aided by the development of an
immortalised rat cell line in 2004 [113]. These studies trig-
gered a sudden outburst of interest in the previously
overlooked cells that continues until today.

Pancreatic versus hepatic stellate cells

PSCs are often compared to HSCs due to their similar
morphological and functional features. In principle, both
cell types are capable of expressing the same protein
markers such as desmin and glial fibrillary acidic protein
(GFAP); however, the exact expression levels vary mark-
edly between different species [36, 104, 132, 136] or even
in different cells of the same individual [45]. The gene
expression profiles of PSCs and HSCs show a high degree
of similarity, but differ from fibroblasts [14]. In contrast
to stellate cells in their activated phenotype, fibroblasts
are generally negative for desmin and α-SMA and also
show a less pronounced synthesis of ECM proteins [7].

Despite clear similarities, some organ-specific differences
in expression patterns exist between PSCs and HSCs. To
name a few, PSCs are characterised by higher levels of α7-
integrin, hypoxia inducible factor 1α subunit (HIF1α), and
cytoskeletal components [14]. Therefore, findings related to
one cell type cannot be ad hoc transferred to another.

Since PSCs express both mesenchymal and ectodermal
markers, their origin has been the subject of debate. A similar
discussion has been finally settled for HSCs owing to a study
that pointed towards their mesenchymal origin [16]. This is
also likely to be true for PSCs, but firm experimental evidence
is still lacking. Nevertheless, at least a subpopulation of PSCs
in the normal and inflamed pancreas has been shown to be
derived from the bone marrow progenitors [73, 102, 114].

Quiescent pancreatic stellate cells

In their quiescent phenotype, PSCs appear stagnant and al-
most redundant and currently very little is known about their
physiological functions. These cells normally form a three-
dimensional network that runs in between pancreatic lobules
(Fig. 1) adjacent to the ducts and blood capillaries [2].
Interestingly, it remains unexplored whether normal function-
ing of PSCs depends on maintaining this characteristic
network-like structure. The presence of stellate cells has also
been reported in islets of Langerhans, predominantly respon-
sible for the release of insulin and glucagon [134]. It was
suggested that these particular cells may be a subpopulation
of conventional PSCs [134] that play a role in islet fibrosis
related to severe cases of diabetes [51].

Quiescent PSCs are most likely responsible for the turn-
over of ECM components since they secrete metalloprotein-
ases (MMP) including MMP-2, MMP-9, and MMP-13, as
well as their inhibitors [95]. That, however, is rather unlikely
to exhaust the full array of physiological functions of quies-
cent PSCs. Other roles for these cells have been postulated,
such as the cholecystokinin (CCK)-elicited release of acetyl-
choline (ACh), which in turn stimulates acinar secretion [96].
Cultured human PSCs were shown to express ACh synthesis-
ing systems and CCK receptors [96]. However, experiments
on isolated pancreatic lobules provided no evidence for the
presence of CCK receptors in mouse quiescent PSCs; also
no Ca2+ responses were detected in those cells upon CCK
stimulation [40]. Furthermore, since expression of toll-like
receptors (TLR) have been found in isolated rat PSCs, one
might speculate that stellate cells could play a role in innate
immunity by phagocytosis of exo- and endogenous antigens
[81]. This notion is further supported by a different study,
which demonstrated phagocytic activity in PSCs as well as
the presence of the scavenger receptor CD36 [110], also
known to be expressed by monocytes/macrophages [89].
Interestingly, in HSCs, this receptor is fully functional and
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capable of binding oxidised low density lipoprotein, which is
associated with acquisition of the activated phenotype [63,
106]. This may suggest some similarities of stellate cells to
phagocytic immune cells.

