9,154 research outputs found

    Branching, Capping, and Severing in Dynamic Actin Structures

    Full text link
    Branched actin networks at the leading edge of a crawling cell evolve via protein-regulated processes such as polymerization, depolymerization, capping, branching, and severing. A formulation of these processes is presented and analyzed to study steady-state network morphology. In bulk, we identify several scaling regimes in severing and branching protein concentrations and find that the coupling between severing and branching is optimally exploited for conditions {\it in vivo}. Near the leading edge, we find qualitative agreement with the {\it in vivo} morphology.Comment: 4 pages, 2 figure

    Modeling of Covalent Bonding in Solids by Inversion of Cohesive Energy Curves

    Full text link
    We provide a systematic test of empirical theories of covalent bonding in solids using an exact procedure to invert ab initio cohesive energy curves. By considering multiple structures of the same material, it is possible for the first time to test competing angular functions, expose inconsistencies in the basic assumption of a cluster expansion, and extract general features of covalent bonding. We test our methods on silicon, and provide the direct evidence that the Tersoff-type bond order formalism correctly describes coordination dependence. For bond-bending forces, we obtain skewed angular functions that favor small angles, unlike existing models. As a proof-of-principle demonstration, we derive a Si interatomic potential which exhibits comparable accuracy to existing models.Comment: 4 pages revtex (twocolumn, psfig), 3 figures. Title and some wording (but no content) changed since original submission on 24 April 199

    A New Multi-Resource cumulatives Constraint with Negative Heights

    Get PDF
    This paper presents a new cumulatives constraint which generalizes the original cumulative constraint in different ways. The two most important aspects consist in permitting multiple cumulative resources as well as negative heights for the resource consumption of the tasks. This allows modeling in an easy way new scheduling and planning problems. The introduction of negative heights has forced us to come up with new propagation algorithms and to revisit existing ones. The first propagation algorithm is derived from an idea called sweep which is extensively used in computational geometry; the second algorithm is based on a combination of sweep and constructive disjunction, while the last is a generalization of task intervals to this new context. A real-life timetabling problem originally motivated this constraint which was implemented within the SICStus finite domain solver and evaluated against different problem patterns

    Parallel Mapper

    Full text link
    The construction of Mapper has emerged in the last decade as a powerful and effective topological data analysis tool that approximates and generalizes other topological summaries, such as the Reeb graph, the contour tree, split, and joint trees. In this paper, we study the parallel analysis of the construction of Mapper. We give a provably correct parallel algorithm to execute Mapper on multiple processors and discuss the performance results that compare our approach to a reference sequential Mapper implementation. We report the performance experiments that demonstrate the efficiency of our method

    Order-N Density-Matrix Electronic-Structure Method for General Potentials

    Full text link
    A new order-N method for calculating the electronic structure of general (non-tight-binding) potentials is presented. The method uses a combination of the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and Daw, and a representation of the density matrix based on ``travelling basis orbitals''. The method is applied to several one-dimensional examples, including the free electron gas, the ``Morse'' bound-state potential, a discontinuous potential that mimics an interface, and an oscillatory potential that mimics a semiconductor. The method is found to contain Friedel oscillations, quantization of charge in bound states, and band gap formation. Quantitatively accurate agreement with exact results is found in most cases. Possible advantages with regard to treating electron-electron interactions and arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect

    Giant Monopole Resonances and nuclear incompressibilities studied for the zero-range and separable pairing interactions

    Full text link
    Background: Following the 2007 precise measurements of monopole strengths in tin isotopes, there has been a continuous theoretical effort to obtain a precise description of the experimental results. Up to now, there is no satisfactory explanation of why the tin nuclei appear to be significantly softer than 208Pb. Purpose: We determine the influence of finite-range and separable pairing interactions on monopole strength functions in semi-magic nuclei. Methods: We employ self-consistently the Quasiparticle Random Phase Approximation on top of spherical Hartree-Fock-Bogolyubov solutions. We use the Arnoldi method to solve the linear-response problem with pairing. Results: We found that the difference between centroids of Giant Monopole Resonances measured in lead and tin (about 1 MeV) always turns out to be overestimated by about 100%. We also found that the volume incompressibility, obtained by adjusting the liquid-drop expression to microscopic results, is significantly larger than the infinite-matter incompressibility. Conclusions: The zero-range and separable pairing forces cannot induce modifications of monopole strength functions in tin to match experimental data.Comment: 11 RevTeX pages, 16 figures, 1 table, extended versio

    Collective vibrational states with fast iterative QRPA method

    Full text link
    An iterative method we previously proposed to compute nuclear strength functions is developed to allow it to accurately calculate properties of individual nuclear states. The approach is based on the quasi-particle-random-phase approximation (QRPA) and uses an iterative non-hermitian Arnoldi diagonalization method where the QRPA matrix does not have to be explicitly calculated and stored. The method gives substantial advantages over conventional QRPA calculations with regards to the computational cost. The method is used to calculate excitation energies and decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes using three different Skyrme interactions and a separable gaussian pairing force.Comment: 10 pages, 11 figure
    • …
    corecore