NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

GE VERATION OF OPTIMUM VERICAL PBOFILES FOR AN ADVANCED FLIGHT MAP:AGEMENT SYSTEM

John A. Sortmaen and Mark H. Waters

Contrwet NASI-15497
March 1981

nMs^

GENERATION OF OPTIMUM VERTICAL PROFILES FOR AN ADVANCED FLIGHT MANAGEMENT SYSTEM

John A. Sorensen and Mark H. Waters

Analytical Mechanics Associates, Inc.
Mountain View, California

Prepared for
Langley Research Center
under Contract NAB1-15497

N/S^

Natonal Aeronautuss and
Space Adminatration
Langley Research unter
Hampton Virgina. 65

FOREWORD

This effort for development of concepts for generating optimum vertical flight profiles that minimize fuel or direct operating costs was supported under NASA Contract No. NA؟1-15497, by Langley Research Center, Hampton, Virginia. The project Technical Monitor at Langley Research Center was Robert E. Shatiks. Technical discussion and suggestions from Mr. Shanks and Samuel A. Morello, Charles E. Knox, and Kathy Samns of Laníloy Research Center and Heinz Erzberger of NASA Ames Research Center are gratefully acknowledged.

GENERATION OF OPTIMUM VERTICAL PROPILES FOR AN

ADVANCED FLIGHT MANAGEMENT SYSTEM

John A. Sorensen
Mark H. Waters
Analytical Mecnanics Associates, Inc. Mountain View, California 94043

SUMMARY

The objective of this project is to develop and evaluate one or more algorithr; and flight management concepts for the on-board minimization of fuel or direct operating costs. These concepts are to be used for steering a CTOL aircraft in the vertical plane between fixed origin and destination airports along a given horizontal path.

In this report, algorithms for generating minimum fuel or minimum cost vertical proflles are derived and examined. The option for fixing the time of flight is included in the concepts developed. These algorithms form the basis for the design of an advanced on-board flight maragement system. The variations in the optimum vertical profiles (resulting from these concepts) due to variations in wind, takeoff mass, and range-to-destination are next presented. Fuel savings due to optimum climb, free cruise altitude, at absorbing delays enroute are txamined. Iinally, the results are surmarized, and recommendations are made for further work.

Five appendices are included which give technical details of optimum irajectory design, steering requirements for following these trajectories, modeling the aircraft, and of $\mathrm{f}-1 \mathrm{ine}$ computer programs for testing the concepts. The two computer programs developed are called OPTIM and TRAGEN, and they are available from the Computer Software Management Information Center, Barrow Hall, University of Georgia, Achens, Georgia 30601.
Page
I. INTRODUCTION 1
II. COMPUTATION OF THE OETIMUM VERTICAL PROFILE. 7
Derivation of the Optimization Algorithm 7
Generation of Nominal Optimum Trajectories 12
Example Optimum Trajectories 17
Fixed Time-of-Arrival. 27
III. PROGRAM VERIFICATION AND SENSITIVITY RESULTS 41
Optimization Verification. 42
Comparison of Optimum and Handbook Reference Profiles 50
Other Profils Comparisons and Sensitivity Studies. 55
IV. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 73
Summary and Conclusions 73
Recommendations 75
APPENDIX A. 81
TRAJECTURY OPTIMIZATION USING THE ENERGY STATE METHOD 81
APPENDIX B. 105
ENI:INE MODEL DEVELOPMENT 105
APPENDIX r. 119
MODELLING OF THE TWIN-JFI AIRCRAFT AFRODYNAMICS. 119
APPNDIX D. 129
CLIMB FUEL ESTIMATE. 129
APPENDIX E. 131
ATKCRAFT EQUATIONS OF MOIION ANH AUTOPILOT MODELS. 131
RHFERENCES 141
Figure Page
No.

1. Projected Free World Petroleum Producíion Capacity ve Consump- tion [2] 2
2. Free World Air Carrier Jet Fuel Consumption Projection [2]. 2
3. State Variables for an Optimum Climb Profile of a Medium-Range Tri-Jet Aircraft on a $200 \mathrm{n} . \mathrm{mi}$. Range Flight 18
4. State Variables for an Optimum Deacent Profile of a Medium Range Tri-Jet Aircraft on a 200 n.mi. Range Flight 20
5. State Variables for an Optimum Climb Profile of the Twin-Jet Aircraft Traveling 750 n.mi 22
6. State Variables for an Optimum Descent Profile of the Twin-Jet Aircraft Traveling 750 n.mi 24
7. Comparison of Minimum Direct-Operating-Cost Flight Profiles for the Tri-Jet Aircraft Model 26
8. Minimum Fuel Rate for the Tri-Jet Model as a Function of Cruise Altitude and Mass 31
9. Optimum Cruise Altitude and Airspeed for Tri-Jet Aircraft Flying at Minimum Fuel Rate as Functior, of Cruise Mass 32
10. Time-of-Arrival Variations as a Function of Range and Cost-of- Time C_{t}. Initial Mass of $68182 \mathrm{~kg}(150000 \mathrm{lb})$ and Cruise Altitude Fixed at $10 \mathrm{~km}(33000 \mathrm{ft})$ 33
11. Fuel Burn Variations as Functions of Takeof: Mass and Cost-of- Time C_{t}. Cruise Altitude Fixed at 10 km (33000 ft). $500 \mathrm{n} . \mathrm{mi}$. Range 34
12. Illustration of Time-of-Arrival Convergence Problem 35
13. Typical C_{D} vs C_{L} - Lift/Drag Polars 37
14. Cruise Cost as Function of Altitude and Cruise Speed for Cost- of-Time of $\$ 300 . / \mathrm{hr}$ 38
15. Cruise Cost as Function o. Altitude and Cruise Speed for Cost- of-Time of $\$ 600 . / \mathrm{hr}$ 39
16. Comparison of Optimum and Handbook Reference Type Profiles 54
17. Effect of Range Variation on Optimum Climb Flight Path Angle and Mach Number 56

l.IST OF FICURES (Con't)

Figure Page
No.
13. Effect of Initial Weight Variation on Optimum Climb Fiight Path Angle and Mach Number. 58
19. Wind Profiles Used to Study Sensitivity Effects on Optimum Profiles. 59
20. Effect of Wind Variations on Optimum Climb Flight Path Angle and Mach Number 60
21. Effect of Wind Variations on Ontimum Descent Altitude and Mach Number as Functions of Range-to-go 61
22. Comparison of Free and Fixed Cruise Altitude Profiles for the Twin-Jet Aircraft 67
23. Sketeh of Profile with Holding Pattern (Option 1) 68
24. Fuel Saved lising Option 2 as a Function of Time Delay and Range 70
25. Percentage Fuel Saved Using Option 2 as a Function of Time Delay and Range 71
A.1. Assumed Structure of Optimum Trajectories 85
A. 2 Measurment of Range trom the Origin or to the Destination. 87
A.3. Optimum Cruist Cost as a Function of Cruise Energy 91
A. 4 . Optimum Proille Energy is Kange for H_{c} - O at Cruise. 93
A. 5 . Optimum Profilu Energy vs Range for $H_{c}=0$ at Cruise. 93
A.o. Plot of fhrust and liag vs Airspeed at a Partholay Aititude 97
A.7. Uptimum Crutse Cost as a Function of Altitude for Cruise Mass $0154412 \mathrm{~kg}(120,000 \mathrm{lb})$ 97
A. $\begin{gathered}\text { optimum Cruise lost and Cruise Altitude as Functions of Cruise }\end{gathered}$ Mass for a Tri-Jet dircraft Flying into a Particular head Wind 98
d. P Pelationship hetwern the cruise cost Parameter and the Aroratatid Rango of tlight 104
K. 1. Fstimated Finginu Performane at $\mathrm{Fl} \mathrm{i}_{\mathrm{g} h} \mathrm{H}$ Ide as a Function of Altitudn 106
B.'. Fneing lde Porforman e - Surge Blecdi ('losed 107
B. Ferine lde Purtorman - Surge Bleeds open 108

LIST OF FIGURES (Con't)

Figure Page
No.
B.A. Altitude for Surge Open/Closed. 109
B.5. Fstimated Engine Performance at Flight Idle on Cold ($-22^{\circ} \mathrm{K}$) Day 110
B.6. Estimated Engine Performance at Flight Idle on a Hot $\left(+22^{\circ} \mathrm{K}\right)$ Day 111
B.7. Maximum Engine Pressure Ratio as a Function of Temperature. 113
B.8. Engine Thrust at Different Power Settings 114
B.9. Comparison of Engine Thrust Data 115
B. 10 . Corrected Fuel Flow of Engine 116
C.1. Basic Low-Speed Drag with Flap Setting. 120
C.2. High-Speed Drag with No Flap Setting 121
c.3. Increment Drag of the Landing (iear. 123
C.4. Landing Gear Drag Correction Factor for a Given Mach Number 124
C.5. Lift as a Function of Flap Sctting and Angle-of-Attack 125
C.b. Incremental Lift Coefifefent as a function of Mach Number and Altitude 127
6.7. Incremental Changes in lift Curve slope as a Function of Mach Number and Altitud. 128
D.1. Correlation for Climb Fuel Fration Estimate. 130
E.1. Vector Diagram of Longitudinal Forces 133
E.2. Elements of the longitudinal Aircraft Model 135
E.3. Control Loops for Perturbation Control of Airsped and Flight Path Ancle. 137
Table No. Page

1. Comparison of Flight Costs for $200 \mathrm{n} . \mathrm{mi}$. Range with Varying 27
2. Comparison of Optimization and Trajectoxy Generation Program Climb Results for Different Range Flights. No Wind. 61236 kg (135000 1b) Takeoff Mase. . No Wind. 61236 kg
3. Comparizon of Optimization and Trajectory Generation Program Climb Result. in the Presence of Winds. $225 \mathrm{n} . \mathrm{mi}$. Range. 61236 kg (135000 lb) Takeoff Mass 45
4. Comparison of Optimization and Trajectory Generation Program Results Descending from $10668 \mathrm{~m}(35000 \mathrm{ft})$ to 3048 m (10000 ft) 46
5. Comparison of Optimization and Trajectory Generation Program Results. Descending from $10668 \mathrm{~m}(35000 \mathrm{ft})$ to $1.8 \mathrm{~m}(6 \mathrm{ft})$ 47
6. Typical Aircraft Characteristics as Specified in Manufacturer's Handbook [24] 51
7. Comparison of Steering Techniques on Cost Performance for Tri- iet Aircraft. $500 \mathrm{n} . \mathrm{mi}$. Range. 10 km (33000 ft) Cruise Altitude 53
8. Initial Weight Error Cases Considered - Climb Profile 63
9. Wind Profile Error Cases Considered - Climb Profile 64
10. Cost Comparison for Fixed and Free Altitude Profiles 66
11. Example of Unmodeled Propulsion Losses 76
preceding page blank not filmed

SYBOLS

SYHBOLS (CONL')

GREEK 8YMBOL.S

α	- angle-of-attack (*)
γ, Y_{c}	- flight path angle with respect to airmase; comand value (*)
$\gamma_{I}, \gamma_{I C}$	- inertia) flight path angle; command value (*)
$\Delta C_{D_{\text {GEAR }}}$	- drag coefficiant due to landing gear
$\Delta C_{L_{G E A R}}$	- 1ift coefficient due to landing gear
ΔE	- change in specific energy (m)
Δh	- incremental altitude (m)
$\Delta R, \quad J x$	- incremental range (n .mi.)
Δt	- incremental time (s)
ΔW	- incremental weight (kg)
$\delta_{\text {amb }}$	- ambiant pressure ratio
δ_{T}	- throttle setting (\%)
ε	- umall distance
$\lambda, \lambda_{\text {min }}$	- cruise cost per unit distance ($\$ / \mathrm{n} . \mathrm{mi}$.) also, adjoint variable or costate used for optimization
π	- thrust control setting (throttle, EPR, or RPM)
$\pi_{u p}, \pi_{d n}$	- throttle setting during climb and descent
ρ	- atmospheric density ($\mathrm{kg} / \mathrm{m}^{3}$)
i,	- damping term in transfer function
t	- time-to-go (s)
$\Gamma_{B}{ }^{*} \quad{ }_{C}$	- constants in the transfer functions relating perturbations in r and V_{a} to perturbations in α (a)
ϕ	- terminal cost function (\$/n.mi.)
ψ, ψ_{c}	- cost per unit distance of cruise (same as λ or H_{c}) ($\$ / n . m i$.)
(1)	- ratural frequency in transfer function (s^{-1})
	- specific fuel consumption (same as S_{FC}) , ($\mathrm{kg} / \mathrm{hr}$)/N

```
amb - ambient
b - value computed on previous cycle
c - value during cruisi or command value
d - desired value
idle - value during idle thrust
max - maximum value
min - minimum value
n - nominal value
opt - optimum valuc
STD - standard day value
(') - first derivative with respect to time
(") - second derivative with respect to time
\partial( ) - partial of indicated variable
\Delta() - change in value
```


UNITS

In this report, the common British units used by U S. aircraft manufacturers are given in parentheses after a numerical value is first presented in mks units. Note that pounds mass and pounds force are both used rather than using slugs as a measure of mass. Here, the common definition of one pound mass equals (1/32.2) times one slug mass (1 slug $=$ $\left.32.2 \mathrm{lb} \mathrm{sec}{ }^{-} / \mathrm{ft}.\right)$ is used.

Abstract

 conce orlisis, and are amakenting to the fact that lue in a sytem whth bintte rosoumces. Ours natural supplite of hydrocartion fuele are betug rapidly conoumed, so that it has become mudatory that we coek to develop every feasible mans to congerve fuel. The onergy ortste and Its affect on dovaloping technology is oapacially impacting the air trangportation industry which socounte for about 4 percent of our national petroLeum comsumption [1].

The currant motivatiag factor for our air transportation fndutry to congerve fuel is the escalating coot of fet fuel. To the commerolal air carrier, reduction in fual usage mans reduction in operating costs and an ineraased profit margin [2]. For military air operations, fuel reduction also implies increased aircraft range, greater payloads, more missions, and an enhanced defense reserve [3,4]. The U.S. Air Force has an annual fuel usage of over 15 billion liters (4 billion gallons) [3], While our domestic commereial fleet used about 38 biliion liters (10 bililion gallons) in $1978[1,2]$.

Figures 1 and 2, taken from Ref. 2, illustrate che dilemmat that exists for comercial aviation - increasing aix transportation demand versus decreasing production capactty. Figure 2 also illustrates that accelerated technological advancements can potentially reduce future usage of fuel for air transportation by more than 30\%, One of these advancments is developing the ability to fly each aircraft along profiles which minimize total fuel consumption.

Tncreasing labor costs and penalties on air travel time make it desirable to minimize both fuel usage and the flight time. These factors motivate the search for a flexible procedure for generating a reference flight profile which can minimize the total cost of an operation between two airports.

Figure 1. Projected Free World Petroleura Production Capacity va Consumption [2].

Figurb 2. Frie World Air Carrier Jet Fuel Consumption Projection [2].

Comercial airline flight proifles are presently generated using pacudo-optimizetion procedures. Gtven reasomable knowleage of the jat traan, computar program based on dynasic progrumang techniquas tast a series of horisontal paths between the departure and destination pointe to find the one providing minimum cost. The horizontal paths testad are predetermined, and they typically consist of a series of interconnected segments betwaen VOR/DME and TACAN stations. The vertical pach then consists of fixed Mach number/indicated airspaed proftle for climb and descant combined with a saries of atap changes in altitude during cruise. The altitude step changes are ,ivverned by prodetermined fuel burnoff rates and air traffic controi ($A P C$) considerations. This report is focused on various aspects of computing improved vertical profiles.

This computational procedure should be capable of minimizing fuel usage, flight time, or a combination of these variables (direct operating cost - DOC). Furthermore, it should be computationally efficient and implemented so that it can be used by the pilot while airborne to change the flight profile in case of change in weather conditions, final destination, or desired arrival time. Finally, this procedure should serve as a means of automatically driving the aircraft control surfaces and engine throttle settings. One element of the work summarized in this report is the development of a procedure that can be mechanized on-board to achieve the near-optimum path.

Before continuing with specifics, it is important to mention some relevant background concerning the control of flight time. Jet transport aircraft and their associated flight schedules have traditionally been designed to move passengers and cargo rapidly, and cruise speeds have been kept near the maximum design values. Because of air transportation's efficiency, this industry has enjoyed a rapid growth even though airport and terminal area congestion is becoming a critical problem. Terminal area congestion can produce significant time delays and requirements for aircraft holding patterns to absorb these delays. Thus, we have the condition where aircraft fly at high speeds to terminal areas where they then may have to hold for over 30 minutes or even divert to an alternate airport because of congestion. In 1975, average arrival delay was from
2.9-4-6 minutes at 91 of the busiast U.S. airports [5]. It is projected that with the present eystem, this delay will grow to an averaga of $\mathbf{8 . 4}$ minutes by 1990. These delays can ensily consume any fuel saved from flying a minimim fuel profile to the terminal area [6].

Abstract

Consider also that to reduce operating costs, the air transport industry has been gradually changing flight path charactaristics from ones that emphasize speed (fast cervice; minimum time - dependent costs) to ones that tend to minimize a combination of time-of-filght and fuel. As fuel prices continue to climb, it is expected that the nominal flight path characteristics will eventually approach those of minimum fuel trajectories (which take a longer time). A host of flight management avionic systems are now appearing which may enable automatic or manual guidance tlong reduced DOC flight paths (e.g., [7]).

