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Abstract. While planning missions in vicinity of an asteroid/comet body one has to take
into account several dynamical problems to overcome and among them are: (a) irregular
distribution of the body internal masses; (b) too weak gravity acceleration near the body
surface. In case of (a) one offers to apply approximate models of gravity. As an example we
consider the case of a triaxial ellipsoid. For the problem (b) we apply docking procedures
with help of anchor and a connecting tether.

For computing the force field of gravity being generated by the ellipsoid of three axes
one has to calculate several values of elliptic integrals at each instant of the simulation
process. For this we apply original algorithm interpreting elliptic integrals as a state
variables in additional to dynamics system of ODEs. To resolve the problem (b) we use
so-called hybrid automata to build up the tethered interconnection between a spacecraft
and the asteroid.

Ellipsoidal asteroid performs free rotary motions about its mass center thus performing
the Euler case of the rigid body rotary motion. The spacecraft moves under the force of
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gravity from the asteroid and under the tether tension, in case of the constraint being
imposed. So we have so-called restricted dynamical model because the asteroid does not
“feel” any force from the spacecraft.

In addition to the hybrid automata dynamical model including impacts on constraint
we also consider approximations of this model being really regularizations of the impact
process. All these models are analysed and compared numerically.

1 INTRODUCTION

Pendulum system under consideration may be regarded as a delivery facility to trans-
port payloads to/from the spacecraft from/to the asteroid surface, some kind of space
elevator. This idea is close to that one, belonging to Tsiolkovsky and known as a space
elevator located nearby the Earth. Engineering development of this construction concerns
the pioneer work [1], see also [2]. Close idea of the Moon elevator probably arises due to
works of F. Zahnder [3]. This latter idea was rediscovered in [4, 5, 6].

Specific property of the problem under analysis consists of typically irregular shape
and mass distribution of asteroids. Another property relates to asteroid’s motion as the
Euler top, which is not a permanent rotation in general situations.

Studying of pendulums concerning the dynamical problems of orbital mechanics goes
back to probably pioneer work [7]. Existence and conditions of stability for orbital pen-
dulums in different formulations were investigated in [8, 9, 10], and also in papers [11, 12,
13, 14, 15, 16, 17, 18]. Investigation of space tethered systems is tightly interconnected
with activity of Beletsky and his pupils and colleagues: [19, 20, 21, 22, 23, 24]. Dynamics
of tethered systems attached to an asteroid is studied intensively in [25, 26, 27, 28, 29]).
Orbital motion of compound satellites was studied in [30, 31]. The model useful for sim-
ulation the contact between particular spacecraft of the tethered system and the asteroid
surface see in [32].

2 PROBLEM FORMULATION

When planning missions in vicinity of minor celestial body of the Solar system one
has to take into account at least two serious difficulties to overcome: (a) internal masses
distribution inside asteroid/comet is as a rule irregular; (b) gravity of such a body is too
weak such that it makes practically impossible the traditional “landing” of the spacecraft
onto the celestial object surface. For solving two problems mentioned we apply proper
methodics. In case of (a) one offers to apply approximate models of gravity. As an example
we consider gravity of the asteroid having a shape of triaxial ellipsoid. To overcome
problems in case of (b) one can apply docking procedures with help of anchor and cable
connection.

One encounters frequently celestial bodies of ellipsoidal shape or close to it in Solar
system. For computing the force field of gravity being generated by such a body one
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has to calculate elliptic integrals on each step of the integration process for the dynamical
model under construction. As it turned out one can use special additional system of ODEs
for this problem efficient solution. For solving the problem (b) one uses so-called hybrid
automata to build up the dynamical model of a spacecraft. There are exactly two states
of this automata: free flight of the spacecraft: cable is slack; flight along the constraint:
cable is tensed.

Ellipsoidal asteroid performs free rotary motions about its mass center. The spacecraft
moves under the force of gravity from the asteroid and under the tension, in case of the
constraint being imposed. Dynamical model under analysis can be classified as a restricted
one. Indeed, spacecraft does not influence the motion of the asteroid.

Besides the hybrid automata dynamical model, which includes impacts on constraint,
approximations of this model are also under consideration. These approximations are re-
duced to replacement of “exact” model of impact by its different schemes of regularization.
Some of these models are analysed and compared numerically.

