10,600 research outputs found

    UML Deficiencies from the perspective of Automatic Performance Model Generation

    Get PDF
    A discussion surrounding the use of UML for distributed system design

    Generation of optimum vertical profiles for an advanced flight management system

    Get PDF
    Algorithms for generating minimum fuel or minimum cost vertical profiles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight management system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are presented. Fuel savings due to optimum climb, free cruise altitude, and absorbing delays enroute are examined

    Communications software performance prediction

    Get PDF
    Software development can be costly and it is important that confidence in a software system be established as early as possible in the design process. Where the software supports communication services, it is essential that the resultant system will operate within certain performance constraints (e.g. response time). This paper gives an overview of work in progress on a collaborative project sponsored by BT which aims to offer performance predictions at an early stage in the software design process. The Permabase architecture enables object-oriented software designs to be combined with descriptions of the network configuration and workload as a basis for the input to a simulation model which can predict aspects of the performance of the system. The prototype implementation of the architecture uses a combination of linked design and simulation tools

    Clinical Lecture

    Get PDF
    n/

    Functional outcome of patients with spinal cord injury: rehabilitation outcome study

    Get PDF
    Objective: To increase our knowledge of neurological recovery and functional outcome of patients with spinal cord injuries in order to make more successful rehabilitation programmes based on realistic goals.Design: Descriptive analysis of data gathered in an information system.Setting: Rehabilitation centre in The Netherlands with special department for patients with spinal cord injuries.Subjects: Fifty-five patients with traumatic spinal cord lesions admitted to the rehabilitation centre from 1988 to 1994. Main outcome measures: The functional improvement was presented in terms of progress in independence in nine daily activity skills. Independence was rated on a four-point scale.Results: From admission to discharge, lesions in 100% of patients with tetraplegia and 96% of patients with paraplegia remained complete. Significant progress in independence was made in self-care, ambulation and bladder and bowel care. Differences were found in the extent of functional improvement between subgroups of patients with different levels and extent of lesion. Contrary to expectations based on theoretical models, patients with complete paraplegia did not achieve maximal independence in self-care. Independent walking was only attained by patients with incomplete lesions. Regarding outcome of bladder and bowel care, poor results were found, especially the independence in defaecation and toilet transfers.Conclusions: The results of this study provided more insight into the functional outcome of a group of patients with traumatic spinal cord injury. More research is needed to evaluate the rehabilitation programmes for these patients

    The Thermal Structure of the Circumstellar Disk Surrounding the Classical Be Star gamma Cassiopeia

    Full text link
    We have computed radiative equilibrium models for the gas in the circumstellar envelope surrounding the hot, classical Be star γ\gamma Cassiopeia. This calculation is performed using a code that incorporates a number of improvements over previous treatments of the disk's thermal structure by \citet{mil98} and \citet{jon04}; most importantly, heating and cooling rates are computed with atomic models for H, He, CNO, Mg, Si, Ca, & Fe and their relevant ions. Thus, for the first time, the thermal structure of a Be disk is computed for a gas with a solar chemical composition as opposed to assuming a pure hydrogen envelope. We compare the predicted average disk temperature, the total energy loss in Hα\alpha, and the near-IR excess with observations and find that all can be accounted for by a disk that is in vertical hydrostatic equilibrium with a density in the equatorial plane of ρ(R)3\rho(R)\approx 3 to 51011(R/R)2.5gcm35\cdot 10^{-11} (R/R_*)^{-2.5} \rm g cm^{-3}. We also discuss the changes in the disk's thermal structure that result from the additional heating and cooling processes available to a gas with a solar chemical composition over those available to a pure hydrogen plasma.Comment: 11 pages, 8 figures high resolution figures available at http://inverse.astro.uwo.ca/sig_jon07.htm

    The interplay between tissue growth and scaffold degradation in engineered tissue constructs

