311 research outputs found

    Characterizing the Rigidly Rotating Magnetosphere Stars HD 345439 and HD 23478

    Get PDF
    The SDSS III APOGEE survey recently identified two new σ\sigma Ori E type candidates, HD 345439 and HD 23478, which are a rare subset of rapidly rotating massive stars whose large (kGauss) magnetic fields confine circumstellar material around these systems. Our analysis of multi-epoch photometric observations of HD 345439 from the KELT, SuperWASP, and ASAS surveys reveals the presence of a \sim0.7701 day period in each dataset, suggesting the system is amongst the faster known σ\sigma Ori E analogs. We also see clear evidence that the strength of H-alpha, H I Brackett series lines, and He I lines also vary on a \sim0.7701 day period from our analysis of multi-epoch, multi-wavelength spectroscopic monitoring of the system from the APO 3.5m telescope. We trace the evolution of select emission line profiles in the system, and observe coherent line profile variability in both optical and infrared H I lines, as expected for rigidly rotating magnetosphere stars. We also analyze the evolution of the H I Br-11 line strength and line profile in multi-epoch observations of HD 23478 from the SDSS-III APOGEE instrument. The observed periodic behavior is consistent with that recently reported by Sikora and collaborators in optical spectra.Comment: Accepted in ApJ

    APOGEE DR14/DR15 Abundances in the Inner Milky Way

    Full text link
    We present an overview of the distributions of 11 elemental abundances in the Milky Way's inner regions, as traced by APOGEE stars released as part of SDSS Data Release 14/15 (DR14/DR15), including O, Mg, Si, Ca, Cr, Mn, Co, Ni, Na, Al, and K. This sample spans ~4000 stars with R_GC<4 kpc, enabling the most comprehensive study to date of these abundances and their variations within the innermost few kiloparsecs of the Milky Way. We describe the observed abundance patterns ([X/Fe]-[Fe/H]), compare to previous literature results and to patterns in stars at the solar Galactic radius, and discuss possible trends with DR14/DR15 effective temperatures. We find that the position of the [Mg/Fe]-[Fe/H] "knee" is nearly constant with R_GC, indicating a well-mixed star-forming medium or high levels of radial migration in the early inner Galaxy. We quantify the linear correlation between pairs of elements in different subsamples of stars and find that these relationships vary; some abundance correlations are very similar between the alpha-rich and alpha-poor stars, but others differ significantly, suggesting variations in the metallicity dependencies of certain supernova yields. These empirical trends will form the basis for more detailed future explorations and for the refinement of model comparison metrics. That the inner Milky Way abundances appear dominated by a single chemical evolutionary track and that they extend to such high metallicities underscore the unique importance of this part of the Galaxy for constraining the ingredients of chemical evolution modeling and for improving our understanding of the evolution of the Galaxy as a whole.Comment: Submitted to AAS Journals; revised after referee repor

    the SDSS-III APOGEE Spectral Line List for H-Band Spectroscopy

    Get PDF
    We present the H-band spectral line lists adopted by the Apache Point Observatory Galactic Evolution Experiment (APOGEE). The APOGEE line lists comprise astrophysical, theoretical, and laboratory sources from the literature, as well as newly evaluated astrophysical oscillator strengths and damping parameters. We discuss the construction of the APOGEE line list, which is one of the critical inputs for the APOGEE Stellar Parameters and Chemical Abundances Pipeline, and present three different versions that have been used at various stages of the project. The methodology for the newly calculated astrophysical line lists is reviewed. The largest of these three line lists contains 134,457 molecular and atomic transitions. In addition to the format adopted to store the data, the line lists are available in MOOG, Synspec, and Turbospectrum formats. The limitations of the line lists along with guidance for its use on different spectral types are discussed. We also present a list of H-band spectral features that are either poorly represented or completely missing in our line list. This list is based on the average of a large number of spectral fit residuals for APOGEE observations spanning a wide range of stellar parameters.Alfred P. Sloan FoundationNational Science FoundationU.S. Department of Energy Office of ScienceJanos Bolyai Research Scholarship of the Hungarian Academy of SciencesSpanish Ministry of Economy and Competitiveness AYA-2011-27754, AYA-2014-58082-PRSF 14-50-00043McDonald Observator

    Calibrations of Atmospheric Parameters Obtained from the First Year of SDSS-III APOGEE Observations