Thus first of all consider a tethered system (TS), consisting of a weightless tether of
length �, an asteroid A, and a particle Q of mass m, see Figure 1. Suppose the tether
connects a point P fixed on the asteroid surface Σ and a particle Q.

Figure 1: Mechanical system.

Let OXαXβXγ be an absolute frame of reference (ARF). Assume that its origin coin-
cides with the asteroid center of mass. Also let Ox1x2x3 be the mobile reference system
(MRF), connected with the asteroid. Its axes are assumed to be directed along its prin-
cipal central axes of inertia. Unit vectors of the ARF base with respect to MRF can be
represented in the following way

α = (α1, α2, α3)
T , β = (β1, β2, β3)

T , γ = (γ1, γ2, γ3)
T . (1)
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Using components of these vectors one can compose an orthogonal matrix

S =




α1 α2 α3

β1 β2 β3

γ1 γ2 γ3


 , (2)

allowing to implement transfers from MRF to ARF and back: if a vector
−→
OQ is described

as
X = (Xα, Xβ, Xγ)

T , x = (x1, x2, x3)
T

in ARF and MRF respectively, then

X = Sx. (3)

The angular velocity
ω = (ω1, ω2, ω3)

T (4)

given by its projections onto the axes of the MRF satisfies a matrix equation

Ṡ = S · ω̂, ω̂ =




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


 , (5)

that can be treated as a matrix form of the Poisson equations describing variations of the
body orientation. The same equations in the vector form read

α̇ = α × ω, β̇ = β × ω, γ̇ = γ × ω. (6)

If in the ARF velocity and acceleration of the particle Q are represented as

V =
(
Ẋα, Ẋβ, Ẋγ

)T

and A =
(
Ẍα, Ẍβ, Ẍγ

)T

(7)

respectively, then, as is known from kinematics, in the MRF velocity and acceleration are
given as

v = ST · V = ω × x + ẋ, (8)

a = ST · A = ω × (ω × x) + ω̇ × x + 2ω × ẋ + ẍ. (9)

respectively.

Since the point of fixation P given by the vector
−→
OP with

P = (Pα, Pβ, Pγ)
T , p = (p1, p2, p3)

T

is fixed in asteroid, then its velocity and acceleration are

VP = S(ω × p), AP = S (ω × (ω × p) + ω̇ × p) (10)

respectively in the ARF. They also read

vP = ω × p, aP = ω × (ω × p) + ω̇ × p (11)

respectively in the MRF.
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3 DYNAMICS

Let the pendulum be hanged at the point P of the asteroid surface with a massless
inextensible tether of the length �: |PQ| ≤ �. The mass m of the pendulum is supposed
being concentrated at its endpoint Q. The asteroid is assumed performing rotation about
its masscenter as the Euler top. One also assumes that the pendulum motion does not
affect the asteroid rotation. The tether length we in general assume as known predefined
function of time. Then equations of the particle Q motion w. r. t. MRF read

ma = f� + λ�
∂ϕ

∂x
, (12)

where f� and λ� are the active force and the Lagrange multiplier respectively. The latter
one is determined from the equation of the exerted constraint:

ϕ(x, p, �) =
1

2

[
(x − p,x − p) − �2

] ≡ 0 (13)

and two its time derivatives

(ẋ,x − p) − �̇� ≡ 0, (ẍ,x − p) − (ẋ, ẋ) − �̈� − �̇2 = 0. (14)

Since the point P is assumed to be fixed in the MRF the equalities ṗ = 0, p̈ = 0 are
fulfilled.

Denoting f� = mf , λ� = mλ and using identity (9) we find out from (12) that

(ω × (ω × x) + ω̇ × x + 2ω × ẋ + ẍ) = f + λ
∂ϕ

∂x
(15)

or in the equivalent form:

ẍ = ((ω × x) × ω + x × ω̇ + 2ẋ × ω) + f + λ
∂ϕ

∂x
. (16)

Substituting of acceleration ẍ from (16) into second identity (14) we have

((ω × x) × ω + x × ω̇ + 2ẋ × ω + f + λ(x − p),x − p) − (ẋ, ẋ) − �̈� − �̇2 = 0,

and one obtains the Lagrange multiplier

λ =
[
(ω × (ω × x) + ω̇ × x + 2ω × ẋ − f ,x − p) + (ẋ, ẋ) + �̈� + �̇2

]
/�2. (17)

We assume that active forces are potential, and potential energy has the form U� =
mU(x). Then

f = −∂U

∂x
. (18)
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Explicit expression of force (18) will be used below in equations (16). However it is im-
possible to wright down an exact expression for potential energy for an arbitrary celestial
body, because of the absence of exact data about its mass distribution. Nevertheless if
the point Q is located far enough from the asteroid then we can assume that

U = −GM

[
1

r
+

I1 + I2 + I3

2r3
− 3(Ix,x)

r3
+ . . .