Another element which is affecting the evolution of our airitransportation system is the technological advancement taking place in communications capability and digital computer equipment on the ground. The ATC management is taking advantage of these advancements to upgrade their system through further uses of automation [8]. This includes the eventual development of algorithms and software to command flight profiles which (a) minimize fuel, (b) provide orderly metered traffic in and out of terminal areas, and (c) are conflict free. Thus, the ATC system will be able to anticipate congestion and inform the pilot of what his delay will be before ho reaches the terminal area (i.e., the controller will assign the pilot a desired time-of-arrival that is conflict free).

A second important element of this effort has been the extension of the optimization procedure to include the fixed time-of-arrival constraint. This extension is based on three assumptions:
a) that aircraft will soon be nominally flown along minimum fuel vertical flight paths,
h) that delays of variable length will occur at destination terminal artas because of congestion, and
c) the ATC system will be able to predict delay, inform the pilot of the magnitude of this delay while he is enroute, and give hin credit for absorbing the delay enroute.

This study evaluttes the benefit of absorbing delava enrout. .

Provious significant work in genarating optimu vertical flisht paths that minimise fual or dire:t operating conts are summarised in Rafs. 9 and 10. Schults and zagaluky developed mathomatical solutions of the minimum fuel[ixed range-ixxed time problem [11], Erwin devaloped the concapt of strategic control [5, 12] fin which control of arrival time cin be used to reduce excess fuel that resulte from delays. Also, the previous :ime based matering work of the NASA Langley staff for flight testing profile descents on the Terminal Configured Vehicle (TCV) aircraft demonstrated the practicality of thase solutions [13]. These tests varified previous simulation studies conducted by MASA and PAA personnal [14].

The NASA TCV dircraft providas a vital link in testing the feasibility and verifying the expected perforwance of both the advanced airborne flight management and ATC automation systems. The objective of this project has been to provide both profile optimization concepts and working models to be a part of an advanced flight management systam design. This design may eventually be flight tested on the TCV aircraft.

This report is organized as follows:
a). In Chapter II, algorithms of methods for generating optimum vertical profiles are derived. These methods have many options including the ability to fix the time of flight (i.e., the time-of-arrival). These procedures also form the basis for specifying on-board mechanization requirements. The algorithms have been coded into a computer program called OPTIM.
b). In Chapter III, presentation is made of an evaluation of the optimum vertical profiles using OPTIM and a program called TRAGEN. TRAGEN simulates an aircraft following a given vertical path (optimum or otherwise). Sensitivity results are presented of the variation in the optimum profile as a function of variations in wind, takeoff mass, and range-to-destination. Advantages of using free cruise altitude and fixed time-ofarrival options are also presented.
c). Chapter IV sumarizes the study. It also makes recommendations regarding further work required to upgrade the computer prograris and to mechanize the optimization techniques as part of an advanced flifnt management system.

Appendices A through E are presented to give technical details of trajectory optimization, modeling details of turbojet engine performance, medium range twin-jet transport aircraft dynamics, and climb fuel burn estimation, and steering requirements for following a reference vertical filght profile.

COMPUTATIO OF THE OPTIMLM VERTICAL PROPILE

The primary subjoct addressed hare is how to fly the aircraft in the vertical plana after the horizontal path has been epecified. That is, the origin, destimation, horizontal route, starting and anding altitudes and airspeads, and takeoff mass are fixed. The problem then is to choose the vertical fitght profile (altitude, airspead, thrust, and flight path angle time histories) to minimize cost.

In this chapter, an algorithm is first derived which serves as the basis for generating an optimum vertical profile. This profile can either be generated before flight or as background computation while in flight. This derivation is based on trajectory optimization principles which are outlined in the first part of Appendix A.

After the method of generating optimum profiles is explained, example climb and descent profiles are presented for two classes of aircraft. Then, modifications to the optimization algorithms are described which allow the user to fix the time length of the flight.

Derivation of the Optimization Algorithm

A set of nonlinear differential equations describing a point mass model of the aircraft longitudinal motion is adequate to describe the vertical motion of the aircraft for optimization purposes [16]. This model is, for no wind,

$$
\begin{align*}
\mathrm{mV}_{a} & =T \cos \alpha-D-m g \sin \gamma, \\
m V_{a} \dot{\gamma} & =T \sin \alpha+L-m g \cos \gamma, \\
\dot{h} & =V_{a} \sin \gamma, \tag{1}\\
\dot{x} & =V_{a} \cos \gamma, \\
\dot{m} & =-\dot{W} .
\end{align*}
$$

Here, the state variables are the true airspeed V_{a}, flight path angle γ, altitude h, horizontal range x, and mass m. The control variablea are the thrust T and angle-of-attack a which are both maplitude 1 imited. The variables lift L and drag D are functions of h, V_{a}, and α. The fual flow \dot{w} is a function of h, V_{a}, and T. These equations are analogous to Eqs. (A.1) in Appendix A. The cost function to be minimized is of the form,

$$
\begin{equation*}
J=\int_{t_{0}}^{t_{f}}\left(c_{f} \dot{w}+c_{t}\right) d t \tag{2}
\end{equation*}
$$

where C_{f} and C_{t} are the unit costs of fuel ($\$ / \mathrm{kg}(\$ / 1 \mathrm{~b})$) and $\mathrm{time}(\$ / \mathrm{hr})$. At this point, the final time t_{f} is free. The problem is to choose the sequence of controls (T and a) that drive Eqs. (1), satisfy the initial and final constraints, and minimize the cost of the flight, as governed by Eq. (2).

For general trajectory shaping, the flight path angle dynamics can be neglected, and it can be assumed that the angle-of-attack α is small. Then, the equations of motion of the aircraft in the longitudinal plane are

$$
\begin{align*}
& \dot{v}_{a}=(T-D) / m-g \sin \gamma, \\
& \dot{h}=v_{a} \sin \gamma, \tag{3}\\
& \dot{x}=v_{a} \cos \gamma+v_{w},
\end{align*}
$$

where the longitudinal component of the wind velocity is included.

An early attempt at obtaining simplified solutions to the minimum time-to-climb and minimum fuel-to-climb problems was made by Rutowski [15] using graphical methods. He also suggested that the aircraft could adequately be represented in such a problem by its specific energy state,

$$
\begin{equation*}
E=h+v_{a}^{2} / 2 g \tag{4}
\end{equation*}
$$

The use of this state assumes that kinetic and potential energy can be instantaneously interchanged.

Bryson, Desai, and Hoffman [16] used the energy tate approximation and differentiated Eq. (4) to obtain

$$
\begin{equation*}
\dot{E}=V_{d}(T-D) / m g \tag{5}
\end{equation*}
$$

as the single equation of motion. This assumed that lift L balanced weight ug, and true airspeed V_{a} was treated as a control variable.

Now, based on the previous researchers' experience, the mpecific energy and its derivative are defined according to Eqs. (4) and (5). The first and second of Eqs. (3) are replaced with Eq. (5).

Consider again the cost function of Eq . (2). What is actially desired is to minimize the cost in flying from origin p_{1} to destination p_{2}, where the time of flight t_{f} is considered for now to be free. The cost function can be changed to have range as the independent variable by dividing Eq. (2) by the expression for range rate, or

$$
\begin{equation*}
J=\int_{p_{1}}^{p_{2}} \frac{\left(C_{f} \dot{w}+c_{t}\right)}{v_{a} \cos \gamma+v_{w}} d x \triangleq \int_{p_{1}}^{p_{2}} \frac{d c}{d x} d x \tag{6}
\end{equation*}
$$

The remaining state equation (Eq. (5)) also is changed as

$$
\begin{align*}
\frac{d E}{d x} & =\frac{d E}{d t} / \frac{d x}{d t}, \\
& =\frac{(T-D)}{m g}\left(V_{a}-\frac{a}{\cos Y+V_{w}}\right) \tag{7}
\end{align*}
$$

This neglects fuel flow as a function of distance. Practical experience [17] has shown that as long as the current value of aircraft weight (mg) is used in Eq. (7), this simplitication is appropriate.

Equations (6) and (7) are combiner, using the procedures outlined in Appendix A to form the Hamiltonian,

$$
\begin{align*}
H & =\frac{d c}{d x}+\lambda \frac{d E}{d x} \tag{8}\\
& =\frac{C_{E} \dot{W}+c_{t}+\lambda V_{a}(T-D) / m}{V_{a} \cos Y+V_{W}}
\end{align*}
$$

As can be seen, this Hemiltonian allows for penalizing of time, it assumes no perticular form for the fuel flow \dot{W}, and it takes into account the horisontal component of the wind V_{w}.

Note, again however, that none of the terms in Eq. (8) are explicit functions of the independent variable x. Then, according to the arguments associated with Eq. (A.12) in Appendix A, this Hamiltonian is a constant. This greatly facilitates obtaining the optimum profile solution.

Again, assume that the thrust T is a function of the engine pressure ratio (EPR) setting π. The two control variables can then be considered to be π and true airspeed V_{a} for this simplified dynamic model. (These arguments can be extended so that the conventional controls - throttle and elevator deflection - are uned). Both π and V_{a} have upper and lower bounds. By following Eq. (A.ll), the Hamiltonian H is minimized according to

$$
\begin{align*}
& \frac{\partial H}{\partial \pi} \delta \pi \geq 0, \tag{9a}\\
& \frac{\partial H}{\partial V_{a}} \delta V_{a} \geq 0, \tag{9b}
\end{align*}
$$

for all admissible values of π and V_{a}. For an assumed constant value for H, Eqs. (8) and (9) constitute three equations with three unknowns π, V_{a}, and λ at every point along the optimum trajectory.

Using the arguments of Refs. $17-20$, assume that the vertical flight profile consists of three phases:
(a) a slimb portion where both altitude and energy are monctonically increasing with range;
(b) an essentially equilibrium cruise portion where thrust equals drag and lift equals weight; and
(c) a descent portion where both altitude and energy are monotonically decreasing as range-to-go decreases.

For the cruise portion, the Hmailtonim can then be written as,

$$
\begin{equation*}
H_{c}=\frac{c_{i} \dot{v}+c_{t}}{V_{a}+V_{w}} \tag{10}
\end{equation*}
$$

For a given cruise altitude and mass, the EPR satting and airspeed are found by numerical search techniques such that the value of this expression is minimized. This value of the Hamiltonian is then the constant value used to climb to and descend from this altitude. It also represents the minimum cost per unit distance traveled along the cruise path. (This implies that the cruise altitude and mass are known. Thase issues are also discussed later.)

The constant value of H_{c} can be mbstituted into Eq. (8), and Eq. (8) can be solved for the negative value of the unknown costate:

$$
\begin{equation*}
-\lambda=\frac{C_{f} \dot{W}+c_{t}-H_{c}\left(V_{a} \cos Y+V_{W}\right)}{V_{t}(T-D) / m g} \tag{11}
\end{equation*}
$$

Thus, to minimize the cost function expressed by Eq. (8) requires that values of π and V be chosen such that Eq. (11) is minimized at every point along the climb and descent path. Equation (11) is the key algorithm to both offline and on-board computation of the optimum trajectory that minimises direct operating cost.

The work of Erzberger et al $117-19$, $21 \mid$ has been based on an alternate approach to $t: .$, problem. He used specific energy E as the independent variable with the assumption that it always increases monotonically during climb and that it decreases monotonfally during descent. Thus, the remaining state variable is the last of Eqs. (3), and Eq. (8) is replaced by

$$
\begin{align*}
H & =\frac{d c}{d E}+\lambda \frac{d x}{d E} \\
& =\frac{C_{f} \dot{w}+C_{t}+\lambda\left(V_{a} \cos \gamma+V_{w}\right)}{V_{a}(T-D) / m g} \tag{12}
\end{align*}
$$

Equation (12) can be compared to Eq. (11), and it can be seen thet the Hamiltonian H and the costate variable λ have revarsed roles. Thus, these two solutions are duals of one another. For energy as the state variable, Eraberger show, using transversality conditions, that λ is constant and is equal to the negative value of the cruise cost. In this case, the Hanilonian varies in magnitude because variables within Eq. (12) vary with the magnitude of the secific energy (the independent variable).

Generation of Mominal Optimum Trajectories

Because Eqs. (11) and (12) are essentially identical in character and concept, it was convenient to make use of the computer program previously developed by Erzberger and Lee [21] to procede with generating optimum profiles. This program is based on the use of Eq. (12). To avoid confusion, the following description refers to minimizing the Hamiltonian of Eq. (12) with the costate variable λ treated as the constant. The computer program uses principles described in Ref, 21 , ard it is ummarized in the second part of Appendix A. This program (referred to as OPTIM), which generates an optimum profile between origin and destinstion points, was exteried to have additional desired features, and its specific characteristics (from a programming point of view) have been documented in a companion users' guide [22] to this report. It is instructive here, to present in general terms, the elements and steps required to generate an optimum trajectory.

The following quantities must be input to the program for generating points on the optimum profile:
a) The aircraft initial takeoff altitude, airspeed, and mass,
b) The final desircd aircraft altitude and airspeed,
c) The range and heading to be followed by the afrcraft from the origin to the destination points,
d) The wind velocity (if non-zero) and temperature profiles (if other than standard day) as functions of altitude, and
e) The values of the constants C_{I} and C_{t} in the cost function.

The program mast have accses to numarical data (either tebles or polyrumials) which produce values of lift and dras coefficients C_{L} and C_{D}, thrust T, and fuel flow \dot{W} an function: of altitude, true airspeed, temperature, and EPR setting. Also, for the particular aircraft being used, the program must have the following two sets of empirical equations:
a). A method of guessing the approximate initial cruise mass based on initial takeoff mass and the valuas of fual and time cont; and
b). A method of guessing the approximate landing masi based on the final cruise mase

Finally, the program must have an efficient procedure which can be used to find the minimum value of the Hamiltonian (Eq. (12)) at with energy level by varying one or more variables (here, π and V) over their admissible regions. For the OPTIM program, the Fibonacci search technique is used. (See Ref. 22)

It must be mentioned that for some cases, there is no cruise section of fl'ght, as is explained in Appendix A. In this case, the conatant value of the costate variable refers to what would be the cruise cost at tne nignest point on the trajectory where the profile transitions from climb to descent.

The basic steps that the optimum profile generation program follows are:
1). IGe rifnimun valuc of eruibe cost (A or 11 in $E q$. (1J)) is evaluated for various cruise masses and with altitude varying from sea level to ceiling height. The results are tabulated in a "cruise table". A typical example of crulse cost as a function of altitude is shown in Fig. A.7.
2). Based un inftial mass and values of C_{f} and C_{t}, the amount of fuel required for the elimb is approximated (See Fi. (A.38) and Fig. A.8). This produces cruise mass which is used to fetermine the ontimum cruise irst and altitude from the cruise table.
 for minimiza ion of Eq. (1.). Also, choosing the cruise cost from the cruise table also produces the associated maximum values of energy E_{c} where the climb portion of flight ends.
3). The next step is to minimize the Hamiltonian (Eq. (12)) at each point along the climb trajectory. This begins at the comr ited initial energy and stops with the precomputed final climb energy. The numerical procedure procedes as follows:
a). A step is made in specific energy $\left(E_{n}=E_{n-1}+\Delta E\right)$, where the step size is held coustant.
b). The range of acceptable values of V_{a} and π are computed for this enargy value.
c). Over these ranges, the Hamiltonian (Eq. (12)) is minimized , using the Fibcnacci techuique) with γ assumed to be small ($\cos \gamma \ldots 1$). This, then specifies the values of airspeed, lift, drag, thrust, altitude, fuel flow, and energy rate (Eq. (5)).
d). The time required to make this step is computed as

$$
\begin{equation*}
\Delta t=\Delta E / \dot{E} . \tag{13}
\end{equation*}
$$

e). The flight path angle is then computed as

$$
\begin{equation*}
\gamma=\sin ^{-1}(\Delta h / \Delta t) / V_{a} . \tag{14}
\end{equation*}
$$

f). The value of range is increased by Δx, where

$$
\begin{equation*}
\Delta x=\left(V_{a} \cos \gamma+V_{w}(h)\right) \Delta t . \tag{15}
\end{equation*}
$$

g). The aircraft mass is decreased by ΔW, where

$$
\begin{equation*}
\dot{A N}=\dot{w} \Delta t \text {. } \tag{16}
\end{equation*}
$$

It is assumed that final climb energy and initial cruise energy are equal. The above procedure is repeated until the initial cruise energy level is reached. This produces an accurate measure of the fuel burried during climb and the range traveled during climb.
4). A final approach (or landing) mass is approximated by estimating the cruise range, cruise fuel, and other related quantities (See Eqs. (A.42) - (A.46)). This procedure also produces an estimate of the final cruise altitude, energy, and cruise cost.
5). The procedures for generating the descent profile are now followed using the same sequence as for Step (3) but by going backwards in time and constraining the energy rate to be negative. This is continued until the estimated final cruise energy level is reached. This produces an accurate estimate of the fuel burned during descent and the range traveled during descent.
6). The cruise distance is now recomputed by subtracting the climb and descent ranges from the total required. This cruise distance is used to compute the final cruise mass and the final approach (landing) mase,
7). With the revised final approach mass, the descent trajectory is recomp ited uaing Stap (5). This also provides refinement of the cruise distance, the total fuel burned, and time required to travel from origin to destination airports.

The above description is somewhat simplified in that profiles of short range flights (e.g., less than $250 \mathrm{n} . \mathrm{mi}$.) require special computations. Figures A. 4 and A. 5 in Appendix A depict the shapes of the trajectories for short range for two types of control strategies. (Erzberger explains why these two distinct shapes occur in Ref. 17). If both V_{z} and π are used as controls, the trajectories have the shapes depicted ii Fig. A.5. For this case with short range, there is no cruise segment, and an iterative process is required to obtain the constant value of λ and the maximum energy state used to compute the climb and descent profiles.