    Get PDF
    The SDSS-III Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a three year survey that is collecting 100,000 high-resolution spectra in the near-IR across multiple Galactic populations. To derive stellar parameters and chemical compositions from this massive data set, the APOGEE Stellar Parameters and Chemical Abundances Pipeline (ASPCAP) has been developed. Here, we describe empirical calibrations of stellar parameters presented in the first SDSS-III APOGEE data release (DR10). These calibrations were enabled by observations of 559 stars in 20 globular and open clusters. The cluster observations were supplemented by observations of stars in NASA's Kepler field that have well determined surface gravities from asteroseismic analysis. We discuss the accuracy and precision of the derived stellar parameters, considering especially effective temperature, surface gravity, and metallicity; we also briefly discuss the derived results for the abundances of the alpha-elements, carbon, and nitrogen. Overall, we find that ASPCAP achieves reasonably accurate results for temperature and metallicity, but suffers from systematic errors in surface gravity. We derive calibration relations that bring the raw ASPCAP results into better agreement with independently determined stellar parameters. The internal scatter of ASPCAP parameters within clusters suggests that, metallicities are measured with a precision better than 0.1 dex, effective temperatures better than 150 K, and surface gravities better than 0.2 dex. The understanding provided by the clusters and Kepler giants on the current accuracy and precision will be invaluable for future improvements of the pipeline.Comment: 40 pages, 15 figures, 4 tables, accepted to A

    Target Selection for the SDSS-IV APOGEE-2 Survey

    Full text link
    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing roughly 300,000 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding upon APOGEE's goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch (RGB) and red clump (RC) stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.Comment: 19 pages, 6 figures. Accepted to A

    A Database and Evaluation for Classification of RNA Molecules Using Graph Methods

    Get PDF
    In this paper, we introduce a new graph dataset based on the representation of RNA. The RNA dataset includes 3178 RNA chains which are labelled in 8 classes according to their reported biological functions. The goal of this database is to provide a platform for investigating the classication of RNA using graph-based methods. The molecules are represented by graphs representing the sequence and base-pairs of the RNA, with a number of labelling schemes using base labels and local shape. We report the results of a number of state-of-the-art graph based methods on this dataset as a baseline comparison and investigate how these methods can be used to categorise RNA molecules on their type and functions. The methods applied are Weisfeiler Lehman and optimal assignment kernels, shortest paths kernel and the all paths and cycle methods. We also compare to the standard Needleman-Wunsch algorithm used in bioinformatics for DNA and RNA comparison, and demonstrate the superiority of graph kernels even on a string representation. The highest classication rate is obtained by the WL-OA algorithm using base labels and base-pair connections

    HST Imaging of fading AGN candidates. I. Host-galaxy properties and origin of the extended gas*

    Get PDF
    We present narrow- and medium-band Hubble Space Telescope imaging, with additional supporting ground-based imaging, spectrophotometry, and Fabry–Perot interferometric data, for eight galaxies identified as hosting a fading active galactic nucleus (AGN). These are selected to have AGN-ionized gas projected kpc from the nucleus and energy budgets with a significant shortfall of ionizing radiation between the requirement to ionize the distant gas and the AGN as observed directly, indicating fading of the AGN on ≈50,000 yr timescales. This paper focuses on the host-galaxy properties and origin of the gas. In every galaxy, we identify evidence of ongoing or past interactions, including tidal tails, shells, and warped or chaotic dust structures; a similarly selected sample of obscured AGNs with extended ionized clouds shares this high incidence of disturbed morphologies. Several systems show multiple dust lanes in different orientations, broadly fit by differentially precessing disks of accreted material viewed ~1.5 Gyr after its initial arrival. The host systems are of early Hubble type; most show nearly pure de Vaucouleurs surface brightness profiles and Sérsic indices appropriate for classical bulges, with one S0 and one SB0 galaxy. The gas has a systematically lower metallicity than the nuclei; three systems have abundances uniformly well below solar, consistent with an origin in tidally disrupted low-luminosity galaxies, while some systems have more nearly solar abundances (accompanied by such signatures as multiple Doppler components), which may suggest redistribution of gas by outflows within the host galaxies themselves. These aspects are consistent with a tidal origin for the extended gas in most systems, although the ionized gas and stellar tidal features do not always match closely. Unlike extended emission regions around many radio-loud AGNs, these clouds are kinematically dominated by rotation, in some cases in warped disks. Outflows can play important kinematic roles only in localized regions near some of the AGNs. We find only a few sets of young star clusters potentially triggered by AGN outflows. In UGC 7342 and UGC 11185, multiple luminous star clusters are seen just within the projected ionization cones, potentially marking star formation triggered by outflows. As in the discovery example, Hanny\u27s Voorwerp/IC 2497, there are regions in these clouds where the lack of a strong correlation between Hα surface brightness and ionization parameter indicates that there is unresolved fine structure in the clouds. Together with thin coherent filaments spanning several kpc, persistence of these structures over their orbital lifetimes may require a role for magnetic confinement. Overall, we find that the sample of fading AGNs occur in interacting and merging systems, that the very extended ionized gas is composed of tidal debris rather than galactic winds, and that these host systems are bulge-dominated and show no strong evidence of triggered star formation in luminous clusters

    The Galaxy Zoo survey for giant AGN-ionized clouds: past and present black hole accretion events

