368 research outputs found

    Transverse Instabilities of Coasting Beams with Space Charge

    Full text link
    Transverse beam stability is strongly affected by the beam space charge. Usually it is analyzed with the rigid-beam model. However this model is only valid when a bare (not affected by the space charge) tune spread is small compared to the space charge tune shift. This condition specifies a relatively small area of parameters which, however, is the most interesting for practical applications. The Landau damping rate and the beam Schottky spectra are computed assuming that validity condition is satisfied. The results are applied to a round Gaussian beam. The stability thresholds are described by simple fits for the cases of chromatic and octupole tune spreads.Comment: 6 pages, 2 figures, accepted by Phys. Rev. ST - Accel. Beam

    Model of the tethered space system in vicinity of ellipsoidal asteroid and its approximations

    Get PDF
    While planning missions in vicinity of an asteroid/comet body one has to take into account several dynamical problems to overcome and among them are: (a) irregular distribution of the body internal masses; (b) too weak gravity acceleration near the body surface. In case of (a) one offers to apply approximate models of gravity. As an example we consider the case of a triaxial ellipsoid. For the problem (b) we apply docking procedures with help of anchor and a connecting tether. For computing the force field of gravity being generated by the ellipsoid of three axes one has to calculate several values of elliptic integrals at each instant of the simulation process. For this we apply original algorithm interpreting elliptic integrals as a state variables in additional to dynamics system of ODEs. To resolve the problem (b) we use so-called hybrid automata to build up the tethered interconnection between a spacecraft and the asteroid. Ellipsoidal asteroid performs free rotary motions about its mass center thus performing the Euler case of the rigid body rotary motion. The spacecraft moves under the force of gravity from the asteroid and under the tether tension, in case of the constraint being imposed. So we have so-called restricted dynamical model because the asteroid does not “feel” any force from the spacecraft. In addition to the hybrid automata dynamical model including impacts on constraint we also consider approximations of this model being really regularizations of the impact process. All these models are analysed and compared numerically

    Probing the deuteron structure at small N-N distances by cumulative pion production

    Full text link
    The fragmentation of deuterons into pions emitted forward in the kinematic region forbidden for free nucleon-nucleon collisions is analyzed. It is shown that the inclusion of the non-nucleonic degrees of freedom in a deuteron results in a satisfactory description of the data for the inclusive pion spectrum and improves the description of the data about T20T_{20}. According to the data, T20T_{20} has very small positive values, less than 0.2, which contradicts the theoretical calculations ignoring these degrees of freedom.Comment: 3 pages, 2 postscript figures; to appear in the proceedings of Conference on Quarks and Nuclear Physics (QNP 2002), Julich, Germany, 9-14 Jun 200

    Neutron electric form factor at large momentum transfer

    Get PDF
    Based on the recent, high precision data for elastic electron scattering from protons and deuterons, at relatively large momentum transfer Q2Q^2, we determine the neutron electric form factor up to Q2=3.5Q^2=3.5 GeV2^2. The values obtained from the data (in the framework of the nonrelativistic impulse approximation) are larger than commonly assumed and are in good agreement with the Gari-Kr\"umpelmann parametrization of the nucleon electromagnetic form factors.Comment: 11 pages 2 figure

    Nanostructuring and surface hardening of structural steels by ultrasonic impact-frictional treatment

    Full text link
    With two structural steels (the steels 50 and 09G2S) as examples, the paper studies the effectiveness of a new method of ultrasonic impact-frictional treatment (UIFT) for the hardening and nanostructuring of the surface layer with the variation of the tilt angle of the vibrating indenter and the treatment environment. It is demonstrated that treatment with tool tilt angles different from 90° and with the absence of a contact liquid results in the formation of a nanostructured surface layer with increased microhardness. © 2018 Author(s)

    On isovector meson exchange currents in the Bethe-Salpeter approach

    Get PDF
    We investigate the nonrelativistic reduction of the Bethe-Salpeter amplitude for the deuteron electrodisintegration near threshold energies. To this end, two assumptions have been used in the calculations: 1) the static approximation and 2) the one iteration approximation. Within these assumptions it is possible to recover the nonrelativistic result including a systematic extension to relativistic corrections. We find that the so-called pair current term can be constructed from the PP-wave contribution of the deuteron Bethe-Salpeter amplitude. The form factor that enters into the calculation of the pair current is constrained by the manifestly gauge independent matrix elements.Comment: 15 pages, incl. 3 figures, to be published Phys. Rev.
    corecore