8,451 research outputs found
Complications of percutaneous endoscopic gastrostomy in dogs and cats receiving corticosteroid treatment
BACKGROUND: Corticosteroid treatment is commonly required in veterinary patients for treatment of inflammatory, immune‐mediated, neurologic, and neoplastic diseases, which also may require assisted enteral nutrition via percutaneous endoscopic gastrostomy (PEG). OBJECTIVE: To evaluate complications associated with PEG use in dogs and cats receiving corticosteroid treatment. ANIMALS: Forty‐two animals were included in the study: 12 dogs and 2 cats in the steroid group and 26 dogs and 2 cats in the control group. METHODS: Medical records, between January 2006 and March 2015, were reviewed. Patients were included if the PEG tube was in use for at least 24 hours and if complete medical records were available. Patients were assigned to the control group if they were not treated with corticosteroids during PEG use or to the steroid group if they had received corticosteroids during PEG tube use. Complications were classified as minor, moderate, and major in severity. Maximum severity complication rate was compared between groups. RESULTS: The general prevalence of complications was found to be similar between groups (P = .306), but in the steroid group, 43% of the cases developed a major severity complication compared with 18% of the control group (P = .054). CONCLUSION AND CLINICAL IMPORTANCE: Owners of dogs and cats receiving corticosteroids, in which PEG is planned, should be counseled about possible complications beyond those associated with PEG tube usage alone
Screening of pair fluctuations in superconductors with coupled shallow and deep bands: a route to higher temperature superconductivity
A combination of strong Cooper pairing and weak superconducting fluctuations
is crucial to achieve and stabilize high-Tc superconductivity. We demonstrate
that a coexistence of a shallow carrier band with strong pairing and a deep
band with weak pairing, together with the Josephson-like pair transfer between
the bands to couple the two condensates, realizes an optimal multicomponent
superconductivity regime: it preserves strong pairing to generate large gaps
and a very high critical temperature but screens the detrimental
superconducting fluctuations, thereby suppressing the pseudogap state.
Surprisingly, we find that the screening is very efficient even when the
inter-band coupling is very small. Thus, a multi-band superconductor with a
coherent mixture of condensates in the BCS regime (deep band) and in the
BCS-BEC crossover regime (shallow band) offers a promising route to higher
critical temperatures.Comment: 8 pages, 1 figure, including supplemental material
Initial value representation for the SU(n) semiclassical propagator
The semiclassical propagator in the representation of SU(n) coherent states
is characterized by isolated classical trajectories subjected to boundary
conditions in a doubled phase space. In this paper we recast this expression in
terms of an integral over a set of initial-valued trajectories. These
trajectories are monitored by a filter that collects only the appropriate
contributions to the semiclassical approximation. This framework is suitable
for the study of bosonic dynamics in n modes with fixed total number of
particles. We exemplify the method for a Bose-Einstein condensate trapped in a
triple-well potential, providing a detailed discussion on the accuracy and
efficiency of the procedure.Comment: 24 pages, 6 figure
Static Output Feedback: On Essential Feasible Information Patterns
In this paper, for linear time-invariant plants, where a collection of
possible inputs and outputs are known a priori, we address the problem of
determining the communication between outputs and inputs, i.e., information
patterns, such that desired control objectives of the closed-loop system (for
instance, stabilizability) through static output feedback may be ensured.
We address this problem in the structural system theoretic context. To this
end, given a specified structural pattern (locations of zeros/non-zeros) of the
plant matrices, we introduce the concept of essential information patterns,
i.e., communication patterns between outputs and inputs that satisfy the
following conditions: (i) ensure arbitrary spectrum assignment of the
closed-loop system, using static output feedback constrained to the information
pattern, for almost all possible plant instances with the specified structural
pattern; and (ii) any communication failure precludes the resulting information
pattern from attaining the pole placement objective in (i).
Subsequently, we study the problem of determining essential information
patterns. First, we provide several necessary and sufficient conditions to
verify whether a specified information pattern is essential or not. Further, we
show that such conditions can be verified by resorting to algorithms with
polynomial complexity (in the dimensions of the state, input and output).
Although such verification can be performed efficiently, it is shown that the
problem of determining essential information patterns is in general NP-hard.
The main results of the paper are illustrated through examples
Quantum Key Distribution using Continuous-variable non-Gaussian States
In this work we present a quantum key distribution protocol using
continuous-variable non-Gaussian states, homodyne detection and post-selection.
The employed signal states are the Photon Added then Subtracted Coherent States
(PASCS) in which one photon is added and subsequently one photon is subtracted.
We analyze the performance of our protocol, compared to a coherent state based
protocol, for two different attacks that could be carried out by the
eavesdropper (Eve). We calculate the secret key rate transmission in a lossy
line for a superior channel (beam-splitter) attack, and we show that we may
increase the secret key generation rate by using the non-Gaussian PASCS rather
than coherent states. We also consider the simultaneous quadrature measurement
(intercept-resend) attack and we show that the efficiency of Eve's attack is
substantially reduced if PASCS are used as signal states.Comment: We have included an analysis of the simultaneous quadrature
measurement attack plus 2 figures; we have also clarified some point
Rutherford scattering with radiation damping
We study the effect of radiation damping on the classical scattering of
charged particles. Using a perturbation method based on the Runge-Lenz vector,
we calculate radiative corrections to the Rutherford cross section, and the
corresponding energy and angular momentum losses.Comment: Latex, 11 pages, 4 eps figure
Classroom quality and children's social skills and problem behaviors: dosage and disability status as moderators
Multiple studies have reported associations between early childhood education (ECE) quality and dosage and children’s social and behavior development, with some suggesting that this association may be stronger for specific groups of children. In this study, we examined the association between classroom quality and children’s social skills and problem behaviors, as reported by ECE teachers, as well as the moderating effects of ECE dosage and children’s disability status. Participants were 222 children (Mage = 63.75, SD = 7.77), including 180 typically developing (90 boys) and 42 children with disabilities (29 boys), from 44 inclusive classrooms in the Metropolitan Area of Lisbon, Portugal. Our results indicated that children’s social skills and behavior problems were not directly associated with observed classroom quality domains. However, lower classroom organization predicted lower social skills and higher externalizing behavior at higher number of months with the lead teacher; and instructional support predicted increased social skills for children with disabilities. Days absent from school predicted lower social skills. Overall, our results suggest that diverse types of dosage influence teacher’s reports of social and behavioral outcomes in different ways.info:eu-repo/semantics/acceptedVersio
Kondo effect in transport through molecules adsorbed on metal surfaces: from Fano dips to Kondo peaks
The Kondo effect observed in recent STM experiments on transport through CoPc
and TBrPP-Co molecules adsorbed on Au(111) and Cu(111) surfaces, respectively,
is discussed within the framework of a simple model (Phys. Rev. Lett. {\bf 97},
076806 (2006)). It is shown that, in the Kondo regime and by varying the
adequate model parameters, it is possible to produce a crossover from a
conductance Kondo peak (CoPc) to a conductance Fano dip (TBrPP-Co). In the case
of TBrPP-Co/Cu(111) we show that the model reproduces the changes in the shape
of the Fano dip, the raising of the Kondo temperature and shifting to higher
energies of the dip minimum when the number of nearest neighbors molecules is
lowered. These features are in line with experimental observations indicating
that our simple model contains the essential physics underlying the transport
properties of such complex molecules.Comment: 4 pages, 3 figures, submitted to PR
- …