Quiescent stellate cells contain retinoids (Fig. 2), predom-
inantly as retinyl palmitate cytosolic droplets [11, 48], whose
formation is likely to be dependent on intracellular albumin
[65]. In the adult body, up to 80% of dietary retinoids is stored
in the liver [12], in which HSCs remain a fraction 60-times
enriched in vitamin A analogues as compared to the liver
parenchymal cells [12]. The levels of retinoids contained in
PSCs are substantially lower and more variable than in HSCs
[55]. The exact role of retinoids in PSCs has not been inves-
tigated in great detail. It is well known, however, that retinoid
family members are vital for the maintenance of tissue homeo-
stasis by controlling cell growth, differentiation as well as
apoptotic cell death [9, 98, 118]; whereas by regulating em-
bryonic signalling pathways [20, 97] they govern Bstemness^
of cancer cells [9, 133]. During early days of development in
utero, the gradient of retinoid distribution may serve either as
an instructive or permissive signal for embryogenesis [24].
Retinoic acid (RA) is required for normal development of
the embryonic pancreas [24, 97], as shown in the frog [18],

zebra fish [53], and mouse models [74]. Further, the influence
of retinoids on the organogenesis of the pancreas is related to
their stimulatory effect on differentiation of endocrine and
duct cells [53, 118], and apoptosis of acinar cells [118]. In
adult pancreas, RA isomer 9-cis-retinoic acid (9cRA) has been
shown to act as a pancreas-specific autacoid [62]. As it has
been demonstrated, 9cRA is generated in situ in the pancreas,
where it briefly attenuates glucose-stimulated insulin secretion
[62].

Retinoids may facilitate maintenance of the quiescent state
of PSCs, especially given that retinol and its metabolites have
been shown to inhibit expression of α-SMA and decrease
activation of relevant signalling pathways [82]. All-trans-
retinoic acid (ATRA) has been proposed to trigger restoration
of mechanical quiescence of PSCs [19, 100], suppress their
capacity to remodel the extracellular matrix [100] and thus
inhibit cancer cell invasion [19].

Activated pancreatic stellate cells

The pathophysiological roles of PSCs become apparent in
healing injuries caused by inflammation. Despite having cer-
tain stem cell characteristics [26], PSCs probably cannot di-
rectly replace or regenerate damaged cells; instead they sub-
stitute lost cellular components with fibrotic tissue. This
Bquick fix^ is initially crucial for restoring organ integrity.
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Fig. 2 Pancreatic stellate cells have the capacity to store retinoids.
Cultured human PSCs quickly become activated and lose most of their
stored retinol (upper panel). In the presence of 100 μM retinol (24 h
treatment), lipid vesicles appear in the cytosol of PSCs (lower panel,
red pattern), which is revealed by excitation with UV light
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Fig. 1 Schematic illustration of the pancreas. The exocrine part of the
organ predominantly consists of acinar lobules. Pancreatic stellate cells
(shown in bright green-yellow-red pseudocolours, lower panel) form a
three-dimensional network in between those lobules (dark purple)
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However, an extended presence of activated PSCs may trans-
form into a pathological process leading to the deposition of
excessive amounts of ECM proteins and thus permanent scar-
ring of the pancreas accompanied by loss of cellular
components.

Damage to the pancreatic tissue triggers activation of
PSCs, in response to inflammatory mediators [1, 83], alcohol
metabolites [4] or growth factors such as the platelet-derived
growth factor (PDGF) [3, 105] or transforming growth factors
TGF-α and TGF-β [3, 116, 121]. These activating factors are
present in the inflamed pancreas and are secreted by infiltrat-
ing cells (e.g. macrophages), platelets, endothelial cells or
pancreatic acinar cells [75]. Also, transformed cells in pancre-
atic cancer are a source of agents triggering activation of PSCs
[26]. Importantly, PSCs themselves may be able to secrete
certain growth factors (e.g. PDGF) or cytokines and thus fa-
cilitate their activation in auto- or paracrine manner [3, 70,
105, 109].

The process of PSC phenotype transition is associated with
clear morphological and functional changes. Its most widely
accepted features are loss of retinoid droplets from the cytosol
and increased expression of α-SMA (Fig. 3) [2, 6]. Activated
PSCs assume a spindle-like shape in vitro, actively proliferate
and migrate as well as show an increase in production of
collagen type I and III, laminin and fibronectin [6].

