1,104 research outputs found

    Crafting Moral Infrastructures: How Nonprofits Use Facebook to Survive

    Get PDF
    We present findings from interviews with 23 individuals affiliated with non-profit organizations (NPOs) to understand how they deploy information and communication technologies (ICTs) in civic engagement efforts. Existing research about NPO ICT use is largely critical, but we did not find evidence that NPOs fail to use tools effectively. Rather, we detail how various ICT use on the part of NPOs intersects with unique affordance perceptions and adoption causes. Overall, we find that existing theories about technology choice (e.g., task-technology fit, uses and gratifications) do not explain the assemblages NPOs describe. We argue that NPOs fashion infrastructures in accordance with their moral economy frameworks rather than selecting tools based on utility. Together, the rhetorics of infrastructure and moral economies capture the motivations and constraints our participants expressed and challenge how prevailing theories of ICT usage describe the non-profit landscape

    Pulse distributions and tracking in segmented detectors

    Get PDF
    Abstract A study of the performance of a cylindrical HPGe detector segmented in 25 segments is presented. It is based on simulations made with the computer code GEANT and focuses on the reconstruction of a γ-ray path. The effects of the segmentation are initially discussed in terms of Doppler correction. The role of the pulse shape analysis and its effects on tracking algorithms are discussed as a function of the capability to reconstruct a γ-ray path when multiple signals (direct and induced) are present in a single segment. It is found that it is critical to identify correctly at least two signals in a segment in order to have a reasonable efficiency and Compton suppression in the spectra and to make a good use of this type of detectors

    Feedback under the microscope II: heating, gas uplift, and mixing in the nearest cluster core

    Full text link
    Using a combination of deep 574ks Chandra data, XMM-Newton high-resolution spectra, and optical Halpha+NII images, we study the nature and spatial distribution of the multiphase plasma in M87. Our results provide direct observational evidence of `radio mode' AGN feedback in action, stripping the central galaxy of its lowest entropy gas and preventing star-formation. This low entropy gas was entrained with and uplifted by the buoyantly rising relativistic plasma, forming long "arms". These arms are likely oriented within 15-30 degrees of our line-of-sight. The mass of the uplifted gas in the arms is comparable to the gas mass in the approximately spherically symmetric 3.8 kpc core, demonstrating that the AGN has a profound effect on its immediate surroundings. The coolest X-ray emitting gas in M87 has a temperature of ~0.5 keV and is spatially coincident with Halpha+NII nebulae, forming a multiphase medium where the cooler gas phases are arranged in magnetized filaments. We place strong upper limits of 0.06 Msun/yr on the amount of plasma cooling radiatively from 0.5 keV and show that a uniform, volume-averaged heating mechanism could not be preventing the cool gas from further cooling. All of the bright Halpha filaments appear in the downstream region of the <3 Myr old shock front, at smaller radii than ~0.6'. We suggest that shocks induce shearing around the filaments, thereby promoting mixing of the cold gas with the ambient hot ICM via instabilities. By bringing hot thermal particles into contact with the cool, line-emitting gas, mixing can supply the power and ionizing particles needed to explain the observed optical spectra. Mixing of the coolest X-ray emitting plasma with the cold optical line emitting filamentary gas promotes efficient conduction between the two phases, allowing non-radiative cooling which could explain the lack of X-ray gas with temperatures under 0.5 keV.Comment: to appear in MNRA

    GDR Feeding of the Highly-Deformed Band in 42Ca

    Full text link
    The gamma-ray spectra from the decay of the GDR in the compound nucleus reaction 18O+28Si at bombarding energy of 105 MeV have been measured in an experiment using the EUROBALL IV and HECTOR arrays. The obtained experimental GDR strength function is highly fragmented, with a low energy (10 MeV) component, indicating a presence of a large deformation and Coriolis effects. In addition, the preferential feeding of the highly-deformed band in 42Ca by this GDR low energy component is observed.Comment: 6 pages, 2 figures, Proceedings of the Zakopane2004 Symposium, to be published in Acta Phys. Pol. B36 (2005

    Identification and rejection of scattered neutrons in AGATA

    Full text link
    Gamma rays and neutrons, emitted following spontaneous fission of 252Cf, were measured in an AGATA experiment performed at INFN Laboratori Nazionali di Legnaro in Italy. The setup consisted of four AGATA triple cluster detectors (12 36-fold segmented high-purity germanium crystals), placed at a distance of 50 cm from the source, and 16 HELENA BaF2 detectors. The aim of the experiment was to study the interaction of neutrons in the segmented high-purity germanium detectors of AGATA and to investigate the possibility to discriminate neutrons and gamma rays with the gamma-ray tracking technique. The BaF2 detectors were used for a time-of-flight measurement, which gave an independent discrimination of neutrons and gamma rays and which was used to optimise the gamma-ray tracking-based neutron rejection methods. It was found that standard gamma-ray tracking, without any additional neutron rejection features, eliminates effectively most of the interaction points due to recoiling Ge nuclei after elastic scattering of neutrons. Standard tracking rejects also a significant amount of the events due to inelastic scattering of neutrons in the germanium crystals. Further enhancements of the neutron rejection was obtained by setting conditions on the following quantities, which were evaluated for each event by the tracking algorithm: energy of the first and second interaction point, difference in the calculated incoming direction of the gamma ray, figure-of-merit value. The experimental results of tracking with neutron rejection agree rather well with Geant4 simulations

    Angular distribution of photons from the delay of the GDR in hot and rotating light Yb nuclei from exclusive experiments

    Get PDF
    Abstract Angular distributions of photons associated with the damping of excited-state giant dipole resonances (GDR) in hot and rotating 161,162 Yb nuclei have been measured in exclusive experiments using the HECTOR array. In reactions with heavy ions ( 48 T) angular distributions are determined as a function of the angular momentum of the compound nuclei. In reactions with lighter ions ( 17,18 O) a difference method is applied to isolate GDR decays originating from specific excitation regions. The systematics of the measured angular distributions as a function of excitation energy and angular momentum are compared to theories taking into account fluctuations of the shape and orientation of the excited nuclei

    Characterization of Large Volume 3.5 x 8 inches LaBr3:Ce Detectors

    Full text link
    The properties of large volume cylindrical 3.5 x 8 inches (89 mm x 203 mm) LaBr3:Ce scintillation detectors coupled to the Hamamatsu R10233-100SEL photo-multiplier tube were investigated. These crystals are among the largest ones ever produced and still need to be fully characterized to determine how these detectors can be utilized and in which applications. We tested the detectors using monochromatic gamma-ray sources and in-beam reactions producing gamma rays up to 22.6 MeV; we acquired PMT signal pulses and calculated detector energy resolution and response linearity as a function of gamma-ray energy. Two different voltage dividers were coupled to the Hamamatsu R10233-100SEL PMT: the Hamamatsu E1198-26, based on straightforward resistive network design, and the LABRVD, specifically designed for our large volume LaBr3:Ce scintillation detectors, which also includes active semiconductor devices. Because of the extremely high light yield of LaBr3:Ce crystals we observed that, depending on the choice of PMT, voltage divider and applied voltage, some significant deviation from the ideally proportional response of the detector and some pulse shape deformation appear. In addition, crystal non-homogeneities and PMT gain drifts affect the (measured) energy resolution especially in case of high-energy gamma rays. We also measured the time resolution of detectors with different sizes (from 1x1 inches up to 3.5x8 inches), correlating the results with both the intrinsic properties of PMTs and GEANT simulations of the scintillation light collection process. The detector absolute full energy efficiency was measured and simulated up to gamma-rays of 30 Me
    corecore