If only airspeed is used as the control variable, then thrust is set at maximum climb value for climb and idle value for descent. For the tri-jet aircraft model used in this study, this could increase the cost of the typical short-range profile by about 1%. However, it simplifies mechanization and it reduces the time required to compute the profile. Trajectories for this case have the characteristics depicted in Fig. A.4. That is, they have cruise segnents, but these segments occur at altitude and energy levels lower than the optimal value $E_{c o p t}$. Again, the program must iterate on the correct value of λ, and Eq. (A.48) in Appendix A is used to compute the corresponding length of the cruise segment.

The OPTIM program has been constructed and extended so that various options can be exercised:
1). No wind or arbitrary input wind,
2). Optimize with V_{a} and π or V_{a} only,
3). Arbitrary cost terms C_{f} and C_{t},
4). Fixed or free cruise altitude,
5). Twin-jet or tri-jet medium range transport aircraft models,
6). Fixed or free time of flicht (discussed later),
7). With or without a speed constraint of 250 kt below 3048 m (10,000 ft.),
8). Start in cruise or after takeoff. For starting in cruise, the cruise altitude can be set to fixed value, or the program can compute the best altitudc asociated with the givan cruise mass.

In addition to generating optimum nominal profiles, OPTTM can be usad to examine the sensitivities in trip cost due to variations in wind, range, takeoff mase, and the cost terms C_{f} and C_{t}. Examples of these varlations are given in the next chapter.

The computations that take place in OPTIM for off-line genaration of optimum vertical profilea are also the same as would be used by an onboard f1ight management system. For the on-board mechanization, the flight engineer would enter initial and final altitude and airspeed, initial mass, range, and heading. Wind and temperature profiles and aircraft mass estimates would be updated during flight. The seven basic steps listed earlier would be recomputed every few minutes to provide a current reference trajectory to be followed.

The basic OPTIM program was based on using a medium range tri-jet, transport aircraft model. It is desirable to extend this program to model ail major classes of transport aircraft so that the program can serve as a flight planning tool for the airlines and others concerned with fuel conservation. A first step in this extension was to add the capability of generating optimum profiles for a medium range twin-jet transport aircraft. Logic was added throughout the program to account for differences in behavior and characteristics of the two aircraft.

More details on modeling the aircraft engine are presented in Appendix B. The modeling of aerodynamic characteristics of the twin-jet model is described in Appendix C. Climb mass estimation procedures are summarized in Appendix D.

Example Optimum Trajectories

Figures 3 and 4 show plots of various state variables as functions of time (or time-to-go) for optimum climb and descent of a tri-jet aircraft model traveling $200 \mathrm{n} . \mathrm{mi}$. in range. For this example, the indicated airspeed was constrained below 250 kt below 3048 m ($10,020 \mathrm{ft}$). Also, optimiza-
tion was done by varying $\rangle_{\mathbf{a}}$ only, with π set to the maximum value for climb and idle value for descent. The cost constants were $\$ 0.265 \mathrm{~kg}$ ($\$ 0.12 / 1 \mathrm{~b}$) for fu 1 and $\$ 600,00 / \mathrm{hr}$. As can be seen, when $3048 \mathrm{~m}(10,000 \mathrm{ft})$ is reached, the aircraft levels off and accelerates before continuing to climb. The opposite is true for the descent profile. Note also that on both the climb or descent profile, Mach number is generally not constant (contrary to profiles that are specified in aircraft handbooks and normally flown). Small segments of constant Mach number in Figs. 3 and 4 are due to thrust and drag data specified in tabular form at given Mach numbers. This is discussed further later.
[igures 5 and 6 show plots of various state variables as functions of time (or time-to-go) for optimum climb and descent of the twin-jet aircraft traveling $750 \mathrm{n} . \mathrm{mi}$. in range. For this example, the indicated airspeed was also constrained to be less than 250 kt below $3048 \mathrm{~m}(10,000 \mathrm{ft})$ altitude. Optimization was done by varying V_{a} and π, so the thrust could deviate from the maximum and idle values for climb and descent, respectively. The cost constants were $\$ 0.33 \mathrm{~kg}$ ($\$ 0.15 / \mathrm{lb}$) for fuel and $\$ 600.00 / \mathrm{hr}$. Again, when 3048 m ($1 \mathrm{u}, 000 \mathrm{ft}$) altitude is reached, the aircraft levels off and accelerates before continuing to climb.

By comparing Figs. 5 and 6 with Figg. 3 and 4, it is seen that the twin-jet aircraft profiles are similar in character to those of the tri-jet. One exception is that the twin-jet optimum climb profile has a relatively large portion where Mach number is held constant. (Again, it is expected that this is due to the tabular aerodynamic and engine data.) Also, for these paths, the flight path angle is rough because of the inherent assumption in the optimization theory that either altitude, airspeed, or both can be abruptly changed to obtain a change in energy. The flight path angle can either (a) be smoothed after it is generated to provide a more flyable path, or (b) the optimization process can be constrained by allowing only small changes in flight path angle between energy steps. Converting the aerodynamic and engine input data to polynominal form may also remove this problem.

Figure 3. State Variables for an Optimum Climb Profile of a Medium-Range Tri-jet Aircraft on a $200 \mathrm{n} . \mathrm{mi}$. Range Flight.

Figure 3. Concluded

Figure 4. State Variables for an Optimum Descent Profile of a Medium Range Tri-jet Aircraft on a $200 \mathrm{n} . \mathrm{mi}$. Range Flight.

Figure 4. Concluded

Figure 5. State Variables for an Optimum Climb Profile of the Twin-Jet Aircraft Traveling $750 \mathrm{n} . \mathrm{mi}$.

Figure 5. Concluded.

Figure 6. State Variables for an Optimum Descent Profile of the Twin-Jet Aircraft Traveling $750 \mathrm{n} . \mathrm{mi}$.

Figure 6. Concluded

Figure $\overline{7}$ compares the al:itude $v a$, range profiles for three cases of the tri-jet aircraft traveling 200 n .mi. For these, both V_{a} and π ware vacied. However, a head wind and tall wind were added in two of the cases to produce the differences. The wind engnitude profile is also shown in Fig. 7, and it is representative of the Denver wind measured during August, 1977. (This wind is generally from the west.)

Table 1 makes various range and cost comparisons of the three profiles shown in Fig. 7, based on values of C_{f} of $\$ 0.138 / \mathrm{kg}(\$ 0.0628 / 1 \mathrm{~b})$ and C_{t} of $\$ 500.00 / \mathrm{hr}$. It is seen that the head wind caused a total cost increase of $\$ 24.95$ (or 4.3%) while the tail wind decreased the cost $\$ 23.59$ (or 4.1\%) compared to the no wind optimum case. Data, such an presented in Table 1 , are princed for anch run of OPTIM so that the trajectory costs and other characteristics can be readily evaluated (again, see Ref. 22).

Figurs 7. Comparison of Minimum Direct-Operating-Cost Flight Profiles for the Tri-jet Aircraft Model.

Table 1. Comparison of Flight Costs for 200 n.mi, Range with Varying Wind Conditions

		Case	
	\%o Wind	Bead Wind	Tall Wind
Fuel Used (ky (Ib))			
Climb	1945.8	2013.0	1805.2
	(4289.60)	(4437.82)	(3979.66)
Descent	272.2	${ }^{295.1}$	284.1 (628.13)
	(600.19)	(650.57)	(628.13)
Total	$\begin{aligned} & 2218.0 \\ & (4889.79) \end{aligned}$	$\begin{gathered} 2308.1 \\ (5088.39) \end{gathered}$	$\begin{gathered} 2090.1 \\ (4607.80) \end{gathered}$
Range ($\mathrm{n} . \mathrm{mi}$.			
Climb	115.51	115.90	107.36
Dascent	85.24	85.78	94.60
Total	200.75	201.68	201.96
Time (min:sec)			
Climb	17:31	18:33	15:41
Descent	15:05	15:33	16:11
Total	32:36	34:06	31:53
Cost (\$)			
Climb	414.51	432.40	379.91
Descent	163.29	170.35	174.3 C
Total	577.80	602.75	554.21
Cost/Distance (\$/n.mi.)			
Climb	3.59	3.73	3.54
Descent	1.92	1.99	1.84
Total	2.88	2.99	2.74

Fixed Time-of-Arrival

One of the problems associated with increased use of air travel and air transportation of cargo is the increased congestion that is occuring at the major hub airport terminal areas. Aircraft arrive in the terminal area on a somewhat random basis. If the aircraft arrive in tou great a number. in a short period of time, they are currently placed in holding patterns by ATC. Then, they are fastructed to land so that airport arrivals are at an acceptable rate. The holding pattern approach to regulating the landing rate has several shortcomings:

1. The holding pattern is expensive to the airlines in terms of increased tuel requirements, excess vear on the aircraft, and increared crew flying time.
2. The holding pattern delays the passenger, possibly causing missed connections.
3. The risk of collision is increased by holding aircraft in the already crowded terminal areas.
4. Maintaining several aircraft in safe holding patterns increases the air traffic controller's work load substantially.

One solution to thi, problem is to regulata the time of arrival of each aircraft such that they do not arrive in random groups but rather at a systematic qcceptiohla rate. This is the ultimate goal of the FAA's metering, spacing, ani flow control projects. This requires that the aircraft have the means to compute and regulate the flight profile so that the desired time-of-arrival is met.

The airlines also like to fly their aircraft with a scheduled, prem determined trip time. This time is selected to produce acceptable operating costs and desired service to the airline customers. Thus, there is a need to control the time length of a particular flight. With these motivations, OFTIM was modified to include this capability.

If time-of-a rival t_{f} is fixed, then the objective is to minimize the total fuel burned in inciveling from p_{1} to p_{2} in time t_{f}. This h. equivalent to minimizing che function

$$
\begin{equation*}
J=\int_{0}^{t_{f}} C_{f} \dot{w} d t \tag{17}
\end{equation*}
$$

with the additional constraint that the range traveled is fixed.

The technique used in OPTIM to compute the profile that produces fixed range and fixed time-of-arrival is to $\sum_{i x} r_{f}$ and to iterate on the value of C_{t}. For each value of C_{t} chosen, a given time-of-arrival t_{f} results.

As C_{t} is increased, the value of t_{f} decreases, and vice versa. Thus, an outer loop has been added to the OPTIM logic to adjust C_{t} to produce the desired t_{f}.

One constraint that had to be built into the program is the range that the variable C_{t} could span. As C_{t} increases, the emphasis is placed on achieving minimum time. As fuel prices increase however, this is not practical. On the other hand, as C_{t} decreases, the time-of-arrival increases. This is accompanied by a slowing down in cruise speed. A practical lower bound on cruise speed is that value ($\mathrm{V}_{\mathrm{cmin}}$) where fuel. rate \dot{w} is minimized. If more time is required in cruise to reach the destination at some desired tima $t_{f d}$, then the aircraft should make up the difference by path stretching at the cruise speed $V_{c m i n}$.

This posed the question of what should the lowest value of c_{t} be such that the resultant optinum cruise speed is $\mathrm{V}_{\mathrm{cmin}}$. This value was determined as follows.

The cost of flight during cruise is expressed by setting the Hamiltainion value H_{c} in $E q$. (10) to the coefficient λ, or

$$
\begin{equation*}
\lambda=\frac{c_{f} \dot{w}+c_{t}}{v_{a}+v_{w}} \tag{18}
\end{equation*}
$$

Mathematically, the question is what value of C_{t} will provide a trimmed cruise condition such that the trimmed cruise speed V_{a} will equal $\mathrm{v}_{\mathrm{cmin}}$?

At optimum cruise speed, the cruise cost λ is minimum, or

$$
\begin{equation*}
\frac{\partial \lambda}{\partial v_{a}}=0 \tag{19}
\end{equation*}
$$

If this is also the speed where fuel rate is minimum, then

$$
\begin{equation*}
\frac{\partial \dot{\dot{w}}}{\partial V_{a}}=0 \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \lambda}{\partial V_{a}}=\frac{c_{f}}{v_{a}+v_{w}} \frac{\partial \dot{w}}{\partial v_{a}}-\frac{c_{f} \dot{w}+c_{t}}{\left(v_{a}+v_{w}\right)^{2}}=0 . \tag{21}
\end{equation*}
$$

By substituting Eq. (20) into Eq. (21), we get

$$
C_{f} \dot{w}+C_{t}=0
$$

or

$$
\begin{equation*}
C_{t \min }=-C_{f} \dot{W}_{\min } \tag{22}
\end{equation*}
$$

Note, that at this value, from Eq. (18),

$$
\begin{equation*}
\lambda_{\mathrm{min}}=0 \tag{23}
\end{equation*}
$$

Mathematically, this means that there is no cost to cruise at this condition.

Figure 8 shows the minimum fuel rate \dot{w} for the tri-jet as a funct .on of cruise altitude and cruise mass. As can be seen, flying at minimum fuel rate causes a large variation in optimum cruise altitude as cruise mass is varied. Figure 9 illustrates how optimum altitude and cruise airspeed vary as functions of cruise mass for the minimum fuel rate condition.

The results of Figs. 8 and 9 are used to compute the value of $C_{t m i n}$ and the associated cruise altitude in OPTIM. For example, for the trijet with a cruise mass of 54.43 tonne $\left(120,000 \mathrm{lb}\right.$) and a C_{f} of $\$.33 / \mathrm{kg}$ $(\$.15 / 1 \mathrm{~b})$, $\dot{\mathrm{w}}_{\mathrm{min}}$ is 2.585 tonne/hr $(5686 \mathrm{lb} / \mathrm{hr})$. This produces a $\mathrm{C}_{\mathrm{tmin}}$ of $-\$ 852.90 / \mathrm{hr}$ at an altitude of $9.25 \mathrm{~km}(30300 \mathrm{ft})$. The range on $\mathrm{C}_{\text {tmin }}$ for this aircraft is $-\$ 777.60$ to $-\$ 1042.50$ for cruise mass varying from 50 66 tomne ($110,000 \mathrm{lb}$ to $145,000 \mathrm{lb}$.

Figures 10 and 11 illustrate how time-of-arrival and fuel used vary as C_{t} varies between $+\$ 300 / \mathrm{hr}$ and $-\$ 900 / \mathrm{hr}$., for various combinations of initial mass and range-to-go for the tri-jet. In these example plots, cruise altitude

Figure 8. Minimum Fuel Rate for the Tri-Jet Model as a Function of Cruise Altitude and Mass.
is fixed at $10 \mathrm{~km}(33000 \mathrm{ft})$. The cost of fuel is set at $\$.33 / \mathrm{kg}(\$.15 / 1 \mathrm{~b})$. Note that in Fig. 10, the time-cf-arrival has a non-parabolic shape; this is different than would be expected. This indicates the presence of a convergence problem in OPTIM which is discussed shortly.

The fixed (ime-of-arrival option requires repeated generation of new sruisa conditions associated with each successive value of time cost C_{t} tried. Thus, the OPTIM logic was set up so that this process was as efficient as possible. No short range flights were assumed so that cruise altitude was always reached. The table representing cruise conditions (the cruise table), spanned altitudes from $6 \mathrm{~km}-12 \mathrm{~km}(20,000 \mathrm{ft}-$ 40.000 ft). If a fixed cruise altitude was chosen, only that altitude was used in generating the cruise table.

Figure 9. Optimum Cruise Altitude and Airspeed for a Tri-Jet Aircraft F1ying at Minimum Fuel Rate as Functions of Cruise Mass.

The cruise table consists of two parts:

1. The cruise speed setting which minimizes λ, as defined by Eq. (18), and
2. The cruise speed setting which minimizes $\dot{\mathrm{w}}$.

The second part of this table is generated only once at the beginning of the run because the $\dot{w}_{\text {min }}$ conditions do not depend on a particular C_{t} setting.

The program first sets C_{t} to zero. (This corresponds to the minimum fuel profile.) The resulting time-of-arrival T_{o} is then compared to the desired arrival time $t_{f d}$. If T_{o} is larger than $t_{f d}$, then flight is too slow. In this case, C_{t} must be positive. Next, trial values of C_{t} of $\$ 300 / \mathrm{hr}$ and $\$ 600 / \mathrm{hr}$ are used to obtain arrival times of T_{1} and T_{2}. A

Figure 10. Time-of-Arrival Variations as a Function of Range and Cost-of-Time C_{t}. Initial Mass of 68182 kg (150000 lb) and Cruise Altitude Fixed at 10 km (33000 ft).

Figure 11. Fuel Burned Variations as Functions of Takeoff Weight and Cost-of-Time C_{t}. Cruise Altitude Fixed at 10 km (330n ft). $500 \mathrm{n} . \mathrm{mi}$. Range.
quadratic equation is derived to pass through the points ($\mathrm{T}_{\mathrm{o}}, \mathrm{T}_{\mathrm{j}}, \mathrm{T}_{2}$) as a function of C_{t}. This quadratic equation is then solved for the value of C_{t} that will produce $t_{f d}$. This process is repeated using the last three values of time-of-arrival until convergence is reached.

If the time-of-arrival T_{o} is less than $t_{f d}$, then the minimum fuel profile is too fast. In this case, C_{t} must be negative. The next trial value the program uses is $C_{\text {tmin }}$ from Eq. (22). This produces the maximum time of $t_{f m a x}$. If $t_{f d}$ is greater than $t_{\text {flax }}$, a holding pattern (or path stretching) is required to make up the additional time. If $t_{f d}$ is less than $t_{\text {fmax }}\left(=T_{1}\right)$, then linear interpolation is used to obtain the next value of C_{t}. This produces time-of-arrival T_{2}. After that point, three values of time-of-arrival are available to compute a quadratic equation and solve the C_{t}. This procedure is again repeated until convergence is reached.