Furthermore, they also secrete neutrophil chemotactic factor
IL-8 and macrophage chemoattractant protein-1 (MCP-1) [1,
117]; as well as express intracellular adhesion molecule-1
(ICAM-1) [77]. This suggests that activated PSCs may be
involved in exacerbating inflammation in the pancreas by re-
cruitment of inflammatory cells. The presence of α-SMA
along with endothelin-1 gives PSCs elasticity and the poten-
tial for contractions [79]. Given the periductal and
perivascular localisation of these cells, it has been speculated
that the contractility traits of activated PSCs may contribute to
the regulation of vascular and ductal tones [75]. Also, PSCs in
their myofibroblast-like phenotype have been implicated in
the remodelling and further stiffening of pathological fibrosis
in response to external mechanical stimuli [19]. Processes of
PSC activation may thus affect the biomechanical tissue
homeostasis.

A detailed clarification of the mechanisms controlling phe-
notype transition of PSCs probably represents one of the most
important challenges in the stellate cell field in the coming
years. Among the identified candidates implicated in this pro-
cess are the mitogen-activated protein kinase (MAPK) family
members [60, 78], NF-κB [77, 109] and downregulation of
peroxisome proliferator-activator receptor γ (PPAR-γ) [61,
76]. Signalling pathways associated with the phenotype tran-
sition have been reviewed in more detail in previous publica-
tions [59, 75].

Ion channel biology of pancreatic stellate cells

The importance of Ca2+ signalling in the exocrine pancreas is
well illustrated by the fact that secretion of digestive enzymes
by acinar cells is controlled by intracellular Ca2+ oscillations
[91, 93]. What is more, dysregulated Ca2+ signals underlie the
necrotising diseases of the pancreas: acute and chronic pan-
creatitis [38, 92]. Although Ca2+ signalling events have been
extensively investigated in pancreatic acinar cells, ion fluxes
in PSCs and their consequences have been a subject of only a
very limited number of studies. However, as discussed below,
recent evidence revealed that the physiology of PSCs is also
regulated by intracellular Ca2+ signalling and further insights
into these processes may shed new light on the roles of quies-
cent PSCs and the mechanisms of their phenotype transition.

The first attempt to characterise the differences in Ca2+

signals between quiescent and activated PSCs has been made
by Won et al. [128]. Their work elegantly demonstrated that
while activated PSCs responded to agonists of protease-
activated receptor 1 or 2 (thrombin and trypsin, respectively)
with transient elevations of intracellular Ca2+, these responses
were completely absent in quiescent PSCs [128]. Importantly,
the authors also showed that angiotensin and bradykinin were
potent inducers of Ca2+ signals in both quiescent and activated
PSCs [128]. A later study by Gryshchenko et al. revealed that
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Fig. 3 Expression of α-smooth muscle actin (α-SMA), and thus the
number of activated PSCs (aPSCs), increases as a result of tissue
inflammation. In the healthy mouse pancreas (upper panel) α-SMA-
positive staining (red) is only present in the vascular smooth muscle cells
in the blood vessels and is labelled as vascular smooth muscle actin
(VSMA). Induction of pancreatitis (by ethanol and fatty acids) leads to
a sudden appearance ofα-SMA-positive cells—aPSCs—scattered within
the parenchymal tissue
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bradykinin receptor 2 was responsible for the bradykinin-
induced intracellular Ca2+ elevation in these cells [40].
Expression of this receptor has been shown both in paraffin-
embedded mouse pancreatic tissue slices [30, 58] and in cul-
tured human PSCs [30]. Bradykinin responses could be used
to distinguish PSCs from acinar cells (unresponsive to brady-
kinin) and thus may be a useful physiological marker of the
stellate phenotype in the pancreatic tissue [30, 58].

Several types of purinergic receptors P2X and P2Y have
been found in PSCs [15, 49, 68] and Ca2+ responses to ATP,
UTP and UDP have been recorded in these cells [49]. Won
et al. demonstrated that activated PSCs were more sensitive to
ATP than the quiescent cells [128]. This is interesting, espe-
cially in light of the findings of Haanes et al., who showed that
high ATP concentrations induced cell death in normal PSCs
but not in cells lacking the functional purinergic receptor
P2X7 [42]. The authors concluded that the latter receptor
may act as a death receptor when exposed to high doses of
ATP [42]. It is therefore likely that ATP could contribute to
removal of activated PSCs. Also, the P2X7 receptor has been
suggested to be involved in regulation of PSC proliferation,
since mice lacking this receptor had substantially fewer PSCs
than normal mice; and those cells proliferated more slowly in
culture than normal cells [42]. Of note is also the observation
that low ATP levels had a stimulatory effect on proliferation of
PSCs [42].