    Get PDF
    Some active galactic nuclei (AGN) are surrounded by extended emission-line regions (EELRs), which trace both the illumination pattern of escaping radiation and its history over the light travel time from the AGN to the gas. From a new set of such EELRs, we present evidence that the AGN in many Seyfert galaxies undergo luminous episodes 0.2–2 ×105 years in duration. Motivated by the discovery of the spectacular nebula known as Hanny’s Voorwerp, ionized by a powerful AGN which has apparently faded dramatically within ≈ 105 years, Galaxy Zoo volunteers have carried out both targeted and serendipitous searches for similar emission-line clouds around low-redshift galaxies. We present the resulting list of candidates and describe spectroscopy identifying 19 galaxies with AGN-ionized regions at projected radii rproj \u3e 10 kpc. This search recovered known EELRs (such as Mrk 78, Mrk 266 and NGC 5252) and identified additional previously unknown cases, one with detected emission to r = 37 kpc. One new Sy 2 was identified. At least 14/19 are in interacting or merging systems, suggesting that tidal tails are a prime source of distant gas out of the galaxy plane to be ionized by an AGN. We see a mix of one-and two-sided structures, with observed cone angles from 23◦ to 112◦. We consider the energy balance in the ionized clouds, with lower and upper bounds on ionizing luminosity from recombination and ionization-parameter arguments, and estimate the luminosity of the core from the far-infrared data. The implied ratio of ionizing radiation seen by the clouds to that emitted by the nucleus, on the assumption of a non-variable nuclear source, ranges from 0.02 to \u3e12; 7/19 exceed unity. Small values fit well with a heavily obscured AGN in which only a small fraction of the ionizing output escapes to be traced by surrounding gas. However, large values may require that the AGN has faded over tens of thousands of years, giving us several examples of systems in which such dramatic long-period variation has occurred; this is the only current technique for addressing these time-scales in AGN history. The relative numbers of faded and non-faded objects we infer, and the projected extents of the ionized regions, give our estimate (0.2–2×105 years) for the length of individual bright phases

    Target Selection for the Apache Point Observatory Galactic Evolution Experiment (APOGEE)

    Get PDF
    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) is a high-resolution infrared spectroscopic survey spanning all Galactic environments (i.e., bulge, disk, and halo), with the principal goal of constraining dynamical and chemical evolution models of the Milky Way. APOGEE takes advantage of the reduced effects of extinction at infrared wavelengths to observe the inner Galaxy and bulge at an unprecedented level of detail. The survey's broad spatial and wavelength coverage enables users of APOGEE data to address numerous Galactic structure and stellar populations issues. In this paper we describe the APOGEE targeting scheme and document its various target classes to provide the necessary background and reference information to analyze samples of APOGEE data with awareness of the imposed selection criteria and resulting sample properties. APOGEE's primary sample consists of ~100,000 red giant stars, selected to minimize observational biases in age and metallicity. We present the methodology and considerations that drive the selection of this sample and evaluate the accuracy, efficiency, and caveats of the selection and sampling algorithms. We also describe additional target classes that contribute to the APOGEE sample, including numerous ancillary science programs, and we outline the targeting data that will be included in the public data releases.Comment: Accepted to AJ. 31 pages, 11 figure

    High-resolution, H band Spectroscopy of Be Stars with SDSS-III/APOGEE: I. New Be Stars, Line Identifications, and Line Profiles

    Get PDF
    APOGEE has amassed the largest ever collection of multi-epoch, high-resolution (R~22,500), H-band spectra for B-type emission line (Be) stars. The 128/238 APOGEE Be stars for which emission had never previously been reported serve to increase the total number of known Be stars by ~6%. We focus on identification of the H-band lines and analysis of the emission peak velocity separations (v_p) and emission peak intensity ratios (V/R) of the usually double-peaked H I and non-hydrogen emission lines. H I Br11 emission is found to preferentially form in the circumstellar disks at an average distance of ~2.2 stellar radii. Increasing v_p toward the weaker Br12--Br20 lines suggests these lines are formed interior to Br11. By contrast, the observed IR Fe II emission lines present evidence of having significantly larger formation radii; distinctive phase lags between IR Fe II and H I Brackett emission lines further supports that these species arise from different radii in Be disks. Several emission lines have been identified for the first time including ~16895, a prominent feature in the spectra for almost a fifth of the sample and, as inferred from relatively large v_p compared to the Br11-Br20, a tracer of the inner regions of Be disks. Unlike the typical metallic lines observed for Be stars in the optical, the H-band metallic lines, such as Fe II 16878, never exhibit any evidence of shell absorption, even when the H I lines are clearly shell-dominated. The first known example of a quasi-triple-peaked Br11 line profile is reported for HD 253659, one of several stars exhibiting intra- and/or extra-species V/R and radial velocity variation within individual spectra. Br11 profiles are presented for all discussed stars, as are full APOGEE spectra for a portion of the sample.Comment: accepted in A
    corecore