As predicted from Fig. 10, a convergence problem did arise in testing the fixed time-of-arrival option. This is illustrated in Fig. 12 which shows the variation in time-of-arrival for a 61.4 tonne (135000 lb) aircraft with C_{t} varying from $\$ 300 / \mathrm{hr}$ to $\$ 600 / \mathrm{hr}$. As can be seen, there is

Figure 12. Illustration of Time-of-Arrival Convergence Prohlem
about a 100 sec gap in arrival time around C_{t} of $\$ 400 / \mathrm{hr}$. A quadratic optimization algorithm was tried in place of the original Fibonacci search technique to determine if the optimixation loutine was the source. This produced some improvement but did not ramove the problem as is shown in Figure 12. Tightening the tolerances on the cruise trim conditions also did not remove the problam.

The problem was traced to the way the coefficient of $d_{r a g} C_{D}$ was determined by OPTIM in computing the cruise table. Currently, C_{D} is computed as a polynominal function of lift coefficient C_{L}, with Mach number as a parameter, as illustrated in Fig. 13. Linear interpolation is then used to obtain C_{D} for the given cruise Mach number.

Figures 14 and 15 show detailed plots of cruise cost λ of the trijet as a function of cruise speed, with cost of time set at $\$ 300 / \mathrm{hr}$ and $\$ 600 / \mathrm{hr}$. Cost of fuel is $\$.33 / \mathrm{kg}(\$.15 / 1 \mathrm{~b}$). Cruise altitude is a parameter. Note from these figures that:

1. There is a double minimum at the upper altitudes. The OPTIM program is based on there being only one minimum λ at each cruise altitude. The optimization routines used also are based on the assumption of a single minimum.
2. The minimums are along the Mach 0.76 and 0.82 lines. The Mach 0.80 line tends to pull the cost curves up creating the double minimums.

The drag coefficient C_{D} should be a continuous function of $C_{\text {I }}$ and Mach. The minimum cruise cost should not always be at either M of 0.76 or 0.82 as indicated in the cost curves. The cost curves should be smooth with a single minimum at each altitude. Thus, the aerodynamic data, as currently stored in OPTIM, produces a convergence problem in attempting to obtain fixed time-of-arrival with tolerance on the order of 2 sec .

An effort is now underway to correct the convergence problem. Steps being taken are:

Fi: ure 13. Typical C_{D} vs C_{L} - I.ift/Drag Polars

Figure 14. Cruise Cost as Function of Altitudz and Cruise Speed for Cost-of-Time of $\$ 300 . / \mathrm{hr}$.

Figure 15. Cruise Cost as Function of Altitude and Cruise Speed for Cost-of-Time of $\$ 600 . / \mathrm{hr}$.

1. The C_{D} ve C_{L} and M data are being checked carcfully to ensure that there are no kinks or bends in the curves.
2. Linear interpolation is being eliminated. Polynominal functions are being devaloped to ensure that all data vary continuously and swoothly.

The same constraints naed to be applied to modeling the propulaion data. The lesson learned is that numerical optimization in based on the natural existance of continuous, smooth surfaces, and any departure from this type of model will produce a faulty result.

Despite the current existence of the convergence problem, there is a logical solution to its removal. Also, as seen in the next chapter, having fixed time-of-arrival cawability can produce a significant flight fuel savings.

PROGRAM VERIFICATION AND SEASITIVITY RESULTS

The provious chapter and Appendix A describe an efficient way in which near-optimun flight profiles can be generated without using timeconsuming numerical techniques. Instend of iteratively solving the twopoint boundary value problem, assumptione are made so that the dynamics are simplified to two state variables. One state variable (either range or energy) becomes the independent variable, and the other is included as the single state in the Hamiltonian. Thus, the problem of solving for minimum cost profiles reducas to algebraic minimization of the Hamiltonian at each point along the profile.

How, although this method if a convenient way of generating a trajectory, the resulting trajectory must be verifled by using a more accurate model of the aircraft dynamics. Verification implles that:

1) The reference trajectory that is generated nust he flyable when the full aircraft equations of motion and constraints are taken into account.
2) The trajectory cost (Eq. (2)) as predicted by OPTIM must he essentially identical to that experien. ad by simulating more complete aircraft quations of motion.

Thus, the first objective of this chapter is to describe a companion program to OPIIM which was developed for verification of the optimization regults. This program is referred to as TRACEN (for trajectury giaration).

With OPTIM and TRAGEN as computer tools, the user has the capability to study the :haracteristics of optimum profiles in great detall and to examine alternate ways these profiles can be implemented on-roard. Irajectory characteristics are obtained by exercising OPTIM's options and by making sensitivity studies with OPTIM and TRAGFN which are the subjects of the second part of this cha: r.

To achieve optimization verification required the development of a companion computer program to C.TIM which can be used to simulate the longitudinal trajectory of an afreraft commanded to follow the reference path output from OPTIM. Some details of this program (TRAGEN) are presented in Appendix E, and a separate user's guide for this program has also been written [23].

In addition to verification of the optimization program's results, the TRAGEN : rogram has the following utility:
1). It provides a means for testing guidance laws for steering the aircraft to follow the input reference trajectory.
2). It enables study of the effect of following an incorrect reference trajectory. For example, if the OPTIM results were based on one particular wind profile and initial aircraft weight, and a different weight and wini profile actually existed, the TRAGEN simulation would allow ussessment of the effect of these errors on trajectory cost.
3). It can be used to determine the flight cost that would result from the aircraft being commanded to follow a reference trajectory suggested in the manufacturer's aircraft handbook. For example, for climb, handbook reference trajectories usually consist of following a constant indicated airspeed until a given Mach number is reached. Then, the reisrence trajectory follows this fixed Mach number until the reference cruise altitude is reached.
4). It can be used to test perturbation control schemes for removing the effect of wind gusts and other non-nominal performance sources (navigation errors, transient temperature profiles, non-standard engine performance).
5). It is expandable to test candidate on-board mechanizations of a system cf equations for generating the near-optimum vertical profile.

A five state-variable model of the aircraft is currently used in TRAGEN to simulate lotgitudinal motion. State variables are altitude, altitude rate, longitudinal range, airspeed, and aircraft mass. Currently neglecied are the rapid transient dynamics of throttle response, angle-ofattack, and pitch rate ($\left.\delta_{\mathrm{T}}, \alpha, q\right)$. The throttle is assumed to be set so
that maximum thrust is achieved during climb and idle thrust is used during descent. The cruise phase is not imulated. The altitude control variable is taken to be the angle-of-attack which has maximum and minimum limits. This degree of sophistication is adequate for testing the OPTIM results.

The TRAGEN program can readily be expanded to include throtele dynamics and short period dynamics. This would be required for further study of autothrotele and autopilot design to steer the aircraft to follow input reference trajectories. The control variables would be throttle position and elevator deflection Eor this expanded capability. A requirement for implementing this expanded simulation would be to obtain the necessary stability and control derivatives to complete the dynamic model.

The specification of reference profiles used in TRAGEN is based on using altitude as the independent variable for climb and range-to-go to the destination as the independent variable for descent. For climb, the reference trajectory consists of specifying airspeed and flight path angle (with respect to the air mass) as plecewise linear functions of altitude. At the 3048 m (10000 ft) point, the aircraft is commanded to level off and accelerate until the airspeed is reached where the climb should again continue.

To generate the control law to follow the commanded climb profile, a linear perturbation model was made of the dynamic equations,

$$
\begin{align*}
& T \cos \alpha-D\left(\alpha, h, V_{a}\right)-W \sin \gamma=m \dot{V}_{a} \tag{24}\\
& T \sin \alpha+L\left(\alpha, h, V_{a}\right)-W \cos \gamma=m V_{a} \dot{\gamma}
\end{align*}
$$

The perturbation equations and transfer functions from Eqs. (24) are given in Eqs. (F.10) and (E.11) in Appondix E. Here, it is assumed that a perturbation $\delta(x$ to the nominal angle-of-attack can be used to obtain the desired perturbations in flight path angle ($\delta \gamma$) and airspeed (δV_{a}) maintain the aircraft on the desired reference climb profile.

Because both commanded values of airspeed and fifght path angle are assumed to vary linearly with altitude, they are ramp functions, and a Type 1 control system is suggested. The original climb control law was thus set to be

$$
\begin{equation*}
\delta \alpha=\left(K_{1}+\frac{K_{2}}{s} \cdot\right)\left(V_{c}-V_{a}\right)+\left(K_{3}+\frac{K_{4}}{s}\right)\left(\gamma_{c}-\gamma\right) \tag{25}
\end{equation*}
$$

where V_{c} and γ_{c} are the commanded reference values of V_{a} and $\gamma_{0} K_{1}, K_{2}, K_{3}$, and K_{4} are control gains. The commanded values were derived according to Eqs. (E.12) and (E.13).

Experience with this control law revealed two points:

1) The integral control gain K_{2} on airspeed error was nor needed and did not particularly improve performance. Thus, it was nominally set to zero.
2) Constant values of the gains K_{1}, K_{3}, and K_{4} could be selected to provide good, stable performance throughout the climb phase. Thus, there was no need to have altitude dependent gains programmed.

No attempt was made to select the control gains so that the perturbation response was optimized. The main objedive was to obtdin a set of gains which caused the aircraft simulation to track the input reference trajectory with only a small amount of urror (which was accomplished). Gain selection for control response optimization should remain as a task to be conducted when an actual autupilot/autothrottle is being implumented and the complete aireraft dynamics are being considered.

Evaluation of Optimum Profiles Several optimum trajectories were computed by using OPTIM and then subsequently used as inputs to drive the TRAGEN simulation. For example, Table 2 presents a comparison of OPTIM and TRAGEN results at the end of the climb portion of a tri-jet aircraft model having an initlal mass of 61236 kg (135000 lb), and traveling a total. range of 150,225 , and $275 \mathrm{n} . \mathrm{mi}$. with no wind. As can be seen, the match is exceptional. The same degree of comparison was found using the two programs for difterent range and different initial mass flights.

Table 2. Comparison of Optimization and Trajactory Generation Program Climb Results for Different Range Flights. No Wind. 61236 kg (135000 1b) Takeoff Mass.

Ronge	Puel Burn - $\begin{gathered}\text { ky } \\ \text { (1b) }\end{gathered}$		Time - sec		Altitude - (ft)		Asrapeed-(ft/a)		$\text { Renge }-(\mathrm{ft})$	
n. ${ }^{\text {an }}$.	OFTIH	TMOCEN	OPTM	7RTCIM	OPTIT	mught	Orim	T140]		
150	$\begin{aligned} & 1405 \\ & (3097) \end{aligned}$	$\begin{gathered} 1405 \\ (3097) \end{gathered}$	682	680	$\begin{gathered} 7597 \\ (24924) \end{gathered}$	$\begin{gathered} 7597 \\ (24926) \end{gathered}$	$\begin{gathered} 230 \\ (756) \end{gathered}$	$\begin{gathered} 229 \\ (752) \end{gathered}$	$\begin{aligned} & 125127 \\ & (410522) \end{aligned}$	$\begin{gathered} 125054 \\ (410281) \end{gathered}$
225	$\begin{gathered} 1931 \\ (4258) \end{gathered}$	$\begin{gathered} 1931 \\ (4258) \end{gathered}$	1060	1060	$\begin{aligned} & 9760 \\ & (32021) \end{aligned}$	$\begin{aligned} & 9760 \\ & (32021) \end{aligned}$	$\begin{gathered} 244 \\ (801) \end{gathered}$	$\begin{gathered} 244 \\ (800) \end{gathered}$	$\begin{gathered} 211641 \\ (693704) \end{gathered}$	$\begin{gathered} 212936 \\ (698609) \end{gathered}$
275	$\begin{gathered} 2075 \\ (4574) \end{gathered}$	$\begin{gathered} 2073 \\ (4570) \end{gathered}$	1185	1178	$\begin{aligned} & 10319 \\ & (33855) \end{aligned}$	$\begin{aligned} & 10321 \\ & (33861) \end{aligned}$	$\begin{gathered} 244 \\ (802) \end{gathered}$	$\begin{gathered} 264 \\ (800) \end{gathered}$	$\begin{gathered} 242116 \\ (794345) \end{gathered}$	$\begin{gathered} 241033 \\ (790790) \end{gathered}$

The results with head and tail winds were not as close. Table 3 presents a comparison of OPTIM and TRAGEN results at the end of climb when the wind profile of Fig. 7 was used as both a head and tail wind for the 225 n.mi. range flight. In both cases, the more detailed simulation from IRAGEN shows that it takes a longer time period ($14-22 \mathrm{sec}$) and greater range ($4000-5000 \mathrm{~m}$ ($14000-15000 \mathrm{ft})$) than predicted by OPTIM (However, range traveled is not significant for climb.) The biggest discrepancy is the 2.6\% extra fucl required for the tail wind case. In the future, the modeling simplifications of OPTIM and the steering accuracy of the 1 RAGFN control law should be investigated to resolve this point.

Table 3. Comparison of Optimization and Trajectory Generation Program Climb Results in the Presence of Winds. $225 \mathrm{n} . \mathrm{mi}$. Range. 61236 kg (135000 1b) Takeoff Mass.

Type	Fuel Burn - kB		Time	Sec	Altitude - ${ }^{\text {fot }}$ (Airspeed- $\begin{gathered}\mathrm{m} / \mathrm{s} \\ (\mathrm{ft} / \mathrm{s})\end{gathered}$		Rang	- (ft)
Wind	UPTIM	TRAGEN	OPTIM	IRAcEN	OPTIM	TRAGEN	OPTIM	TRACEN	OPTIM	TRAGEN
Head	$\begin{gathered} 2084 \\ (4394) \end{gathered}$	$\begin{gathered} 2082 \\ (4391) \end{gathered}$	1180	1202	$\begin{gathered} 10294 \\ (33772) \end{gathered}$	$\begin{gathered} 10362 \\ (33996) \end{gathered}$	$\begin{gathered} 244 \\ (802) \end{gathered}$	$\begin{gathered} 244 \\ (802) \end{gathered}$	$\begin{gathered} 225177 \\ (738770) \end{gathered}$	$\begin{gathered} 229818 \\ (753997) \end{gathered}$
Tall	$\begin{gathered} 1701 \\ (3751) \end{gathered}$	$\begin{gathered} 1747 \\ (3851) \end{gathered}$	897	911	$\begin{gathered} 9145 \\ (30003) \end{gathered}$	$\begin{gathered} 9074 \\ (29770) \end{gathered}$	$\begin{gathered} 233 \\ (766) \end{gathered}$	$\begin{gathered} 235 \\ (772) \end{gathered}$	$\begin{gathered} 183238 \\ (601174) \end{gathered}$	$\begin{gathered} 187433 \\ (614936) \end{gathered}$

For the descent portion of the flight, the more likely variable - range-to-go to the destination point - was used as the independent variable for specifying the reference path. In this case, the descent altitude was specified as a function of range. This defined the inertial flight path angle that the aircraft should be on which is defined by Eq. (E.16). In the current version of TRAGEN, no attempt was made to control airspeed during the descent. The control law to compute the perturbation to the angle-of-attack was of the form

$$
\begin{equation*}
\delta \alpha=\left(K_{3}+\frac{K_{4}}{s}\right)\left(\gamma_{I c}-\gamma_{I}\right), \tag{26}
\end{equation*}
$$

where $\gamma_{I c}$ is the commanded inertial flight path angle.

Despite the lack of control of true airspeed during descent, the descent steering provides the same degree of matching performance between OPTIM and TRAGEN results as was experienced during the climb simalation (where true airspeed was controlled) above $3048 \mathrm{~m}(10,000 \mathrm{ft})$. Table 4 compares OPTIM and TRAGEN results at about $3048 \mathrm{~m}(10,000 \mathrm{ft})$ for the tri-jet descending with idle thrust from $10668 \mathrm{~m}(35,000 \mathrm{ft})$. The three cases are with no wind and the Denver head and tail winds shown in Fig. 7. The biggest error is in airspeed where variations of +5.8 to $-1.5 \mathrm{~m} / \mathrm{s}(+19$ to $-5 \mathrm{ft} / \mathrm{sec})$ are seen.
lable 4. Comparison of Optimization and Trajectory Generation Program Results Descending from 10668 m (35000 ft) to 3048 m (10000 ft).

These same cases are compared again at the altitude of 1.8 m (6 ft) in Table 5. The head wind case has a $-3.4 \mathrm{~m} / \mathrm{s}(-11 \mathrm{ft} / \mathrm{sec})$ difference in true airspeed which causes 7 sec time and 4.5 kg (10 lb) fuel burn differences at this point. The tail wind case has a $+5.8 \mathrm{~m} / \mathrm{s}(+19 \mathrm{ft} / \mathrm{sec})$ difference in airapeed which causes - 14 sec time and $-1.8 \mathrm{~kg}(-4 \mathrm{lb})$ fuel burn differences. These differences could possibiy be lassened with true airspeed control added.

Table 5. Comparison of Optimization and Trajectory Generation Program Results. Descending from $10668 \mathrm{~m}(35000 \mathrm{ft})$ to 1.8 m (6 ft).