]
(19)

where r = (x,x)1/2, and I = diag (I1, I2, I3) is asteroid’s central tensor of inertia, divided
by its mass and represented in asteroid’s principal central axes of inertia. In the further
course we assume that selection of physical dimensions is such that GM = 1.

Rema r k 1 Approximate expression (19) for the potential is derived, as usual, from
the exact one:

U(x) = − 1

m

∫∫∫

A

ρu(x,y)dy (20)

via a standard expansion of the integrand multiplier

u(x,y) = (x − y,x − y)−1/2 (21)

with respect to the parameter ε = (−2(x,y) + (y,y)) /(x,x). However, the potential can
be also expanded with respect to ε� = −2(x,y)/ ((x,x) + (y,y)) . This parameter has no
singularity at the origin. This representation has been applied in [33] for gravitating rings
and in [34] for tetrahedral bodies

u(x,y) =
1

((x,x) + (y,y))1/2

1

(1 + ε)1/2
= u0 + u1 + · · · = (22)

=
1

((x,x) + (y,y))1/2

(
1 − 1

2
ε� +

3

8
ε2

� −
5

16
ε3

� + . . .

)
.

In contrast to the standard expansion, integration of terms un, which are not homogeneous
function of the vector y = (y1, y2, y3)

T components usually is non-trivial. Properties of
this approximation for the potential, in particular, its behaviour in vicinity of the asteroid
surface were not deeply investigated.

Equations (17), (19) are suitable to describe motion of a massive particle in Euler case
of asteroid’s rotation as well as in particular cases of precessions and permanent rotations.
In the latter case

ω = ψ̇eψ, (23)

where ψ̇ = const is the magnitude of angular velocity which is invariable in the body
coordinate system, eψ is the unit vector which is directed along axis of rotation.
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Regular precessions exist in the case of the body A dynamical symmetry. If f1, f2, f3
are unit vectors directed along its principal central axes of inertia, and f3 is directed along
the axis of symmetry, then

ω = ψ̇eψ + ϕ̇eϕ. (24)

Here and below the constant quantities ψ̇ and ϕ̇ denote magnitudes of angular velocities
of precession and proper rotation respectively; θ is a constant angle of nutation;

eψ = cos θf3 + sin θ (cos(ϕ̇t)f1 + sin(ϕ̇t)f2)

is a unit vector of the axis of precession, fixed in the absolute space; eϕ = f3.

Rema r k 2 If the value λ, determined by (17) is negative on the motions under con-
sideration, then the constraint is tensed, and it can be implemented using the tether.
Otherwise for the constraint implementation one needs a weightless rod. If the value λ
can change its sign then releasing the constraint as well as its tension are possible.

It is natural to expect that the tether model is applicable if its length is large enough
and its free endpoint Q is located in the region where a centrifugal force dominates over
the force of gravity. At the same time, it is natural that the rod model ought be applied
near the body surface, where force of gravity dominates.

4 MODEL OF A SPACECRAFT TETHERED WITH ASTEROID

The tether, implementing a unilateral constraint and connecting an asteroid surface
and a massive particle, can be in a stretched or slackened state. We build up a computer
model of the mechanical system consisting of a free rigid body and a massive particle,
connected by a massless inextensible tether. The problem is considered within a restricted
formulation: a particle, the spacecraft, does not affect dynamics of a rigid body, asteroid.
At the same time, the particle moves under gravitational attraction of the asteroid and
simultaneously under reaction of the tether. The unilateral constraint allows impacts
satisfying, for example, the Newton model.