Zhang et al. reported increased expression of the transient
receptor potential vanilloid 4 (TRPV4) channel in PSCs iso-
lated from rats fed with high-fat and alcohol diet for 6 weeks
[135]. Despite the mild phenotype of chronic pancreatitis (as
shown by histological techniques), increased and sustained
intracellular Ca2+ mobilisation was observed. The authors
concluded that TRPV4 is a functional ion channel in PSCs,
which mediates responses to metabolites of alcohol and fatty
acids [135].

A very recent study found a potentially important link be-
tween Ca2+ fluxes and pancreatic cancer desmoplasia, which
contributes to increased physical pressure in the neoplastic
tissue. This high pressure led to activation of mouse PSCs, a
process mediated by Ca2+ influx through the transient receptor
potential canonical 1 (TRPC1) channels; and thus the authors
suggested a link between TRPC1 and pressure sensing in
PSCs [29].

The importance of ion channels has also been illustrated by
another study that not only provided the evidence for func-
tional expression of the Ca2+ sensitive K+ channel of interme-
diate conductance, KCa3.1, and the TRPC3 channel in human
PSCs, but also demonstrated their role in PSC migration
[115]. The distribution patterns of these two channel proteins
in the plasma membrane of human PSCs revealed a very high
degree of colocalisation [115]. The authors postulated coop-
eration between the two channels, which was based on the fact
that Ca2+ responses in PSCs, induced by PDGF, were reduced

by pharmacological inhibition of KCa3.1 channels and
completely abolished by the knockdown of TRPC3 [115].
Both inhibition of KCa3.1 and loss of TRPC3 channels sub-
stantially decreased PSC migration [115]. Given that the inhi-
bition of Ca2+ channels has already been demonstrated to be
beneficial in acute pancreatitis [37, 127], analogous strategies
could be employed in novel therapeutic approaches against
chronic pancreatitis and pancreatic cancer, targeting ion chan-
nels that drive PSC migration and proliferation.

In the study of Kemeny et al. [64], myofibroblasts have
been isolated from different tissues of the human gastrointes-
tinal tract and showed remarkable similarities in the expres-
sion patters of α-SMA, desmin, vimentin and cytokeratin to
PSCs. Interestingly, human gastric myofibroblasts were dem-
onstrated to express all three isoforms of Na+/Ca2+ exchanger
(NCX), which was attributed to the regulation of Ca2+ homeo-
stasis in these cells as well as migration and proliferation [64].

Finally, experiments on mouse pancreatic lobules demon-
strated that Ca2+ responses, induced in PSCs by both physio-
logical and pathophysiological stimuli, do not propagate to the
adjacent acinar cells [30, 40, 58]. Therefore, gap junctions,
well known for allowing communication and signal propaga-
tion between acinar cells [56, 57], are unlikely to exist be-
tween acinar cells and PSCs [41].

Pancreatic cancer

Pancreatic cancer affects almost 340,000 people worldwide an-
nually and is highly resistant to chemotherapy, which results in a
devastating prognosis for the patients: themedian life expectancy
of about 6 months post diagnosis [120] and the 5-year survival
rate below 5% [124]. Infamously known as Bpartners in crime^
[122], PSCs have recently been in the spotlight owing to their
involvement in pancreatic cancer aetiology. Importantly, they
have been postulated not only to contribute to the development
of solid pancreatic tumours [54, 112], of which PDAC is the
most common [50], but also to facilitate spreading of the disease
by supporting formation of the secondary tumours (metastases)
in the distant locations [43, 107, 122, 131]. In addition, a recent
study has proposed that PSCs may be mediators of pain in pan-
creatic cancer [44]. Of note is that also somewhat conflicting
evidence exists in the literature, whereby depletion of α-SMA-
positive myofibroblasts and thus reduced desmoplastic reaction
in mouse models of PDAC, resulted in adverse outcomes, in-
cluding impaired immune response and decreased survival [86].