$\begin{aligned} & \text { Type } \\ & \text { Hind } \end{aligned}$	Pual Burn - ${ }_{\text {ck }}^{\text {kg }}$		Time-to-80-0		Alticude - (ft)		A1rspeed-(ft/s)		Renge-to-go-(${ }_{\text {ct }}$	
	OfTtin	TKAGS	OFTIM	TAKGEM	OFTIM	TMGEN	OPTIM	TMAGES	OPTIM	THGE
Mo Wind	$\begin{gathered} 237 \\ (523) \end{gathered}$	$\begin{gathered} 237 \\ (523) \end{gathered}$	0	8	$\underset{(6)}{1.8}$	$\begin{gathered} -3.1 \\ (-10) \end{gathered}$	$\begin{gathered} 124 \\ (407) \end{gathered}$	$\underset{(413)}{126}$	0	$\begin{aligned} & -49 \\ & (-157) \end{aligned}$
Head	$\begin{gathered} 230 \\ (506) \end{gathered}$	$\begin{gathered} 234 \\ (516) \end{gathered}$	0	7	$\underset{(6)}{1.8}$	$\frac{-5.2}{(-17)}$	$\begin{gathered} 124 \\ (407) \end{gathered}$	$\underset{(396)}{121}$	0	$\begin{gathered} -96 \\ (-314) \end{gathered}$
Tall	$\begin{gathered} 243 \\ (535) \end{gathered}$	$\begin{gathered} 241 \\ (531) \end{gathered}$	0	-16	${ }_{(6)}^{1.8}$	$\begin{gathered} -4.3 \\ (-16) \end{gathered}$	$\begin{gathered} 124 \\ (407) \end{gathered}$	$\begin{aligned} & 130 \\ & (426) \end{aligned}$	0	$\begin{gathered} -85 \\ (-280) \end{gathered}$

Despite the differences between OPTIM and TRAGEN results, it is believed that the match between them is very good. That is, the results provided by OPTIM (fuel burn, time expired, trajectory followed) can be concluded to be accurate, and sensitivity runs based on using both programs will also produce accurate conclusions. A better match between the two programs can be obtained by minor adjustments to both programs.

Evaluation of Handbook Profiles It is also desired to use TRAGFN to evaluate and compare the cost of climb and descent profiles as specified in the pilot handbook with those generated by OPTIM. Thus, it was required to simulate flight along profiles specified in the pilot handbook. This required adding the capability of computing a typical handbook reference trajectory as part of the TRAGEN code.

Typical reference climb trajectories consist of the following sequence:

1. Climbing at 250 kt indicated airspeed (VIASI) to 3048 m ($10,000 \mathrm{ft}$.) (250 kt below $10,000 \mathrm{ft}$ is an ATC maximum airspeed constraint).
2. Leveling off at 10000 ft and accelerating to a new climb indicated airspeed (VIAS2) (e.g., 320 KIAS).
3. Climbing at VIAS2 until a Mach number (M3) (e.g., M=0.78) is reached.
4. Continue climbing at Mach number M3 until cruise altitude is reached.

During this climb, full throttle is typically used.

The handbook descent profile is the reverse of the above sequence with throttle set to idle. Thus, during descent M3, VIAS2, VIAS1 are used with the same constraint below 3048 m (10000 ft).

Tc compute the reference profile which follows that specified by a handbook, the following sequence of computations are used in TRAGEN. First, the altitude is incremented as

$$
\begin{equation*}
h=h_{b}+\Delta h, \tag{27}
\end{equation*}
$$

Here, the subscript b refers to the value computed during the previous cycle. In TRAGEN, Δh is currently set to 152.4 m (500 ft). Next, the desired value of true airspeed V_{T} is computed from the specified indicated airspeed $V_{\text {IAS }}$ or Mach number M by

$$
\begin{align*}
\mathrm{p} & =\mathrm{f}_{1}(\mathrm{~h}) \tag{28}\\
\mathrm{T}_{\mathrm{e}} & =\mathrm{f}_{2}(\mathrm{~h}) \tag{29}\\
& =\mathrm{p} / 3092.4 \mathrm{~T} \mathrm{e} \tag{30}\\
\mathrm{a} & =65.76 \sqrt{\mathrm{~T}} \tag{31}\\
\mathrm{M} & =\left(5 .\left(\left(\left(\left(\mathrm{V}_{\text {IAS }} / 29 .\right) / \mathrm{p}+1 .\right)^{2 / 7}\right)-1 .\right)\right)^{1 / 2} \tag{32}\\
V_{\mathrm{T}} & =M \mathrm{Ma} \tag{33}
\end{align*}
$$

Here, p and $T_{\text {e }}$ are pressure and temperature which are computed in a aubroutine as functions of altitude. Then, air density ρ and speed-of-sound a are computed as functions of p and T_{e}. If Mach number is given, Eq. (32) is skipped, and instead

$$
\begin{equation*}
v_{\text {IAS }}=29 .\left(p\left(\left(1 .+0.2 M^{2}\right)\right)^{3.5}-1 .\right)^{1 / 2} \tag{34}
\end{equation*}
$$

is used to compute the indicated airspeed.

Next, tha specific energy at h is

$$
\begin{equation*}
E=h+v_{T}^{2} / 2 g \tag{35}
\end{equation*}
$$

Then, for climb, the EPR is set at the maximum value, and thrust $T h$ and fuel flow \dot{w} are again obtained from subroutines as

$$
\begin{align*}
\text { Th } & =f_{3}(M, h), \tag{36}\\
\dot{w} & =f_{4}(M, h, T h) . \tag{37}
\end{align*}
$$

The approximation is made that lift L balances the aircraft weight w, or

$$
\begin{equation*}
L \cong W \text {. } \tag{38}
\end{equation*}
$$

Then, the coefficient of lift C_{L} is

$$
\begin{equation*}
c_{L} \simeq L /\left(1 / 2 \rho v_{T}^{2} s\right), \tag{39}
\end{equation*}
$$

where S is the aircraft reference area. Then, another subroutine is used to compute the drag coefficient C_{D} as

$$
\begin{equation*}
c_{D}=f_{5}\left(C_{L}, M\right) \tag{40}
\end{equation*}
$$

From this, drag is

$$
\begin{equation*}
D=1 / 2 \mu \mathrm{~V}_{\mathrm{T}}^{2} \mathrm{~S}_{\mathrm{D}} . \tag{41}
\end{equation*}
$$

Then, enurgy rate is computed as

$$
\begin{equation*}
\dot{E} \equiv(T-D) V_{T} / W \text {. } \tag{42}
\end{equation*}
$$

The increment of time to reach this new state is

$$
\begin{equation*}
\Delta t=\left(E-E_{b}\right) / \dot{E} \tag{43}
\end{equation*}
$$

The flight path angle to reach this state is

$$
\begin{equation*}
\gamma \cong \sin ^{-1}\left(2(\Delta h / \Delta t) /\left(V_{T_{b}}+V_{T}\right)\right. \tag{44}
\end{equation*}
$$

The change in range between the two points is about

$$
\begin{equation*}
\Delta R \equiv\left(V_{T}+V_{T_{b}}\right) \cos \gamma \Delta t / 2 \tag{45}
\end{equation*}
$$

The weight is incremented as

$$
\begin{equation*}
W=W_{b}-\dot{w} \Delta t \tag{46}
\end{equation*}
$$

The altitude is held constant to accelerate from the initial speed V_{0} to VIAS1 and to accelerate from VIASl to VIAS2.

For convenience, the descent reference profile is computed hackwards In time from the final altitude to the cruise altitude. Then, the data points are reordered so that the descent reference profile is followed in real time.

Comparison of Uptimum and Handbook Reference Profiles

One value of the TRACEN program is that it can be used to compare the fuel and direct operating costs of various profiles followed in climbing to and descending from cruise. This capability gives the user a valid way of estahlishing the potential horth of any given flight management system.

Fable 0, taken from Ref. 24 , indicates the handbook climb and descent schedules for several types of commercial aircraft. Vor example, a $727-100$ aircraft climbs (above 10000 ft) at 340 kt (IAS) until obtaining 0.78 Mach. The climb is continued at 0.78 Mach until cruise altitude is reached. Cruise is at 0.80 Mach. Deseent is also at 0.80 Mach until obtaining 340 kt (IAS). Then, descent is continued at 340 kt until 3048 m (10000 ft) is reached. At that time the aircraft levels off and decelerates to 250 kt hefore continuins to descend.

Table 6. Typical Aircraft Characteristics

as Specified in Manufacturur's Handbooks. [24]

Airplane Type	Final Cruise Altitude	Cruise Mach No.	Landing Weight*	Climb Schedule	Descent Sc sưule
137-200	$\begin{gathered} 8,839 \mathrm{~m} \\ (29,000 \mathrm{FT}) \end{gathered}$. 73	$\begin{gathered} 36,644 \mathrm{KG} \\ (80,800 \mathrm{LB}) \end{gathered}$	320 IAS/. 73 M	. 73 M/320 IAS
727-100	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 80	$\begin{gathered} 50,658 \mathrm{KG} \\ (111,700 \mathrm{LB}) \end{gathered}$	j. IAS/. 78 M	. $80 \mathrm{M} / 340$ IAS
727-200	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 80	$\begin{gathered} 56,372 \mathrm{KG} \\ (124,300 \mathrm{LB}) \end{gathered}$	340 IAS/. 78 M	. $80 \mathrm{M} / 340 \mathrm{IAS}$
DC-8-20	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 80	$\begin{gathered} 75,011 \mathrm{KG} \\ (165,400 \mathrm{LB}) \end{gathered}$	300 IAS/. 78 M	. $80 \mathrm{M} / 330$ IAS
DC-8-50	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 80	$\begin{gathered} 77,098 \mathrm{KG} \\ (170,000 \mathrm{LB}) \end{gathered}$	300 IAS/. 78 M	. $80 \mathrm{M} / 330$ IAS
DC-2-61	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 80	$\begin{gathered} 88,707 \mathrm{KG} \\ (195,600 \mathrm{LB}) \end{gathered}$	300 IAS/. 78 M	. $80 \mathrm{M} / 330$ IAS
DC-8-62	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 80	$\begin{gathered} 82,313 \mathrm{KG} \\ (181,500 \mathrm{LB}) \end{gathered}$	300 IAS/. 78 M	. $30 \mathrm{M} / 330$ IAS
DC-10-10	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 83	$\begin{gathered} 128,844 \mathrm{KG} \\ (284,100 \mathrm{LB}) \end{gathered}$	300 IAS/. 82 M	. $83 \mathrm{M} / 340$ IAS
747-100	$\begin{gathered} 10,668 \mathrm{~m} \\ (35,000 \mathrm{FT}) \end{gathered}$. 84	$\begin{gathered} 194,784 \mathrm{KG} \\ (429,500 \mathrm{LB}) \end{gathered}$	340 IAS/.82 M	. $86 \mathrm{M} / 340 \mathrm{IAS}$

* Based on average 1973 Payluad ubtuined from CAB Form 41. Sched. T-2(b).

IRAGEN was used to compare fuel and time cost of the handbook type profiles with optimum profiles generated by nPTIM. Figure 16 illustrates the speed/altitude profiles followed in a comparative example using the tri-jet alrcraft. Shown are a handbook reference proflle, an intermediate reference profile, and minimum fuel profile generated by OPTIM. The intermediate reference profile was selected to have the characteristics of the handbook profile but to have speeds more nearly equal to the mintmum fuel profile.

Table 7 presents the fucl used, time, and range covered in flying the three climb and descent segments illustrated in Fig. 16. An incremental cruise distance was added to the intermediate and minimum fuel climb profiles so that the same range would be covered for the climb comparison. Similarly, a crulse increment was added to the handbook descent profile so the same range would be covered for the descent comparison. (In Table 7, the second number after each + sign is the added cruise portion.)

As can be seen, the minimum fuel climb profile uses 169 kg (371 lb) less fuel (7.8\%) than the handhook reference climb profils. It also takes 36 sec less time and covers $15.338 \mathrm{n} . \mathrm{mi}$. less range to reach the cruise conditions. Note however, that the minimum fuel profile begins cruise at Mach 0.77 rather than 0.78 . Also note that if the cruise segment is added to the minimum fuel climb so equal range 1 s covered, the improvement in fuel is cut to $52 \mathrm{~kg}(1151 \mathrm{~h})$, or 2.3%. The minimum fuel climb profile is essentially equivalent to the intermediate profile in that it only uses 6 kg (13 1b) Less fuel.

The descent profile shows a different result. Here, the handbook descent prof ile taken alone uses 27 kg (60 lb) less fuel and 267 sec less time to descend than the "minimum fuel" profile. If the range traveled adjustment is made, however, the faster handbook descent requires 57 kg (125 lb) more overall fuel. This includes the estimated 84 kg (184 lb) required to maintain cruise at 0.8 Mach for $10 \mathrm{n} . \mathrm{mi}$. Thus, this faster descent consumes about 20% more fuel, overall, than the minimum fuel profile (although about the same mass of fuel is gained in using the minimum fuel descent as in using the minimum fuel climb.)

Table 7. Comparison of Steering Techniques on Cost Performance for Tri-jet Aircraft. $500 \mathrm{n} . \mathrm{mi}$. Range $10 \mathrm{~km}(33000 \mathrm{ft})$ Cruise Altitude.

—. - Handbook Reference Profile
— Fixed KIAS/Mach Profile Minimum Fuel Profile

Figure 1t. Comparison of Optimum and Handboot Reference Type Profiles

Optimum Profile Characteristics In conducting the sennitivity analysis of the optimum profiles, there are two items that are of particular interast:
1). The establishment of how the characteristics of optimum profiles change with variations in initial mass, range-to-go, wind profiles, and other variables affecting the aircraft performance. Knowing these variations affects how an on-board algorithm should be constructed to account for measured changes in the flight conditions.
2). The analysis of the effect that errors in the assumed flate conditions (f.e., different initial mass, different wind profile) have on the cost of flying a particular profile. For example, if assuming the wrong initial mass of the aircraft has little effect on the overall cost, then the algorithm can be constructed so that initial mass is assumed to be nominal value.

The purpose of this section is to begin to address these items for wind, initial mass, and range variations. Both OPTIM and TRAGEN are required for this purpose. Other variables that may have an effect are temperature, lift coefficient, drag coefficient, and thrust variations as well as measurement errors of altitude, flight path angle, airspeed (or Mach number), and range-to-go. These variations should be addressed at a future timu.

It is assumed for climb that Mach number and flight path angle given as functions of altitude specify the optimum profile to a given cruise altitude. Thus, by presenting plots of these varlables as functions of altitude, the effect of the variations to the nominal conditions is directly seen.

Figure 17 shows the variations in the climb profile as the total range is varicd, in steps of $25 \mathrm{n} . \mathrm{mi}$. from $75 \mathrm{n} . \mathrm{mi}$. to $275 \mathrm{n} . \mathrm{mi}$. for the tri-jet model. As can be seen, there is no variation below 3048 m (10000 ft). Above $3048 \mathrm{~m}(10000 \mathrm{ft})$, the flight path angle is initially higher and the climh Mach number is initially lower as the total range is increased. But it is seen that these curves are essentially parallel, and they merge into a common curve for range exceeding $175 \mathrm{n} . \mathrm{mi}$. Thus, it would be relatively

a) Flight Path Angle

b) Mach Number

Figure 17. Effect of Range Variation on Optimum Climb Flight Path Ancle and Mach Nunber
acsy to model these curves as a polynominal function of altitude with parametar variation due to change in range.

Figure 18 shows the variation in the profile as initial mase is varied. Again, there appears to be a parallel offset with a greater effect on flight path angle. Thera is no offect on Mach number below 3048 m (10000 ft).) Also, again it can be seen that this variation would be easy to account for in specifying an on-board reference trajectory.

The biggest uncertainty that would be experienced during the climb and descent would be the variations in the longitudinal wind. To study this effect, the two wind profiles of Fig. 19 were used as program inputs. The Denver wind is the same as is shown in Fig. 7, but Fig. 19 also has the wind headings indicated at discrete points. The "triangle" wind is a constant 270° heading wind varying linearly in magnitude with altitude at a rate of 1 knot per $305 \mathrm{~m}(1000 \mathrm{ft})$. These wind profiles were assumed to act as both tais and head winds by setting the aircraft heading to be 90° or 270°.

Figure 20 shows the effect of each of these wind profiles on the optimum climb trajectory compared to the nominal profile having no wind. As can be seen, the Mach number variation with altitude is essentially a parallel offset. The effect on flight path angle is mainly seen going from zero to $3048 \mathrm{~m}\left(10000 \mathrm{ft}\right.$) where a fan out of $\pm 0.3^{0}$ is seen. Above 3048 m (10000 ft), the variation appears more as a steady offset. Thus, again it appears that accounting for various wind profiles can be done in the on-board system in a relatively simple way.

Figure 21 shows the effect of each of the wind profiles on the optimum descent from 10 km (33000 ft). There, the plots show altitude and Mach number as functions of range-to-go to the landing point. From the first plot, it is seen that wind causes a $\pm 10 \mathrm{n} . \mathrm{mi}$. range variation in where the optimum descent should begin. This is predictable based on knowing how far the air mas: moves due to the wind during the descer: ; riod. Also, there is up to a ± 0.05 variation in the optimum Mach number as : "unction of range-to-go. From the earlier results presented, it was shown that if

Figure 18. Effect of Initial Mass Variation on Optimum Climb Flight Path Angle and Mach Nuinber

Figure 19. Wind Profiles Used to Study Sensitivity Effects on Optimum Profiles.

Figure 20. Effect of Wind Variations on Optimum Climb Flight Path Angle and Mach Number

a) Altitude

b) Mach Number

Figure 21. Effect of Wind Variations on Optimum Descent Altitude and Mach Number as Functions of Range-to-go.
the altitude-range profile was followed closely down to 3 km (10000 ft), the Mach number would probably follow the speed profile associated with the given altitude range profile. Thus, from an implementation pointof -view, the Mach variations seen above 3 km (10000 ft) in Fig. 21 are not of concern. Below 3 km (10000 ft), only one profile needs to be stored.

The results seen in Figs. 17-21 are limited in scope, in that all possible variations are not addressed. For example, the effects of variations in cruise mass and cruise altitude for the descent trajectories should be explored. However, the one thing that can be concluded is that variations of total range, initial mass, and wind profiles have predictable effects that can be easily used to modify the characterization of the nominal optimum trajectory. Thus, the process of computing the optimum climb-descent profiles does not have to take place on-board the aircraft. Instead, a nominal profile plus modifications to account for off-nominal parameter changes can be pre-computed and stored in the aircraft flight management system. This provides a very simple on-board method of computing the reference profile.