Description of the typical mission in vicinity of the asteroid including slack mode of
the tether connecting the asteroid surface and the spacecraft, its decreasing oscillations
with impacts, final landing on the constraint and the limit pendulum-like motions of the
tethered system we undertook in [29].

Let us apply the model described above. Let the asteroid be a homogeneous triaxial
ellipsoid with semi-axes a1 > a2 > a3, described by

x2
1

a2
1

+
x2

2

a2
2

+
x2

3

a2
3

= 1

in the MRF. Assume that ellipsoid’s center of mass is fixed, and the ellipsoid itself rotates
uniformly about its axis of inertia, corresponding to the maximal moment of inertia.
Without loss of generality this is the axis OXγ of the ARF, coincident to the axis Ox3
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of the MRF. In case of Euler such solution is possible. Suppose the point of tether’s
attachment P is located on the ellipsoid surface at the point of intersection with the axis
of inertia, corresponding to the minimal moment of inertia. Without loss of generality
this is the axis Ox1 of the MRF.

Model of the tether as a unilateral constraint was implemented as a hybrid automata
with a properly defined automata state variable. This variable takes two possible values:
(a) “constraint is in a slackened state”; i. e. the spacecraft freely flies in field of the
asteroid gravity; (b) “constraint is in a stretched state”, i. e. the spacecraft moves as a
spherical pendulum also in field of asteroid gravity.

In [29] we also demonstrated so-called “landing-on-the-constraint” process with repet-
itive impacts and final change motion to constrained mode of spherical pendulum. Really
hybrid automata is one of possible implementations for unilateral constraint which in turn
is sufficiently rough model for the tethered system of two bodies. The cable is assumed
weighless and inextensible in the simplest case and without any resistance to bending.
Thus when the distance between endpoints is less than the cable length then the tension
force is equal to zero. The force interaction takes place only if the unilateral constraint
arises with impacts or impactless. Evidently the case of the impact is the most general
one. Here we use the simplest case of Newtonian impact model.

Approximations are known [35] for systems with impacts having potential energy of
large value. Elastic and viscous components are included in frame of Newtonian impact
model. We performed comparison of pure impact model with linear elastic and viscous
models during the process of “landing on constraint” as an example. The first model
performs multiple impacts and soon starts its limit pendulum-like motions. The second,
linear, model performs its decreasing oscillations in much more slow pace.

At the same time if we consider the non-linear model of repulsing force instead of linear
model then this force supposed to act inside the thin, of thickness ε � 1, layer. This
layer simulates the boundary compliance for the constraint under analysis. The force can
have the following expression

Felast =





c · tan

(
π

2

∆�

ε

)
for ∆� ≥ 0

0 for ∆� < 0

where c is the stiffness coefficient, ∆� is the deviation from the constraint virtual boundary
such that for ∆� < 0 the constraint/contact are absent and for ∆� ≥ 0 the constraint is
simulated by the elastic resistance force being increased fast up to infinity.

Numeric results are shown in Figure 2 where two variables ∆� for two models under
verification, one with impacts and nonlinear with compliance, are compared in the process
of landing on the constraint. One can see easily that non-linear model represented above
gives an approximation of much more better quality while the landing process.

Let us consider in more detail the motivation of the last model use. The complicated
dynamical picture can arise in case of the account for the interconnecting tether mass.
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Figure 2: Comparison of two models

Let for definiteness and simplicity we have the tether lumped model as a chain sufficiently
long and consisting of the discrete elements which are particles of sufficiently small masses
being interconnected by weighless and inextensible cable segments. In such the model if
each the segment is simulated as a hybrid automata then it is easy to see that combining
interactions via impacts is transformed to the problem of large computational complexity.

To resolve this problem we can undertake the replacement of inextensible segments
by ones of the model described above with sufficiently small compliance. Computational
experiments show that inextensible and compliant segments demonstrate dynamical close-
ness. As a result we can conclude that application of lumped model with compliance can
be useful for efficient approximation of the tethered system dynamics with massive inter-
connected cables. For this we also have to remark that real cables are sooner compliant
than inextensible.

5 CONCLUSION

As a result we can make some numerical observations:
–Lumped model with inextensible elements with impacts approximates source problem
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having massive tethers;
–Lumped model with compliance approximates model of the hybrid automata with

impacts;
–The latter model can be used for approximating dynamical problems with tethers

having non-zero masses.
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(2004, Juin) 35 p.

