209 research outputs found

    Magnetization and susceptibility of ferrofluids

    Full text link
    A second-order Taylor series expansion of the free energy functional provides analytical expressions for the magnetic field dependence of the free energy and of the magnetization of ferrofluids, here modelled by dipolar Yukawa interaction potentials. The corresponding hard core dipolar Yukawa reference fluid is studied within the framework of the mean spherical approximation. Our findings for the magnetic and phase equilibrium properties are in quantitative agreement with previously published and new Monte Carlo simulation data.Comment: 8 pages including 4 figure

    A simple scheme for precise relative frequency stabilization of lasers

    Get PDF
    We present a simple scheme for tuneable relative frequency stabilization of lasers. A highly sensitive and accurate frequency-to-voltage converter is used to derive an error signal from the beat note between two lasers. We analyze in detail detector noise and drift, modulation detection bandwidth, and cross-talk from power modulation. The results indicate that sub-kHz relative linewidth and a locking point drift on the order of 100 Hz for times scales of 1 h are achievable. The scheme can, therefore, be applied to situations where up to now only optical PLLs could provide sufficient accuracy and precision. To demonstrate its potential for high-resolution, high-precision spectroscopy we lock a diode laser to a fs-frequency comb and find a relative linear drift of 314 Hz during a 2.8 h period

    Quantum mechanical ab-initio simulation of the electron screening effect in metal deuteride crystals

    Full text link
    In antecedent experiments the electron screening energies of the d+d reactions in metallic environments have been determined to be enhanced by an order of magnitude in comparison to the case of gaseous deuterium targets. The analytical models describing averaged material properties have not been able to explain the experimental results so far. Therefore, a first effort has been undertaken to simulate the dynamics of reacting deuterons in a metallic lattice by means of an ab-initio Hartree-Fock calculation of the total electrostatic force between the lattice and the successively approaching deuterons via path integration. The calculations have been performed for Li and Ta, clearly showing a migration of electrons from host metallic to the deuterium atoms. However, in order to avoid more of the necessary simplifications in the model the utilization of a massive parallel supercomputer would be required.Comment: 11 pages, 12 figures, svjour class. To be published in Eur. Phys. J.

    Enhancement of the Deuteron-Fusion Reactions in Metals and its Experimental Implications

    Full text link
    Recent measurements of the reaction d(d,p)t in metallic environments at very low energies performed by different experimental groups point to an enhanced electron screening effect. However, the resulting screening energies differ strongly for divers host metals and different experiments. Here, we present new experimental results and investigations of interfering processes in the irradiated targets. These measurements inside metals set special challenges and pitfalls which make them and the data analysis particularly error-prone. There are multi-parameter collateral effects which are crucial for the correct interpretation of the observed experimental yields. They mainly originate from target surface contaminations due to residual gases in the vacuum as well as from inhomogeneities and instabilities in the deuteron density distribution in the targets. In order to address these problems an improved differential analysis method beyond the standard procedures has been implemented. Profound scrutiny of the other experiments demonstrates that the observed unusual changes in the reaction yields are mainly due to deuteron density dynamics simulating the alleged screening energy values. The experimental results are compared with different theoretical models of the electron screening in metals. The Debye-H\"{u}ckel model that has been previously proposed to explain the influence of the electron screening on both nuclear reactions and radioactive decays could be clearly excluded.Comment: 22 pages, 12 figures, REVTeX4, 2-column format. Submitted to Phys. Rev. C; accepte

    Magnetic properties of colloidal suspensions of interacting magnetic particles

    Full text link
    We review equilibrium thermodynamic properties of systems of magnetic particles like ferrofluids in which dipolar interactions play an important role. The review is focussed on two subjects: ({\em i}) the magnetization with the initial magnetic susceptibility as a special case and ({\em ii}) the phase transition behavior. Here the condensation ("gas/liquid") transition in the subsystem of the suspended particles is treated as well as the isotropic/ferromagnetic transition to a state with spontaneously generated long--range magnetic order.Comment: Review. 62 pages, 4 figure