The second aspect of the sensitivity analysis was to study the effect of flying a non-optimal profile. This effort involved using TRAGEN to simulate following a given incorrect optimum profile when a different profile should have been used. Two error conditions were investigated:
a) Following an optimum profile specified for the incorrect fiatial mass
b) Following an optimum profile specified for the incorrect wind profile.

Only the climb phase was investigated.

For initial mass errors, four runs were made as shown in table 8. As can be expected, the increase in assumed initial mass causes a decrease in the optimum cruise altitude. Thus, if the aircraft is lighter than the assumed amount, it will climb faster to the lower altitude. This results in both time and fuel reduction from what was predicted to reach cruise. Cases la and ld in Table 8 were of this nature, and they show a $13-14 \%$ reduction in fuel and a $14-16 \%$ reduction in climb time for an initial error of $-6804 \mathrm{~kg}(-15000 \mathrm{lb})$ in initial mass.

Table 6. Initial Mass Error Cases Considered - Climb Proifle

Run	Initial Mass $-k_{g} \text { (} 1 \mathrm{~b} \text {) }$	Assumed Cptimum Profile Mass - kg (1b)	Change in Climb Fucl kg (1b) $-(\%)$	Change in Climb Time $\mathrm{Bec}=(\%)$
1 a	$\begin{aligned} & 61236 \\ & (135000) \end{aligned}$	$\begin{aligned} & 68040 \\ & (150000) \end{aligned}$	$\begin{aligned} & -274 \\ & (-604)(-13.1 \%) \end{aligned}$	-159 (-14.4\%)
b	$\begin{gathered} 61236 \\ (135000) \end{gathered}$	$\begin{gathered} 54432 \\ (120000) \end{gathered}$	$\begin{aligned} & +329 \\ & (+726)(+18.7 \%) \end{aligned}$	223 (+22.9\%)
c	$\begin{aligned} & 68040 \\ & (150000) \end{aligned}$	$\begin{aligned} & 61236 \\ & (135000) \end{aligned}$	$\begin{array}{cc} 371 \\ (+817) & (+19.2 \%) \end{array}$	247 (+23.3\%)
d	$\begin{gathered} 54432 \\ (120000) \end{gathered}$	$\begin{aligned} & 61236 \\ & (135000) \end{aligned}$	$\begin{gathered} 269 \\ (-592) \end{gathered}(-13.9 \%)$	-167(-15.8\%)

On the other hand, if the initial mase is assumed too small, the heavier aircraft will attempt to climb to a higher than nominal altitude. Cases 1b and lc of Table 8 show this condition for an initial mass error of $+6804 \mathrm{~kg}(+15000 \mathrm{lb})$. The result was a 19% increase in required climb fuel and a 23% increase in required climb time. It was also seen that the aircraft did not achieve the required cruise airspeeds when the incorrect optimum input altitude was reached. Climb fuel estimation accuracy is important for choosing the optimum cruise conditions.

Based on the results of Table 8, it is seen that the initial mass is an imporiant parameter to be entcred into the computations. It is better 10 assume too large an initial mass than vice versa.

For the climb wind profile errors, four more cases were studied where optimum climb profiles based on the triangle wind profile of Fig. 19 were used. The results are shown in Table 9. As can be seen, if the tail wind is greater than assumed (Cases $2 a$ and $2 d$), more time and possibly more fuel are required to achieve cruise conditions. Likewise, if the head wind is greater than assumed (Cases 2b and 2c), less time and possibly less fuel are required, although tis results are mixed. It is seen that neglecting the wind profile can vary fuel cost up to $\pm 1.5 \%$.

Table 9. Wind Profile Error Cases Considered - Climb Profiln

Run	Actual Wind Profile	Assumed Profile for Computing Optimum	$\begin{aligned} & \text { Change in } \\ & \text { Climb Fuel } \\ & \mathrm{kg}_{\mathrm{g}}(\mathrm{lb})-(\%) \end{aligned}$	Change in Climb Time $\text { Sec }-(\%)$
2a	No Wind	Head	-1 (-2) (-.05\%)	+7 (+0.7\%)
b	No Wind	Tail	+11 (+24) (+0.6\%)	-3 (-0.3\%)
c	Head	No Wind	-27 (-60) (-1.4\%)	-15 (-1.4\%)
d	Tail	No Wind	+29 (+64) (+1.5\%)	+18 (+1.7\%)

These type of sensitivity studies are important because they produce information necessary for the implementation process. Computing the optimum profile with the wrong aircraft or environment models can cause a large percentage of the expected gain from the flight management system to not be realized.

Many more sensitivity cases than those described above need to be obtained Zor determining the sensor and measurement processing requirements associcted with implementation of an optimum vertical flight management system. However, with the availability of the OPTIM and TRAGEN programs, the user is in a position to obtain these results.

Benefit of Free Cruise Altitude OPTIM was used to generate optimum profiles where the cruise altitude was both free and fixed. Figure 22 shows a comparison of twin-jet aircraft profiles where altitude is fixed at $10 \mathrm{~km}(33000 \mathrm{ft})$ and free. The initial mass of the aircraft is 40.78 tonne ($90,000 \mathrm{lb}$). Range traveled is $750 \mathrm{n} . \mathrm{mi}$. As can be seen, the climb and descent profiles for both cases are equivalent. The free-cruise altitude case begins cruise sooner (~ 32000 ft) and climbs during cruise to about 11.4 km (37500 ft).

Table 10 presents cost comparison of the two profiles shown in Fig. 22. As can be seen, the free-cruise aititude profile takes 70 sec longer to complate, but it requiras $154 \mathrm{~kg}(339 \mathrm{lb})$ less fuel than the fixedcruise altitude case. (This is reduction of 3.9\%). These results were also based on generating optimum proflles using cost of fuel C_{f} of $\$ 0.33 / \mathrm{kg}$ ($\$ 0.15 / 1 b$) and cost of time C_{t} of $\$ 600 . / h r$. With these cost figures, the direct operating cost raduction of using the climb cruise is $\$ 29.20$ (or 1.37\%) for this flight.

The fixed cruise results could have been improved perhaps, by electing a fixed cruise altitude of some value other than 10 km (33000 ft). However, the pilot is not usually given that freedom. Another improvement could have been realized by allowing a step climb in the cruise segment of the fixed-cruise altitude case - e.g., irom $10 \mathrm{~km}(33000 \mathrm{ft})$ to 11.28 km (37000 ft). An interesting and valuable addition to OPTIM would be to include the step climb option.

Benefit of Constraining Time-of-Arrival To understand the reasons why fixed time-of-arrival flight path control would be beneficial, we restate three assumptions made in Chapter I concerning the future scenario of commercial aviation:

1. Because of the increasing cost and scarcity of jet fucl, aircraft will soon he nominally flying along minimum fuel vertical flight paths.
2. Because of increasing demand for air travel, increasing congestion and delays of variable length will be occuring at the major terminal areas.
3. Because of increasing capabilities being developed and implemented in communication and computer technology, the ATC system will be able to anticipate terminal area delay times. lie controller will be able to inform the pilot early in the flight what the expected delay will be, and he will be able to assign the pilot an open time slot (time-of-arrival) ac the terminal feeder fix or outer marker.

If these assumptions hold, the pilot will have a choice of two strategies to follow to take a fixed dilay into account:

Table 10. Cont Comparison for Pixed and Free Altitude Profilas

Quantity	Climb	Cruise	Descent	Total
Fuel - kg (lb)				
Fized	1099 (2426)	2740 (6049)	167 (368)	4006 (8843)
Free	1091 (2409)	2580 (5695)	181 (399)	3852 (8504)
Distance - $\mathrm{n} . \mathrm{mi}$.				
Fixed	85.6	577.5	86.9	750.0
Free	84.6	566.1	99.4	750.0
Time - hr:mis				
Fixed	13:39	1:20:27	15:32	1:49:39
Free	13:31	1:20:01	17:16	1:50:49
Cost - \$				
Fixed	427.73	1530.53	199.61	2157.86
Free	424.37	1483.67	220.63	2128.66

1. Continue to fly his nominal minimum fuel path and then enter a "minimum fuel flow" holding pattern to absorb the delay at the end of the cruise segment, or
2. Regulate his flight path by slowing down so that he arrives at the terminal area within an acceptable tclerance of the assigned time-of-arrival.

The algorithm developed in this study generates the optimum vertical flight path between a city pair which minimizes fuel and meets the delayed time-of-arrival constralat. (Option 2 above). The fuel reduction of using this strategy is now compared to that of Option 1 as a function of the delay time.

Figure 22. Comparison of Free and Fixed Cruise Altitude Profiles for the Twin-jet Aircraft.

The method uend to generate a profile that follows the strategy of Option 1 can be described with the aketch shown in Fig. 23. It is assumed that the profile follows the segments between the sequence of foints shown in Fig. 23. The segmants followed are:

1-2: Climb along a minimum fuel segment.
2-3: Maintain a mininum fuel cruise segment to the point wiere descent would normally begin.

3-4: Continue at cruise altitude and nirspeed until the range where the minimum fuel flow airspeed is obtained during the nominal descent.

4-5: Decelerate to the minimum fuel flow airapeed while maintaining cruise altitude. This begins the holding pattern.
5-6: Remain in the holding pattern at cruise altitude and minimum fuel flow airspeed to absorb the fixed delay time

6-7: Continue with minimum fuel descent.

The fuel burned during each of these segments can be obtained from the OPTIM program normal printout. This profile is optimistic in that it assumes that the airraft leaves the holding pattern (at cruise altitude and minimum fuel flow) with no discontinuity with the optimum descent profill.

Figure 23. Sketch of Profile with llolding Pattern (Option 1).

Figures 24 and 25 show the amount and percent of fuel saved using Option 2 Instead of Option 1. The independent variable is the arri"al time delays for the medium range tri-jet aircraft with mass of 68275 kg ($150,000 \mathrm{lb}$) at takeoff. The range traveled is the other variable parameter in thase (29 min 10 mec), about $660 \mathrm{~kg}(1450 \mathrm{lb})$ of fuel can be potentially maved. Approximately 225 kg (500 lb) of fuel can be saved for anticipated 5 minute delay, independent of range.

Pigure 25 shows the percentage of fuel saved for the casez shown in Fig. 24. Up to 6% of the fuel used by Option 1 can be saved with this controlled time-of-arrival capability. The values shown in Fig. 25 are computed by dividing the reduced fuel amount by that used for controlled time-of-arrival (Option 2).

The results just presented are conservative in the sense that the holding pattern assumed to obtain the Option 1 results is ideal. Usually, holding patterns are made at lower chan cruise altitudes. The results are optimistic in the sense that for Option 2 , it is assumed that the pilot is informed of the upcoming time delay right after takeoff. Thus, further study is necessary to model a more accurate representation of the holding pattern and to consider the cases where the pilot is informed of the delay somewhere during the cruise segment of flight. However, the potential savings are clearly indicated.

Figure 24. Fuel Saved Using Option 2 as a Function of Time Delay and Range.

Figure 25. Percentage Fuel Saved lising Option 2 as a Function of Time Delay and Range.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Sumary and Conclusions

All evidence indicates that we are rapidly consuming our supply of hydrocarbon fuels. This makes it mandatory that systems be developed that allow conservation of the remaining supi ifes until alternate fuels can be developed. This is especially true of aircraft flight whicl currently has no alternatives. This repurt addresses the development of on-board algorithms for vertical steering of the aircraft to minimize fuel consumption and cost.

Chapter II derives an algorittm for computing the optimum vertical profile using range as the independent variable. Both fuel and time are penalized, and the longitudinal wind effects are taken into account. The Hamiltonian is constant for this mechanization, and it is equal to the minimum cruise cost per unit distance traveled. To obtain optimum climb and descent profiles involves minimizing a single function at discrete p^{\wedge} ints along the trajectory by proper choice of thrust and airspeed. This algorithm proved to be a dual to the one derived by Erzberger where onergy was used as the independent variable. A computer progran (called OPTIM, described in Appendix A) was used to obtain the optimum vertical profiles for typical medium range transport afrcraft flights based on these algorithms.

Chapter II also presents a n ethod of generating a mirimum fuel flight path when the time-of-arrival (or length of flight is fixed. A convergence problem sometimes occurs when using this option because aerodynamic and propulsion data are stored in tabular forms rather than as continuous functions in the programs.

In Chapter III, the accuracy of the vertical profiles obtained from OPTIM are examined by using a more complete longitudinal model of the aircraft. This model was incorporated into a computer program called

TRAGEN (described in Appendix E) which steers the aircraft to follow an input or computed reference trajectory. Results show that the OPTIM reference trajectories are both flyable and accurate in terms of fuel burned and time expended.

Chapter III also prasents the changes in characteristics of optimum reference trajectories duf to changes in range, initial mass, and wind profile for a typical transport aircraft. It is concluded trat these changes are simple modifications to the nominal reference profiles; they could be used to compute perturbations to a nominal profile on-board without recomputing the entire reference profile.

Chapter III also examines the effects of errors in the estimated values of initial mass and the wind profile on the performance obtained during climb. A 9\% increase in initial mass (6804 kg (15000 lb)) can cause a 23\% increase in time and a 19\% increase in fuel required to achieve the desired cruise conditions. Wind errors have a smaller effect. These sensitivity studies are useful for specifying how accurately various parameters which affect the flight performance need to be measured.

Chapter III also illustrates further utility of the OPTIM and TRAGEN program capabilities. Results are given which:
a). Compare the fued and time costs of a typical optimum profiie flight where the cruise altitude is constrained to 10 km or is free. The range was $750 \mathrm{n} . \mathrm{mi}$., and a twin-jet transport model was used. The path with the ifxed crutse altitude constraint required 154 kg (330 lb) more fuel which is 3.9% of the total fuel burned.
h). Investigate the benefits of having fixed time-of-arrival guidance capability on-board the aitcraft. The fuel that could be saved by using this capability to absorb delays rather than usting holding patterns was computed for delays of up to 30 min and ranges of 500,1000 , and 1500 nmi . About 225 kg (500 lb) of fuel could be saved for a 5 min delay of a tri-jet aircraft (repardless of range) using the fixed time-of-arrival option. Fuel saved could be as high as 6% of the total fuel used.
c). Compare handbook reference and optimum profiles. It was shown that an optimum climb for a tri-jet aircraft would use 3.69 kg (371 1b) less fuel (7.8\%) than the handbook reference climb profile. However, after making adjustments for equal range traveled, thin savings was reduced to $52 \mathrm{~kg}(115 \mathrm{lb})$ lיss fuel (2.3y). An optimum descent requires $57 \mathrm{~kg}(124 \mathrm{lb})$ less fuel than a faster handbook descent profile.

Many more interesting studies can be conducted with these complementary computer programs.

Recommendations

Based on the experience obtained by review of previous work, development of the OPTIM and TRAGEN program capabilities, and conversations held with many government and industry personnel associated with research and design in the $a-r$ transportation and air traffic control fields, the following recommendations are made concerning immediate future work.

The following extensions to the OPTIM and TRAGEN programs would provide the capability to obtain more realistic reference flight paths, correct known minor program errors, and add capabilities which would be useful for obtaining improved solutions for other phases of flight:

a) Modeling of 1ift and drag

The aerodynamic data used to model the aircraft lift and drag in OPTIM and TRAGEN are quite complete. However, in the course of the study it was found that great care had to be taken in obtaining lift and drag coefficients from table lookup routines. This was particularly true for drag; the drag coefficient is currently given as a function of the lift coefficient and Mach number. From a cross plot of C_{D} against Mach number for a given C_{L}, a highly non-linear result occurs in the region of typical cruise points (e.g., $M=.78$ and $\left.C_{L}=.35\right)$. Thus, tables which interpolate linearly between the lines of constant Mach number will create ridges or kinks in the data which can have an adverse effect on the determination of the optimum cruise Mach number in the OPTIM program. The kinks produce discontinuities in attempting to converge on time-of-arrival. One solution would be to use curve fitting techniques to insure that the drag coefficient is always a continuous function of both C_{L} and Mach number. This also requires that the aerodynamic data be carefully ch ecked to adjust any data points causing kinks to occur.
b). Modeling of propulsion data

The propulsion data used to model the turbofan engine for the twin-jet aircraft is strictly "uninstalled" data. For establishing trends and for making relative comparison, these data are sufficient. However, if one wishes to model a given aircraft more exactly and to predict absolute results, installation losses must be included in the modei. The losses include inlet pressure recovery losses, exhaust nozzle losses and bleed and power extraction. The following table gives data for one particular engine model to illustrate the point.

