An iterative method we previously proposed to compute nuclear strength
functions is developed to allow it to accurately calculate properties of
individual nuclear states. The approach is based on the
quasi-particle-random-phase approximation (QRPA) and uses an iterative
non-hermitian Arnoldi diagonalization method where the QRPA matrix does not
have to be explicitly calculated and stored. The method gives substantial
advantages over conventional QRPA calculations with regards to the
computational cost. The method is used to calculate excitation energies and
decay rates of the lowest lying 2+ and 3- states in Pb, Sn, Ni and Ca isotopes
using three different Skyrme interactions and a separable gaussian pairing
force.Comment: 10 pages, 11 figure