    Anomalous enhancements of low-energy fusion rates in plasmas: the role of ion momentum distributions and inhomogeneous screening

    Full text link
    Non-resonant fusion cross-sections significantly higher than corresponding theoretical predictions are observed in low-energy experiments with deuterated matrix target. Models based on thermal effects, electron screening, or quantum-effect dispersion relations have been proposed to explain these anomalous results: none of them appears to satisfactory reproduce the experiments. Velocity distributions are fundamental for the reaction rates and deviations from the Maxwellian limit could play a central role in explaining the enhancement. We examine two effects: an increase of the tail of the target Deuteron momentum distribution due to the Galitskii-Yakimets quantum uncertainty effect, which broadens the energy-momentum relation; and spatial fluctuations of the Debye-H\"{u}ckel radius leading to an effective increase of electron screening. Either effect leads to larger reaction rates especially large at energies below a few keV, reducing the discrepancy between observations and theoretical expectations.Comment: 6 pages, 3 figure

    Subharmonic bifurcation cascade of pattern oscillations caused by winding number increasing entrainment

    Full text link
    Convection structures in binary fluid mixtures are investigated for positive Soret coupling in the driving regime where solutal and thermal contributions to the buoyancy forces compete. Bifurcation properties of stable and unstable stationary square, roll, and crossroll (CR) structures and the oscillatory competition between rolls and squares are determined numerically as a function of fluid parameters. A novel type of subharmonic bifurcation cascade (SC) where the oscillation period grows in integer steps as n(2π)/(ω)n (2\pi)/(\omega) is found and elucidated to be an entrainment process.Comment: 7 pages, 4 figure

    Material dependence of 2

    Full text link
    Calculations of the material dependence of 2H(d,p)3H cross section and neutron-to-proton branching ratio of d+d reactions have been performed including a concept of the 0+ threshold single particle resonance. The resonance has been assumed to explain the enhanced electron screening effect observed in the d+d reaction for different metallic targets. Here, we have included interference effects between the flat and resonance part of the cross section, which allowed us to enlighten observed suppression of the neutron channel in some metals such as Sr and Li. Since the position of the resonance depends on the screening energy that strongly depends on the local electron density. The resonance width, observed for the d+d reactions in the very hygroscopic metals (Sr and Li) and therefore probably contaminated by oxides, should be much larger than for other metals. Thus, the interference term of the cross section depending on the total resonance width provides the material dependences

    Enhancement of fusion rates due to quantum effects in the particles momentum distribution in nonideal media

    Full text link
    This study concerns a situation when measurements of the nonresonant cross-section of nuclear reactions appear highly dependent on the environment in which the particles interact. An appealing example discussed in the paper is the interaction of a deuteron beam with a target of deuterated metal Ta. In these experiments, the reaction cross section for d(d,p)t was shown to be orders of magnitude greater than what the conventional model predicts for the low-energy particles. In this paper we take into account the influence of quantum effects due to the Heisenberg uncertainty principle for particles in a non-ideal medium elastically interacting with the medium particles. In order to calculate the nuclear reaction rate in the non-ideal environment we apply both the Monte Carlo technique and approximate analytical calculation of the Feynman diagram using nonrelativistic kinetic Green's functions in the medium which correspond to the generalized energy and momentum distribution functions of interacting particles. We show a possibility to reduce the 12-fold integral corresponding to this diagram to a fivefold integral. This can significantly speed up the computation and control accuracy. Our calculations show that quantum effects significantly influence reaction rates such as p +7Be, 3He +4He, p +7Li, and 12C +12C. The new reaction rates may be much higher than the classical ones for the interior of the Sun and supernova stars. The possibility to observe the theoretical predictions under laboratory conditions is discussed
    • …
    corecore