    Get PDF
    In vitro tissue engineering is emerging as a potential tool to meet the high demand for replacement tissue, caused by the increased incidence of tissue degeneration and damage. A key challenge in this field is ensuring that the mechanical properties of the engineered tissue are appropriate for the in vivo environment. Achieving this goal will require detailed understanding of the interplay between cell proliferation, extracellular matrix (ECM) deposition and scaffold degradation.\ud \ud In this paper, we use a mathematical model (based upon a multiphase continuum framework) to investigate the interplay between tissue growth and scaffold degradation during tissue construct evolution in vitro. Our model accommodates a cell population and culture medium, modelled as viscous fluids, together with a porous scaffold and ECM deposited by the cells, represented as rigid porous materials. We focus on tissue growth within a perfusion bioreactor system, and investigate how the predicted tissue composition is altered under the influence of (i) differential interactions between cells and the supporting scaffold and their associated ECM, (ii) scaffold degradation, and (iii) mechanotransduction-regulated cell proliferation and ECM deposition.\ud \ud Numerical simulation of the model equations reveals that scaffold heterogeneity typical of that obtained from μCT scans of tissue engineering scaffolds can lead to significant variation in the flow-induced mechanical stimuli experienced by cells seeded in the scaffold. This leads to strong heterogeneity in the deposition of ECM. Furthermore, preferential adherence of cells to the ECM in favour of the artificial scaffold appears to have no significant influence on the eventual construct composition; adherence of cells to these supporting structures does, however, lead to cell and ECM distributions which mimic and exaggerate the heterogeneity of the underlying scaffold. Such phenomena have important ramifications for the mechanical integrity of engineered tissue constructs and their suitability for implantation in vivo

    Detecting Extrasolar Planets with Integral Field Spectroscopy

    Get PDF
    Observations of extrasolar planets using Integral Field Spectroscopy (IFS), if coupled with an extreme Adaptive Optics system and analyzed with a Simultaneous Differential Imaging technique (SDI), are a powerful tool to detect and characterize extrasolar planets directly; they enhance the signal of the planet and, at the same time, reduces the impact of stellar light and consequently important noise sources like speckles. In order to verify the efficiency of such a technique, we developed a simulation code able to test the capabilities of this IFS-SDI technique for different kinds of planets and telescopes, modelling the atmospheric and instrumental noise sources. The first results obtained by the simulations show that many significant extrasolar planet detections are indeed possible using the present 8m-class telescopes within a few hours of exposure time. The procedure adopted to simulate IFS observations is presented here in detail, explaining in particular how we obtain estimates of the speckle noise, Adaptive Optics corrections, specific instrumental features, and how we test the efficiency of the SDI technique to increase the signal-to-noise ratio of the planet detection. The most important results achieved by simulations of various objects, from 1 M_J to brown dwarfs of 30 M_J, for observations with an 8 meter telescope, are then presented and discussed.Comment: 60 pages, 37 figures, accepted in PASP, 4 Tables adde

    A Parameter Study of Classical Be Star Disk Models Constrained by Optical Interferometry

    Full text link
    We have computed theoretical models of circumstellar disks for the classical Be stars κ\kappa Dra, β\beta Psc, and υ\upsilon Cyg. Models were constructed using a non-LTE radiative transfer code developed by \citet{sig07} which incorporates a number of improvements over previous treatments of the disk thermal structure, including a realistic chemical composition. Our models are constrained by direct comparison with long baseline optical interferometric observations of the Hα\alpha emitting regions and by contemporaneous Hα\alpha line profiles. Detailed comparisons of our predictions with Hα\alpha interferometry and spectroscopy place very tight constraints on the density distributions for these circumstellar disks.Comment: 10 figures,28 pages, accepted by Ap

    Constraining Disk Parameters of Be Stars using Narrowband H-alpha Interferometry with the NPOI

    Full text link
    Interferometric observations of two well-known Be stars, gamma Cas and phi Per, were collected and analyzed to determine the spatial characteristics of their circumstellar regions. The observations were obtained using the Navy Prototype Optical Interferometer equipped with custom-made narrowband filters. The filters isolate the H-alpha emission line from the nearby continuum radiation, which results in an increased contrast between the interferometric signature due to the H-alpha-emitting circumstellar region and the central star. Because the narrowband filters do not significantly attenuate the continuum radiation at wavelengths 50 nm or more away from the line, the interferometric signal in the H-alpha channel is calibrated with respect to the continuum channels. The observations used in this study represent the highest spatial resolution measurements of the H-alpha-emitting regions of Be stars obtained to date. These observations allow us to demonstrate for the first time that the intensity distribution in the circumstellar region of a Be star cannot be represented by uniform disk or ring-like structures, whereas a Gaussian intensity distribution appears to be fully consistent with our observations.Comment: 23 pages, 14 figures, accepted for publication in A
    corecore