Associated with pancreatic cancer, fibrotic stroma com-
prises PSCs and the products of their secretion, and may ac-
count for even up to 80% of the tumour mass [27]. A compli-
cated network of interactions between cancer cells and PSCs
has been shown to perpetuate the desmoplastic reaction [5, 8,
107], in which the growth of the fibrotic tissue is induced by a
primary distortion in the organ [5]. This leads to the formation
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of the collagen-rich fibrotic microenvironment, which tightly
surrounds the malignant cells [8, 107] and thus may restrict
blood flow, availability of oxygen, as well as limit inflamma-
tory infiltration [28] and the delivery of chemotherapeutic
agents [21, 108]. Notably, the cross-talks between cancer cells
and PSCs may result in further remodelling of the stromal
microenvironment via activity of MMP-2. MMP-2-mediated
degradation of the stromal proteins promotes invasiveness and
tumourigenicity of cancer cells, as was shown by assessment
of cancer cell migration or formation of xenograft tumours in
an immunodeficient mouse host [107]. The extracellular ma-
trix may also resemble a reservoir of sequestrated mediators of
inflammation released upon tissue stress or injury [103] as
happens in diseases of the pancreas: pancreatitis and pancre-
atic cancer [52, 103]. The MMP-family enzymes have been
implicated in inflammatory mechanisms, wherein they serve
as damage-associated molecular patterns (DAMPs) [103].

Poor oxygenation (hypoxia) and limited nutrient availabil-
ity are the hallmarks of solid tumours [39], including PDAC.
The hypoxic stromal environment provides a selective pres-
sure for the expansion of mutant cells of abnormal signalling
and proliferative capacity. This may translate into tumour re-
sistance to therapeutic approaches [39], including radiation
[25]. PSCs have been shown to radioprotect the cancer cells
through a β1-integrin pathway; whereas tumours without
PSCs responded to radiotherapy with a delayed growth and
decreased volume compared to the tumours consisting of both
cancer cells and PSCs [72].

Hypoxic conditions have also been suggested to stimulate
expression of angiogenesis-regulating molecules in PSCs [80,
131]. This may play a role in spreading of the cancer cells via
the blood stream or lymphatic circulation, and further progres-
sion of the cancer. Indeed, PSCs have been found to induce
formation of metastases [54]. Even more importantly, a sex-
mismatch study elegantly proved the ability of PSCs to ac-
company pancreatic cancer cells to the metastatic sites [131].
In that work, orthotopic xenograft tumours in the pancreata of
female mouse hosts were formed out of both human male
PSCs and human female pancreatic cancer cells. This experi-
mental setup allowed the authors to use the Y chromosome as
a marker of PSCs, identified by fluorescent in situ
hybridisation [131]. This confirmed the presence of exoge-
nously introduced PSCs not only in the primary tumours in
the pancreas but also in the metastases in the liver, mesentery
and thoracic diaphragm [131]. Noteworthy, PSCs alone did
not form tumours during a 6-month period post injection [72].

PSCs not only provide the ideal environment for the devel-
opment of pancreatic cancer, protecting it against the anti-
cancer therapies and facilitating its spreading, but also may
Bfeed^ the tumour. A recent study has shown that PSCs are
critical for PDAC metabolism through the secretion of non-
essential amino acids [112]. These amino acids, especially
alanine, have been postulated to be an alternative source of

carbon for the tricarboxylic acid cycle in the PDAC cells, that
experience shortage of glucose and glutamine-derived carbon
due to the surrounding stroma [112]. Interestingly, alanine
secretion by PSCs is dependent on their autophagic death
stimulated by the cancer cells [112]. Targeting such cross-
talks between PSCs and cancer cells is an emerging novel
therapeutic strategy against PDAC.

