A new order-N method for calculating the electronic structure of general
(non-tight-binding) potentials is presented. The method uses a combination of
the ``purification''-based approaches used by Li, Nunes and Vanderbilt, and
Daw, and a representation of the density matrix based on ``travelling basis
orbitals''. The method is applied to several one-dimensional examples,
including the free electron gas, the ``Morse'' bound-state potential, a
discontinuous potential that mimics an interface, and an oscillatory potential
that mimics a semiconductor. The method is found to contain Friedel
oscillations, quantization of charge in bound states, and band gap formation.
Quantitatively accurate agreement with exact results is found in most cases.
Possible advantages with regard to treating electron-electron interactions and
arbitrary boundary conditions are discussed.Comment: 13 pages, REVTEX, 7 postscript figures (not quite perfect