[15] Burov, A., Ricard, N. On lunar elevator. Actual problems of the cosmonautics devel-
opment. Proceedings of XXIX academic readings on cosmonautics, Moscow (2005)
pp. 88.

[16] Burov, A. A. and Kosenko, I. I. On relative equilibria of an orbital station in regions
near the triangular libration points. Doklady Physics (2007) 52:9:507–509.

[17] Burov, A. A., Kononov, O. I., Guerman, A. D. Relative equilibria of a Moon –
tethered spacecraft. Advances in the Astronautical Sciences (2011) 136:2553–2562.

[18] Burov, A. A., German, A. D., Kosenko, I. I. On plane oscillations of a pendulum
with variable length suspended on the surface of a planet’s satellite. Cosmic Research
(2014) 52:4:289–294.

[19] Beletsky, V. V., Levin, E. M. Mechanics of a Lunar cable system. Cosmic Research
(1982) 20:5:760–765.

[20] Beletsky, V. V., Levin, E. M. Dynamics of Space Tether Systems. Advances in the As-
tronautical Sciences. Vol.83. American Astronautical Society, Springfield, VA, (1993).

[21] Pearson, J., Levin, E., Oldson, J., Wykes, H. The Lunar space elevator. IAC-04-
IAA.3.8.3.07, 55th International Astronautical Congress, Vancouver, Canada (2004,
October 4–8).

[22] Levin, E. M. Lunar tether transport. Report for Star Inc. (2005, March).

[23] Pearson, J., Levin, E., Oldson, J., Wykes, H. Lunar space elevators for cislunar space
development. Phase I Final Technical Report. Star Inc. (2005, May).

[24] Rodnikov, A. V. Equilibrium positions of a weight on a cable fixed to a dumbbell-
shaped space station moving along a circular geocentric orbit. Cosmic Research
(2006) 44:1:58–68.

11

202



Alexander A. Burov, Ivan I. Kosenko and Vasily I. Nikonov

[25] Mashayekhi, M. J., and Misra, A. K. Tether assisted near earth object diversion.
Acta Astronautica (2012) 75: :71–77.

[26] Mashayekhi, M. J., and Misra, A. K. Optimization of tether-assisted asteroid deflec-
tion. Journal of Guidance, Control, and Dynamics (2014) 37:3:898–906.

[27] Mashayekhi, M. J., and Misra, A. K. Effect of the finite size of an asteroid on its de-
flection using a tether-ballast system. Celestial Mechanics and Dynamical Astronomy
(2016) 125:3:363–380.

[28] Mashayekhi, M. J., Keshmeri, M., and Misra, A. K.. Dynamics of a tether system
connected to an irregularly shaped celestial body. Journal of the Astronautical Sci-
ences (2016) 63:3:206–220.

[29] Burov, Alexander A., Guerman, Anna D., Kosenko, Ivan I., Nikonov, Vasily I. Dy-
namics of a pendulum anchored to a rotating asteroid. IFAC PapersOnLine (2018)
51:2:867–872.

[30] Guerman, A. D. Equilibria of multibody chain in orbit plane. Journal of Guidance,
Control, and Dynamics (2003) 26:6:942–948.

[31] Guerman, A. D. Spatial equilibria of multibody chain in a circular orbit. Acta As-
tronautica (2006) 58:1:1–14.

[32] Kireenkov, A. A. Improved theory of the combined dry friction in problems of aviation
pneumatics dynamics. In: Proceedings of the 7th International Conference on Coupled
Problems in Science and Engineering, COUPLED PROBLEMS 2017 (2017) 1293–
1298.

[33] Vashkovjak, M. A. On the stability of circular “asteroid” orbits in an N -planetary
system. Celestial mechanics (1976) 13:3:313–324.

[34] Burov, A. A., Guerman, A. D., and Sulikashvili, R. S. The orbital motion of a
tetrahedral gyrostat. PMM Journal of Applied Mathematics and Mechanics (2010)
74:4:425–435.

[35] Kozlov, V. V., Treshchev, D. V., Billiards: A Genetic Introduction to the Dynamics
of Systems with Impacts. Translations of Mathematical Monographs, vol. 89. Provi-
dence, RI: Amer. Math. Soc. (1991).

12

203