Pancreatitis

Chronic pancreatitis becomes increasingly common in the de-
veloped countries and it is generally agreed that alcohol plays
a significant role in its pathogenesis [71]. Despite intensified
research, still there is no effective treatment other than sup-
portive care. Generation of reactive oxygen species and fatty
acid ethyl esters, as a result of ethanol metabolism [87], induce
injury of the tissue predominantly by triggering abnormal
Ca2+ signals in acinar cells along with a decrease in ATP
levels, followed by acinar necrosis [92, 94]. Chronic inflam-
mation, oxidative stress and ethanol metabolites interfere with
the normal healing processes [129] leading to prolonged acti-
vation of PSCs that replace acinar cells and pancreatic islets
by non-cellular fibrotic tissue. This impairs both exocrine and
endocrine functions of the pancreas, often resulting in malnu-
trition and diabetes [13]. Although not explicitly described as
activated PSCs, substantial quantities of α-SMA-positive
myofibroblasts were found in alcoholic pancreatitis in human
patients [22] and activated PSCs are a typical feature of animal
models of chronic pancreatitis [69]. Repetitive pancreatic in-
jury, induced by cerulein (a compound similar in action to
CCK), causes deposition of collagen, and PSCs were found
to be its major source [17, 85].

Accumulating data indicates that pancreatic fibrosis can be
reversed, at least in the early stages of chronic pancreatitis
[123]. It was also demonstrated that administration of RA
can supress the deposition of collagen fibres [130].
However, it remains unknown if this regression of pancreatic
fibrosis is dependent on transition of PSCs back to the quies-
cent phenotype. In fact, it is not entirely clear whether PSCs
are able to revert to quiescence in vivo. Instead, they could be
regenerated from a population of PSCs that have not under-
gone activation during injury or from a pool of progenitor cells
[125]. Therefore, the phenomenon of a phenotype transition in
PSCs may hold the key to our understanding of the mecha-
nisms that drive pancreatic fibrosis and could be a viable target
in anti-fibrotic therapies.

Migrating gallstones can cause bile reflux into the pancre-
as, which induces severe inflammation of the organ.While the
bile is the most common cause of acute pancreatitis, its capac-
ity to induce the chronic, and thus fibrotic, form of the disease
is marginal [10, 88]. In a recent study, it was reported that
mouse PSCs, located in their native environment, were
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remarkably sensitive to the most common bile components
[30]. Bile acids, sodium cholate and taurocholate, caused large
and sustained Ca2+ signals in the cytosol of PSCs, quickly
followed by necrotic death, whereas the effects of those bile
acids on neighbouring acinar cells were much less prominent
(Fig. 4a, b) [30]. Interestingly, PSCs appear to utilise specific
mechanisms of bile acid uptake resembling those present in
the liver [30]. These results are particularly surprising as, ac-
cording to the prevailing dogma, the adverse effects of the bile
were predominantly attributed to premature activation of di-
gestive enzymes in acinar cells, a process triggered by exces-
sive intracellular Ca2+ signals [38, 94]; and, to a lesser extent,
impaired ductal secretion [47, 119]. Therefore, the recent re-
port sheds new light on the pathogenesis of biliary pancreati-
tis, whereby bile acids are likely to deprive the pancreas of its
repair mechanisms driving up the severity of the disease in the
initial stages. At the same time, by killing PSCs, in a Ca2+-
dependent manner, bile acids may not promote the develop-
ment of pancreatic fibrosis in the long term. This discovery
suggests that certain bile acids could even be used as thera-
peutic agents against fibrosis [46].

Of note is that the effects of the bile acids were further
exacerbated by a pro-inflammatory mediator bradykinin

[30]. Injury to acinar cells causes release of enzymes stored
in zymogen granules, including trypsin and kallikreins, which
in turn, act on kininogens to generate kinin peptides (such as
bradykinin) and further escalate the on-going inflammatory
processes [41]. Indeed, increased concentrations of bradykinin
elicit Ca2+ responses in PSCs, that may lead to their activation
and proliferation [41].