Table 11. Example of Unmodeled Propulsion Losses

$$
\begin{aligned}
\text { Mach Number } & =0.78 \\
\text { Altitude } & =9.144 \mathrm{~km}(30000 \mathrm{ft}) \\
\text { Standard Day } & \\
\text { Reference Thrust } & =18593 \mathrm{~N}(4180 \mathrm{lb}) \text { (uninstalled data) } \\
\text { Reference SFC } & =0.773
\end{aligned}
$$

Item	Thrust Change $-\frac{\Delta \mathrm{F}_{\mathrm{N}}}{\mathrm{F}_{\mathrm{N}}}$	SFC Change $-\frac{\triangle \text { SFC }}{\text { SFC }}$
Nozzle Gross Thrust Coefficient	-. 0008	+.0004
Inlet Pressure Recovery	-. 0041	$+.0015$
Bleed and Power Extraction	-. 0462	+. 0295
Total	-. 0511	+.0314
```\therefore Installed Thrust =17641 N (3966 1b) Installed Sku =0.797```		

These changes are nontrivial and should be considered when modeling an actual system. At idle conditions, the effects are even more pronounced for the bleed and power estraction because of the low level of thrust. It is recomended that these installation effects be modsled and that the recults be compared with those of the present study to establish quantitatively the installation effects.
c). Correction of the time-of-arrival convergence problem.

Currently, because most of the aerodynamic and engine characteristics are obtained (for both aircraft models) from tables using linear interpolation, there are kinks in the data. This causes convergence problems when the time-of-arrival is constrained. Steps to correct this problem would be to
a). Convert aero and engine data to continuous functions so that interpolation can be eliminated, as discussed above,
b). Ensure that there are no double minimums in the cruise cost at a particular altitude,
c). Replace or improve the optimization routine, and
d). Check out OPTIM with the modifications.

This correction is vital to smooth running of the algorithm onboard an aircraft.
d). Optimum cruise - step change in altitude.

Currently, OPTIM is based on optimum cruise climbs. This added option would be an extension to using fixed cruise altitudes. OPTIM would determine where to change altitudes in a step fashion as fuel is burned off during cruise.
e). Extend TRAGEN to simulate the entire flight path.

Currently, TkiGEN can be used to simulate either the climb or the descent profile. This addition would add logic so that cruise (constant altitude, step climb or cruise climb) could be simulated along with a three-segment climb-cruise-descent profile.
f). Takeoff performance modeling.

Currently, OPTIM begins flight path optimization calculations at an arbitrarily selected speed and altitude which is designated as the beginning of climb. If this program is to be used as a flight planning tool, some allowance must be made for the time, fuel burned and altitude attained during the takeoff phase. This phase includes the ground roll, rotation and climb during flap retraction. The takeoff performance should be studied to develop sufficient parametric data to be able to predict the velocity and altitude at the beginning of climb and the fuel burned during the takeoff. Both the ambient temperature profile and airport altitude must be taken into account.
g). Descent performance modeling.

Currently, OPTIM computes the descent portion of the trajectory with the engines usually at a flight idle power setting. In doing so, two potential constraints are ignored - the rate of increase in cabin pressure and the maximum allowable fuselage angle. Both factors are important for a commercial transport aircraft. The descent trajectory for both aircraft should be studied to determine if these constraints are aignificant in relation to the overall flight path optimization methodology used in OPTIM. If these constraints do prove to be significant, it is necessary to include these effects in both OPTIM and TRAGEN. In addition, the fuel, time, range, and altitude covered during the final descent phase with flaps and landing gear deployed need to be determired. These effects would also be included in the OPTIM and TRAGEN programs.
h). Cruise control to account for wina and temperature

Currently, OPTIM uses a single wind profile which specifies magnitude and direction as a function of altitude. This profile is used to compute the optimum climb, cruise, and descent portions of flight. There is an eventual need to develop variable profile models of the wind and temperature as functions of both
altitude and horizontal position, Then, by using thase models, the optimization techniques need to be modified to account for the modeled wind and temperature variations. This is especially important for the cruise phase of flight which may cover a large range over which the wind changes may be considerable.

## APPENDIX A

TRAJECTORY OPTIMIZATION USING THE ENERGY STATE METHOD


#### Abstract

The purpose of this Appendix is to summarize briefly the theoretical background used for optimization of trajectories. These principles form the basis of the numerical process used for computing the optimum vertical profile of a jet aircraft. More details are given in Refs. 17, 21 , and 23 . Reference 25 derives the principles upon which trajectory optimization is based. In Refs. 17 and 21, Erzberger and Lee apply these principles using the energy state approximation to obtain a practical, efficient means of generating the optimum vertical profile.


OPTIM is an extension of the original computer code developed by Erzberger and Lee that encompasses these principles and is based on their methods. The latter part of this appendix describes how OPTIM is organized.

In the following sections, the theory of trajectory optimization is first presented. Then, the application of this theory to minimizing the direct operating cost ( DOC ) of an alrcraft traveling over a fixed range is outlined. This is followed by a discussion of the details of going from theoretical expressions to a practical computer code. The theoretical points are presented without proof, iur conciseness. The reader wanting more detail should review the references.

## Theoretical Principles

In kef. 25 ., a description is given of the requirements for solving an optimization problem involving a continuous dynamic system with $n$ terminal constraints bat with fixed terminal time. This description is repeated here because it presents the basic principles which extend to the aircraft profile optimization problem.

A system (the aircraft) is governed by the nonlinear differential equations

$$
\begin{array}{ll}
\dot{x}=f(x, u, t) ; & x\left(t_{0}\right) \text { givan; }  \tag{A.1}\\
& t_{0} \leq t \leq t_{f} ;
\end{array}
$$

where $x$ is the $n$-dimensional state vector and $u$ is the m-dimensional control vector. The cost function which is to be minimized is of the form

$$
\begin{equation*}
J=\phi\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}} L(x, u, t) d t . \tag{A.2}
\end{equation*}
$$

Here, $\phi$ is the terminal cost function, and $L$ is the cost per unit time along the trajectory. The problem is to find the sequence of controls $u(t)$ that minimize J.

Firgt, the gystem equations are adjoined to $J$ with the multiplier vector $\lambda(t)$ :

$$
\begin{equation*}
J=\phi\left(x\left(t_{f}\right), t_{f}\right)+\int_{t_{0}}^{t_{f}}{ }_{\left\{L(x, u, t)+\lambda^{T}(t)\{f(x, u, t)-\dot{x}\}\right\} d t . . . ~}^{d} \tag{A.3}
\end{equation*}
$$

Then the Hamiltonian function is defined as

$$
\begin{equation*}
H(x, u, t)=L(x, u, t)+\lambda^{T}(t) f(x, u, t) \tag{A,4}
\end{equation*}
$$

Equation (A.3) is integrated by parts to yield

$$
\begin{align*}
J & =\phi\left(x\left(t_{f}\right), t_{f}\right)-\lambda^{T}\left(t_{f}\right) x\left(t_{f}\right)+\lambda^{T}\left(t_{o}\right) x\left(t_{0}\right)  \tag{A.5}\\
& +\int_{t_{0}}^{t_{f}}\left\{i l(x, u, f)+\dot{\lambda}^{T}(t) x(t)\right\} d t
\end{align*}
$$

Next, the change in $J$ due to variations in $u(t)$ and $x(t)$ is considered for fixed $t_{o}$ and $t_{f}$ :

$$
\begin{align*}
\delta J & =\left\{\left(\frac{\partial \phi}{\partial x}-\lambda^{T}\right) \delta x\right\}_{t=t_{f}}+\left(\lambda^{T} \delta x\right)_{t=t_{0}}  \tag{A.6}\\
& +\int_{t_{0}}^{t_{f}}\left\{\left(\frac{\partial H}{\partial x}+\lambda^{T}\right) \delta x+\frac{\partial H}{\partial u} \delta u\right\} d t .
\end{align*}
$$

The elements of $\lambda(t)$ are chosen to cause the coefficients of $\delta x$ in Eq. (A.6) to vanish under the integral and at $t_{f}$ :

$$
\begin{equation*}
\lambda^{T}=-\frac{\partial H}{\partial x}=-\frac{\partial L}{\partial x}-\lambda^{T} \frac{\partial f}{\partial x} ; \quad \lambda^{T}\left(t_{f}\right)=\frac{\partial \phi}{\partial x} \tag{A.7}
\end{equation*}
$$

Equations (A.7) are called the co-state equations. Then, Eq. (A.6) becomes

$$
\begin{equation*}
\delta J=\lambda^{T_{\delta x}\left(t_{0}\right)}+\int_{t_{0}}^{t_{f}} \frac{\partial H}{\partial u} \delta u d t \tag{A.8}
\end{equation*}
$$

For $J$ to be minimum, $\delta J$ must be zero for arbitrary $u(t)$; this implies that for no bounds on $u$,

$$
\begin{equation*}
\frac{\partial H}{\partial u}=0 \quad, \quad t_{0} \leq t \leq t_{f} \tag{A.9}
\end{equation*}
$$

on the optimum path. If the control variables are constrained as

$$
\begin{equation*}
C(u, t)=0 \tag{A.10}
\end{equation*}
$$

then for $u(t)$ to be minimizing, we must have $\delta J \geq 0$ for all admissible $u(t)$. This implies, from Eq. (A.8) that

$$
\begin{equation*}
\frac{\partial H}{i H}=u \quad \therefore \cdot \mathrm{H} \geq 0, \tag{A.11}
\end{equation*}
$$

for all $t$ and all admissible $\delta u(t)$. In other words, $H$ must be onimized over the set of all possible $u$; this is known as the min!mum priaciple [25].

In summary, to solve for $u(t)$ that minimizes $J$, the differential equations (A.1) and (A.7) must be solved simultaneously, where $u(t)$ is determined from Eqs. (A.9) or (A.11). The boundary conditions on the state $x$ at $t_{o}$ and $A$ at $t_{f}$ are specified, resulting in a two-point boundary-value problem.

$$
\begin{align*}
\dot{H} & =\frac{\partial H}{\partial t}+\frac{\partial H}{\partial x} \dot{x}+\frac{\partial H}{\partial u} \dot{u}+\dot{\lambda}^{T} f,  \tag{A.12}\\
& =\frac{\partial H}{\partial t}+\frac{\partial H}{\partial u} \dot{u}+\left(\frac{\partial H}{\partial x}+\dot{\lambda}^{T}\right) f .
\end{align*}
$$

Each element of Eq. (A.12) is zero on the optimum trajectory, from which we can conclude that $H$ is constant on the optimum trajectory. This latter point is used in the analysis presented in Chapter II.

## Application to Aircraft trofile Optimization Untng the Energy State Approximation

Here we are concerned with applying the above theory to the problem of choosing the thrust and airspeed values to control the aircraft verrical profile in going from one point to another. The cost function $J$ is the direct operating cost (DOC) hich is the sum of fuel and time costs. This is, in integral form,

$$
\begin{equation*}
J=\int_{0}^{t}{ }^{f}\left(C_{f} \dot{w}+c_{t}\right) d t \stackrel{\Delta}{=} \int_{0}^{t} f_{d} d t \tag{A.13}
\end{equation*}
$$

where 1 , is the cost of (uel ( $\$ / \mathrm{kg}$ or $\$ / 1 \mathrm{~b}$ ), $\dot{\mathrm{w}}$ is fuel flow (kg/lb/nr), $\mathrm{C}_{\mathrm{t}}$ is the cost of time $(\$ / h r), c_{d}$ is the direct operating cost, and $t_{f}$ is the time to fly the specified distance traveled $d_{f}$. It is also assumed that the typical vertical profile is as shown in Fig. A.l - that is, it contains climb, cruise, and descent portions which have the constraint that

$$
\begin{equation*}
d_{u p}+d_{d n} \leq d_{f} \tag{A.14}
\end{equation*}
$$

where

$$
\begin{aligned}
d_{u p}= & x\left(t_{c i}\right)=\text { the distance traveled from the start print to } \\
& \text { where the cruise segment begins (at time } \left.t=t_{c i}\right) . \\
d_{d n}= & d_{f}-x\left(t_{c f}\right)=\text { the distance traveled from the end of } \\
& \text { cruise (at time } t=t_{c f} \text { ) to where the descent segment ends. }
\end{aligned}
$$



Figure $A .1$. Assumed Structure of Optimum Trajectories

Thus, the cost function (Eq. (A.13)) can be rewritten as

$$
\begin{align*}
J & =\int_{0}^{t}{ }^{t i} c_{d} d t+\left(d_{f}-d_{u p}-d_{d n}\right) \psi+\int_{t_{c f}}^{t_{f}} c_{d} d t  \tag{A.15}\\
& =\int_{0}^{t}{ }^{c i} c_{d} d t+\left(d_{f}-x\left(t_{c i}\right)-\left[d_{f}-x\left(t_{c f}\right)\right]\right) \psi+\int_{t_{c f}}^{t_{f}} c_{d} d t .
\end{align*}
$$

where $\psi$ is the cost per unit distance while in cruise.
Simplified point-mass equations of longitudinal motion of the air-

$$
\begin{align*}
& \left.\dot{V}_{c}=(T-1)\right) / m-g \sin \gamma, \\
& \dot{h}=V_{a} \sin \gamma,  \tag{A.16}\\
& \dot{x}=V_{a} \cos \gamma+V_{w},
\end{align*}
$$

where the flight path angle ( $\gamma$ ) dynamics and mass loss due to fuel burn are neglected. Here,