Another study has shown that the bile acid-induced patho-
physiological Ca2+ signals in PSCs, but not in acinar cells, are
accompanied by nitric oxide (NO) generation [58]. In addi-
tion, bradykinin (Fig. 4c) and hydrogen peroxide (Fig. 4d)
have been demonstrated not only to cause intracellular Ca2+

elevation but also a simultaneous increase in NO production
in PSCs [58]. This indicates a link between the two signalling
pathways. Expression of inducible NO synthase (NOS2) is
present in PSCs, as shown by colocalisation with bradykinin
receptor type 2 [58]. This is similar to a previous work that
indicated NOS2-dependent production of NO in α-SMA- and
vimentin-positive pancreatic myofibroblasts that well could
have been PSCs [84]. However, the actual role of NO in pan-
creatic diseases remains ambiguous. On the one hand, reactive
oxygen/nitrogen species, such as NO, are present in the in-
flamed tissue and may chemically modify cellular
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Fig. 4 Mouse pancreatic stellate cells, in their native environment of
pancreatic lobules, respond to pathophysiological stimuli with
intracellular Ca2+ signals as well as generation of NO. a Sample traces
recorded in mouse pancreatic lobules loaded with a Ca2+-sensitive dye
Fluo-4 AM. Pancreatic stellate cell (PSC, red trace) responds to 10 nM
bradykinin (BK) but pancreatic acinar cell (PAC, blue trace) does not,
which confirms the stellate phenotype. The PSC subsequently responds
to 5 mM taurocholate (TC) with a large elevation of intracellular Ca2+,
whereas the neighbouring PAC generates only modest Ca2+ oscillations.
For more information, the reader is referred to a study by Ferdek et al.
[30]. b Individual images from the recording shown in (a). The red
circular regions mark the PSC that responded to bradykinin and then to
taurocholate with increases in intracellular Ca2+ concentration. The blue

circular regions indicate the PAC that did not respond to bradykinin and
produced only transient Ca2+ elevations in response to treatment with
taurocholate. c Sample traces recorded in a PSC embedded in a mouse
pancreatic lobule loaded with both Fura-2 AM (Ca2+-sensitive dye) and
DAF-2 (NO-sensitive dye). The cell responds to 20 nM BK with an
elevation of intracellular Ca2+ concentration (red trace) and a
simultaneous increase in intracellular NO (purple trace). For more
information, the reader is referred to a study by Jakubowska et al. [58].
d Sample images show a mouse pancreatic lobule, loaded with DAF-2,
before and after treatment with 500 μMhydrogen peroxide (H2O2). PSCs
are indicated with white arrowheads. Treatment with H2O2 increases
intracellular NO in these cells (shown as a shift in the pseudocolour
spectrum)

Pflugers Arch - Eur J Physiol



components [111]. Importantly, inhibition of NO generation
has been demonstrated to protect both PSCs and adjacent ac-
inar cells against necrosis [58]. On the other hand, vascular
tone and pancreatic secretion were suggested to be regulated
by NO [67, 90], whose production was previously attributed
only to endothelial cells in the pancreas [67]. Given the recent
data demonstrating that PSCs can also produce NO, PSCs
may contribute to the local control of circulation and secretion
in the organ. Furthermore, in pancreatitis, the overproduction
of NO by PSCs, in response to bile acids or bradykinin, may
play a role in the increased vasodilation of ducts and blood
capillaries.

Concluding remarks

Initially limited to cancer research, the field of PSCs has ex-
tended and now covers diverse aspects of cell biology.
Increasingly more attention is directed towards understanding
the roles of ion channels, small molecule messengers, such as
Ca2+ and NO (Fig. 5) as well as retinoids in the physiology of
PSCs. Nevertheless, still much has to be learned, especially in
relation to the processes that trigger PSC phenotype transition.
Given that Ca2+ plays a role in activation of other cell types
such as lymphocytes [31] or mast cells [23], it would not be at
all surprising if Ca2+ signals also control the process of

phenotype transition in PSCs. Therefore, one of the most ex-
citing challenges in the coming years is detailed understanding
of the mechanisms that govern the phenomenon of PSC
activation.

Finally, it pays to remember that dysregulated physiology
underlies most diseases. Therefore, intensified studies on PSC
physiology and the role of Ca2+ signalling in these cells may
aid the development of novel therapeutic strategies against
pancreatic disorders. Particularly important would be propos-
ing newmeans and approaches to inhibit PSC phenotype tran-
sition and thus supress excessive collagen deposition that
leads to fibrosis. What is more, development of effective strat-
egies to reverse PSC activation in vivo or to target specifically
the population of myofibroblast-like PSCs could be of signif-
icant translational perspective.
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