```
\(V_{a}=\) true airspeed,
\(h=\) altitude,
\(V_{w}=\) longitudinal component (tangent to earth's surface) of wind speed
\(m=\) aircraft mass,
\(T=\) thrust,
\(D=\) drag.
```

Also, it is assumed that lift $\mathrm{l}, \mathrm{mg}$ cos f . The effect of miss lows is accounted for ty continuously updating mass without adding another state variable.

Specific energy $\varepsilon$ is defined as

$$
\begin{equation*}
\mathrm{s}=b+v_{a}^{2} / 2 a, \tag{A.17}
\end{equation*}
$$

which is the sui of potential and kinetic energy per unit mass. Its time derivative i. found to be

$$
\begin{equation*}
\dot{E}=v_{: S}(J-T) ; / \mathrm{mg} . \tag{A.18}
\end{equation*}
$$

The energy' state approximation is bused on the assumption that potential and kine co anergy cai be interchanged fostantanecusly. In this approximaltron, the energy state variable replaces altitude and atropeed state vartatilis [Dbl. Thus, Er i. ( 1,17 ) can be used in place of $\dot{\mathrm{V}}_{\mathrm{a}}$ and $\dot{\mathrm{h}}$ in Eq. (A.J6).

It is assumed that the aircraft specific energy increases monotonically during blimp and decreases monotonically during descent. This assumption is used in the development to change tie independent variable in Eq. (A.15) from tine to energy. This uses the transformation

$$
\begin{equation*}
\text { it }=\frac{\mathrm{dE}}{\mathrm{E}} \tag{1}
\end{equation*}
$$

It is mathematically convening or evaluate th a tact tntesual ia Eq. (A.15) backwards in time so that the energy state is monotonically increaseing during its evaluation. This means that the running distance (range) variable during the descent can be measured backwards from the end point. Thus, we can think of range measured in two ways as shown in Fig. A.2.


Figure A. 2. Measurement of Range from the Orifin or to the Destination.

In this sketch,

$$
\begin{aligned}
& x_{u r}(t)=\text { range measured on the way up in forward time } t, \\
& x_{u p}\left(t_{c i}\right)=\text { value of } x_{\text {up }} \text { when inftial crutse is reached, } \\
& x_{d n}(t)=\text { range measured on the way up in backward time } \tau, \\
& x_{d n}\left(\tau_{c f}\right)=\text { value of } x_{d n} \text { when final aruise is reached }\left(\tau_{c f} f^{m}\left|t_{c f} t_{f}\right|\right) .
\end{aligned}
$$

Also, we define the variable $x$ to be range traveled during climb and descent. The dsstance traveled during eruise is then constralned to be ( $d_{f}-x$ ). We Gan then sec that an inctamatal change $d x$ in the range variable $x$ is equivalent to inermmental shangen in teth ar up atd $x d n$.
That is

$$
\begin{equation*}
d x=d\left(x_{u p}+x_{d n}\right) \tag{A.20}
\end{equation*}
$$

From this discussion, the second of Eqs. (A.15) can be written as

$$
\begin{equation*}
J=\int_{0_{i}}^{t_{c i}} c_{d} d t+\left(d_{f}-x_{u p}\left(t_{c i}\right)-x_{d n}\left(\tau_{c f}\right)\right) \psi+\int_{0_{f}}^{\tau}{ }_{c f}\left|c_{d}\right| d \tau \tag{A.21}
\end{equation*}
$$

We use Eq. (A.19) and the transformation

$$
\begin{equation*}
\mathrm{d} \tau=\frac{\mathrm{dE}}{|\stackrel{\dot{E}}{ }|} \tag{A.22}
\end{equation*}
$$

$$
\begin{align*}
J=\int_{E_{1}}^{E} c\left(\frac{C_{d}}{E} d E\right)_{E>0} & \left.+d_{f}-\left(:_{u p}\left(E_{c i}\right)+x_{d n}\left(E_{\mathrm{Ef}}\right)\right)\right) \\
& +\int_{E_{f}}^{E_{c f}}\left(\frac{d E}{|E|} d E\right)_{\dot{E} 0} \tag{A,23}
\end{align*}
$$

Here, $E_{\mathcal{L}}, E_{c i}, E_{\text {ef }}$, and $E_{f}$ are the valwes of pocisi, arergy evaluated at time to equal to 0 and iat and sime $t$ evaluated at ici tad of respec. tively.

Note from En. (A.23) that the xinke vatiable $x$ only apeays as the sum of cllmb and desicnt distances ( $x_{\text {ip }}+x_{d n}$ ). Thus, the stato equation for this systen of equations can be writtere sis
there, $V_{\text {wup }}$ and $V_{w d n}$ are the longitucinal components of the vind speed for climh and dese nt. Thea, analogeur to E4. (A.A), he hamitonian is

This can be divided as

$$
\begin{equation*}
H=\left[\frac{c_{d}+\lambda\left(v_{u p}+v_{\text {wup }}\right)}{\dot{E}}\right]_{\dot{E}>0}+\left[\frac{c_{d}+\lambda\left(v_{d n}+v_{w d n}\right)}{|\dot{E}|}\right]_{\dot{E}<0} \tag{A.26}
\end{equation*}
$$

Now, analogous to Eq. (A.7), the costate equation for $\lambda$ can be written as

$$
\begin{equation*}
\frac{\partial \partial}{\partial E}=-\frac{\partial H}{\partial x}=-\frac{\partial H}{d\left(x_{u p}+x_{d n}\right)} \text { is } 0 \tag{A.27}
\end{equation*}
$$

and from Eqs. (A.7) and (A.23), this costate has the final value

$$
\begin{equation*}
\lambda\left(E_{c}\right)=\lambda\left(E_{c f}\right)=\frac{\partial \varphi}{\partial\left(x_{u p}+x_{d n}\right)}=\frac{\partial\left(\left[d_{f}-x_{u p}-x_{d n}\right] \psi\right)}{\partial\left(x_{u p}+x_{d n}\right)}=-\psi \tag{A.28}
\end{equation*}
$$

where $\psi$ is the cruise cost per unit distance.

Note, this problem could be placed in a slightly more conventional form by dividing it into two problems - one for climb and onemalf of the crutse distance and the other for decent and rac other half of the cruise distance. 2hen Eqs. (A.27) and (A.28) would be replaced by

$$
\begin{align*}
& \frac{\partial \lambda}{\partial E}=-\frac{\partial H}{\partial H_{u p}}=0 \tag{A.25}
\end{align*}
$$

for climb. For descend,

$$
\begin{align*}
& \frac{\partial j}{\partial E}=-\frac{\partial 1}{\partial x_{d n}}=0  \tag{A.30}\\
& \lambda\left(E_{c f}\right)=\frac{\ddot{\partial}\left(\left[d_{f} i z-x_{d n}\right] \dot{\psi\left(E_{c f}\right.}\right) j}{\partial x_{d n}}=-\psi\left(E_{c f}\right)
\end{align*}
$$

This allows splitting the Hamiltonian defined in Eq. (A.26) and allows for $\psi\left(E_{c i}\right) \neq \psi\left(E_{c f}\right)$. In fact, in the actual implementation $E_{c i} \neq E_{c f}$ because optimum cruise energy changes as fuel is burned off. The principal results are unchanged, however.

Thus, from Eq. (A.11), (A.29) and (A.30) the trajectory optimization problem becomes

$$
\begin{aligned}
& \pi_{u p} \\
& H_{d n}=\min _{V_{d n}}^{\pi_{d n}}\left[\frac{C_{d}}{|E|}-\forall\left(\mathbb{E}_{c f}\right)\left(\frac{\nabla_{d n}+\nabla_{w d n}}{|E|}\right)\right]_{\mathbb{E}<0 .}
\end{aligned}
$$

Thus, the optimization problem reduces to rolving pointwise minimum values of the algebraic functions deifned by Eq. (A.31) during the climb and descent portions of the trajsatory.

Bquartions (A.29) and (A.30) are ene transversality condition for the free final state problem ( $d_{\mathrm{up}}+\mathrm{dn}_{\mathrm{d}}<\mathrm{d}_{\mathrm{f}}$ ) with terminal cost. Thus, the constant value of $\lambda$ for climb arl descent is found to be the negative of the cost por unit distance for crufae.

The crulse cost $\psi$ ( $m-\lambda$ ) is frund by assuming that the aircraft is in static equilibrium daring ciusee ( $T=D$ ), and that

$$
\begin{equation*}
w_{c}\left(E_{c} \times \operatorname{vin}_{c} \frac{c_{d}}{\left(v_{e}+V_{w}\right)}\right. \tag{A.32}
\end{equation*}
$$

In other words, for any cruise altitude, there is an optimum thrust and airspeed such that the cost per unit distance $\psi\left(E_{c}\right)$ is minimized. The optimum cruise cost as a function of cruise energy is typically of the shape shown in Fig. A.3. Thus, there is also an optimum cruise energy $E_{\text {copt }}$ where cruise cost $\psi\left(\mathrm{E}_{\text {copt }}\right)$ is minimized. If the range is long enough so that there is sufficient range to reach optimum cruise energy $E_{\text {copt }}$, it should be done, and the cruise conditions should be set so that $\psi\left(E_{c}\right)=\psi\left(E_{\text {copt }}\right)$.


Figure A. 3. Optimum Cruise Cost as a Function of Cruise Energy

For the case whare there is no cruise segment $\left(d_{f}=d_{u p}+d_{d n}\right)$, the cost function contains only integral terms. Then, the transversajity condition yields; $1=-\psi\left(t_{c}\right)$. That is, $\lambda$ would be the negative of $\psi\left(t_{c}\right)$, where $\psi\left(t_{c}\right)$ is the optimum wost for cruising at the highest point reached on the climb trajectory.

The optimum cruise energy $E_{\text {copt }}$ is only specifically reached when there is range enough to climb to and descend from the optimum altitude/ airspeed values, where $\psi\left(E_{c}\right)$ is minimum. For ranges less than this value, the maximum value of $E$ that is reached is a free variable less than the optimum value. Its choice is made to optimize the cost function of Eq. (A.23).

From Eqs. (d.23) and (A.25), one can write

$$
\begin{equation*}
\frac{\partial J}{\partial E}=H+\left[\frac{\partial\left[\left(d_{f}-d_{u p}-d_{d n}\right) \psi\left(E_{c}\right)\right]}{\partial E}\right]=0 \tag{A.33}
\end{equation*}
$$

at $E=E_{c}$. This is

$$
\begin{equation*}
H_{c}+d_{c} \frac{\partial \psi}{\partial E_{c}}=0 \tag{A.34}
\end{equation*}
$$

where $d_{c}$ is the cruise distance, and $H_{c}$ is the total value of $H\left(H_{u p}+H_{d n}\right)$ at the cruise point. Thus, Eq. (A.34) can be used, along with other characteristics of $\psi$ and $H$, to determine the relationship betwean $\psi, E_{c}$, and $d_{c}$. The Hamiltonian evaluated at $E=E_{c}$ is the cost penalty to achieve a unit increase in cruise energy. For $H_{c}>0$, Eq. (A.34) can be written as

$$
\begin{equation*}
d_{c}=-H_{c} /(\partial \psi / \partial E)_{E}=\Xi_{c} \tag{A.35}
\end{equation*}
$$

Figure A. 4 shows the family of trajectories which have this characteristic. These occur at values of $E_{c}$ below $E_{c o p t}$ where $\partial \psi / \partial E<0$ (see Fig. A.3). That is, non-zero cruise segments occur at short ranges with cruise energies less than the optimum energy value for long range.

For the case where $H_{c}=0, d_{c}$ is zero for $\partial \psi / \partial E<0$. The distance $d_{c}$ can be non-zero only at optimum cruise energy where $\partial \psi / \hat{E}=0$. This family of trajectories is shown in Fig. A.5.

Thus, we have a situation where positive values of $H_{c}$ dictate one type of traiectory and zero values dictate another. In Ref. 17, it is shown that if the aircraft engine specific fuel consumption $S_{F C}$ is independent of the thrust T (so that $\dot{w}=\mathrm{S}_{\mathrm{FC}} \mathrm{T}$ ), then the structure of the trajectories will be like Fig. A. 5 with no cruise eegment occuring except at $E_{\text {copt }}$. (This implies that the Hamiltonian $H_{c}$ is zero at the maximum energy point). For this case, the optimum thrust setting for climb is $T_{\max }$, and the optimum setting for descent is $\mathrm{T}_{\text {idle }}$.

If the engine specific fuel consumption is dependent on thrust, and the thrust values are not constrained during climb or descent, it is shown in Ref. 17, that the Hamiltonian $H_{c}$ is again zero at the cruise energy, and again the trajectory structure is like those of Fig. A.5.


Figure A.4. Optimum Profile Energy vs Range for $H_{c}>0$ at Cruise.


Figure A.5. Optimum Profile 「.nergy vs Range for $H_{c}=0$ at Cruise.

If the $s_{\mathrm{FC}}$ is dependent on thrust, and constrained to the maximum value for climb and to the minimum idle value for descent, then the Hamiltonian is positive at cruise. This causes positive cruise sagments according to Eq. (A.35) at cruise enargies below the optimum. For this case, the optimum trajectories will have shapes similar to Fig. A.4. These trajectories are slightly less efficient than those of Fig. A.5. because one less control is available for optimization.

## Some Mechanization Details of the Computer Program

The remaining sections of this Appendix describe iow the previous theoretical material has been utilized to construct an offline computer program for generating optimur vertical profiles for models of medium range tri-jet and twin-jet transport aircraft. This material is presented in an alternate way in Ref. 21 , and the program is referred to here as OPTIM.

By examining the specific fuel consumption data of the turbofet engine, it is determined that $S_{F C}$ is dependent on thrust. Thus, for the transport models, two types of short range profiles must be considered those represented by Fig. A.4 (Type 1 profile) when thrust is constrained and airspeed is the single control - and those represented by Fig. A. 5 (Type 2 profile) when both thrust and airspeed are used as controls.

The solution to optimum climb and descent profiles is found by minimizing the Hamiltonian expressed in Eqs. (A.31). The independent variable (energy) is stepped along in fixed increments (e.g., 150 m ( 500 ft )), and the Hamiltonian is minimized at each energy setting. Minimization occurs by finding the best vaiues of airspeed ( $\mathrm{V}_{\mathrm{up}}, \mathrm{V}_{\mathrm{dn}}$ ) (and optionally thrust ( $\pi_{u p}, \pi_{d n}$ )) so that the climb function and the descent function are individually minimized.

To solve Eqs. (A.31) requires knowing two more quantities:
$\lambda$ or $\psi\left(E_{c}\right)$. the cruise cost per unit distance. This comes from evaluating Eq. (A. 32 ) at the desired cruise altitude.
$\mathrm{E}_{\mathrm{c}}$ - the crudse energy. This is a function of the cruise altitude and the associated cruise airspeed obtained in Eq. (A.32).

Note that for the Type 2 profile at short ranges, there is no cruise segment. In this case, the maximum enargy achieved at maximum altitude is referred to as the cruise energy $E_{c}$. At that altitude, there still is defined a minimum cruise cost according to Eq. (A.32).

For the Type 1 trajectory of short range, there exists a non-sero cruise segment which is determinad by use of Eq. (A.35). To solve Eq. (A.35) requires that the Hamiltonian defined by Fqs. (A.31) be solved at the point of transition from climb-to-cruise. It also requires knowing the lope $\partial \psi / \partial E$ of the cruise cost for a change in craise energy at that point.

## Cruise Optimization

The first step that must be taken to compute optimum trajectories is to derive the optimum cruise cost $\psi$ and its derivative $\partial \psi / \cap E$. This is done by computing what is referred to as the "cruise table". The parameters that affect this table are the assumed cruise mass, the wind profile, and the lift $L$, drag $D$, thrust $T$, and fuel flow $\dot{w}$ characteristics of the aircraft. The optimization process searches over the acceptable ranges of altitude and airspeed for a given mass. The results are collected in tabular form for a series of different assumed cruise masses.

Again, the minimum cost of flight during cruise per unit distance for a fixed cruise mass $W_{c}$ is found by

$$
\begin{equation*}
\lambda=\psi\left(W_{c}\right)=\min _{V_{a}}\left[\frac{c_{f} \dot{w}+c_{t}}{V_{a}+v_{w}}\right] \tag{A.36}
\end{equation*}
$$

This assumas that the aircraft is in atatic equilibrium during cruise, $1 . e$. ,

$$
\begin{align*}
& T \text { coe } \alpha=D,  \tag{A.37}\\
& L+T \sin a=\text { mg, }
\end{align*}
$$

where the angle-of-attack $\alpha$ is found by solving these equations simultaneously. The altitude is stepped in 305 m ( 1000 it) increments from sea level to ceiling altitude (where maximum thrust just balances drag). At altitudes below ceiling altitude, the airspeed - dependent drag curve crosses the maximum thrust curve at two points ( $V_{1}$ and $V_{2}$ ) am illustrated in Fig. A.6. Thus, for each altitude level, the vilues of $V_{1}$ and $V_{2}$ are determined, and then $\psi\left(W_{c}, E_{c}\right)$ is minimized with respect to airspeed $V_{\text {A }}$ between these two limits. Kestrictions are that $V_{1}$ be greater than 0.1 Mach and that $V_{2}$ be lass than 0.89 Mach for the tri-jet ( 0.84 for the twin fet) for structural reasons,

After the cruise cost is minimized at each discrete altitude level, these numbers are stored in a table with altitude as the independent variable. Typical resulty we plotted in Fig. A.7. Presented here are also the optimum cruise Mach number $M_{o p t}$ and the optimum thrust setting $E_{\text {opt }}$. After results are obtained in steps of 305 m ( 1000 ft ), the minimum cost point is found as a function of altitude. In the OPIIM program, the cruise table optimization results are obtained by using a Fibonacci search with ten Fibonacci numbers. (See Ref. 22).

The cruise table results are obtained for cruise mass varying as dictated by the program input. Usually, the cruise mass is incremented in steps of $2268 \mathrm{~kg}(5000 \mathrm{lb})$. Up to ten values of cruise mass can be used. For each cruise mass, the optimal cruise altitude, cost, speed, power setting, fuel flow and specific energy are computed. An example of optimum cruise cost and a function of cruise mass is shown in Fig. A.8.

## Climb Optimization

After the cruise tables are generated, the program proceeds with obtaining the optimum climb trajectory. This requires guessing what the cruise mass will be, based on the takeoff mass. The guess is used to obtain a trial value for $\psi_{c}$ (or 1 ) in the Hamiltonian from the cruise tables. The procedure to obtain this guess is based on an empirical formula which iterates until convergence is made.


Figure A.6. Plot of Thrust and Drag vs True Airspeed at a Particular altitude


Figure A.7. Optimum Cruise Cost as a Function of Altitude for Cruise Mass of $54432 \mathrm{~kg}(120,000 \mathrm{lb})$.


Figure A.8. Optimum Cruise Cost and Cruige Altitude as Functions of Cruise Mass for a Tri-jet Aircraft Flying into a particular Head Wind.

The climb optimization process starts by assuming $\psi\left(E_{c}\right)=1.5 \psi\left(E_{\text {copt }}\right)$, where $\psi\left(E_{\text {copt }}\right)$ is first obtained by setting the initial cruise mass $W_{c i}$ equal to the takeoff mass (an input). The appropriate cruise tables are used to interpolate to find the corresponding value of $E_{c}$ associated with $1.5 \psi$. Then, an empirical formula of the form

$$
\begin{equation*}
F_{u p}=0.11\left(E_{c i}-E_{i}\right)\left(1+4.7 C_{t} / C_{f}\right) W_{c i} / W_{r e f} \tag{A.38}
\end{equation*}
$$

is used to obtain an approximation to the fuel burned to reach $\mathrm{E}_{\mathrm{c}}$. Here, $E_{i}$ is the takeoff aircraft energy, $W_{\text {ref }}$ is a reference mass 61690 kg ( 136000 lb ) for the tri-jet) and $W_{c i}$ is the previous value of cruise mass.

Then, the cruise mass is updated at $W_{c i}=W_{c i}-F_{u p}$. This process is repeated until the difference in consecutive estimates of F falls below 45 kg (100 lb ).

When the cruise mass estimate is obtained, the corresponding values of $E_{c}$ and $\psi\left(E_{c}\right)$ are obtained from the cruise tables. Then, the program is ready to generate points on the optimum climb trajectory. This is done by incrementing specific energy and minimizing the Hamiltonian function

$$
\begin{equation*}
H_{u p}(E)=\frac{C_{f} \dot{w}+C_{t}-\psi\left(E_{c}\right)\left(V_{a}+V_{w}\right)}{\dot{E}} \tag{A.39}
\end{equation*}
$$

at each point. (This is the first of Eqs. (A.31)). That is, the program starts with initial energy $F_{0}=h_{0}+V_{0}^{2} / 2 g$. It steps the energy a fixed amount $\Delta E$ (bay 150 m ( 500 ft ). At this point, it searches over true airspeed $V_{a}$ (and possibly thrust setting $\pi$ ) so that Eq. (A.39) is minimized. For the turbojet engines, thrust is governed by EPR settings which vary between 1.1 (idle thrust) and some maximum value less than 2.4 . The true airspeed has an upper limit governed by
a). 0.89 Mach structural limits (tri-jet); 0.84 (twin jet)
b). 250 kt (IAS) below $3048 \mathrm{~m}(10000 \mathrm{ft}$ ) for ATC restrictions,
c). $\sqrt{2 g(E-h)}$ which insures that the aircraft climbs, and
d). $V_{2}$, the upper value shown in Fig. A. 6 where max thrust equals drag.

The lower limit is governed by
a). $V_{1}$, the lower value shown in Fig. A. 6 where max thrust equals drag,
b). 0.1 Mach
c). $1.5 \mathrm{~m} / \mathrm{sec}(5 \mathrm{ft} / \mathrm{sec})$ less than the previous value of $V_{a}$ to limit large jumps in flight path angle.

The Fibonacci search technique is again used to determine $V_{a}$ and $\pi$ which minimize Eq. (A.39) for the fixed value of energy $E$. The value chosen for airspeed is accurate to within . 0056 Mach, and EPR is accurate
to within .009. Associated with these values of $\nabla_{a}$ and $\pi$ are values of energy rate $\dot{E}$ (Eq. (A.16)) and altitude $h$ :

$$
\begin{equation*}
h=E-V_{a}^{2} / 2 g \tag{A.40}
\end{equation*}
$$

From these, approximate values of time, range, flight path angle, and fuel burned are obtained from

$$
\begin{align*}
& \Delta t=\Delta E / \dot{E},  \tag{A.41}\\
& \sin \gamma=(\Delta h / \Delta t) / v_{a} \text {, } \\
& x=\Sigma \Delta x ; \Delta x=\left(V_{a} \cos \gamma+V_{w}(h)\right) \Delta t \\
& \mathrm{~F} \quad=\Sigma \Delta \mathrm{F} ; \Delta \mathrm{F}=\dot{\mathrm{w}} \Delta \mathrm{t} \text { 。 }
\end{align*}
$$

The above process is repeated by stepping along energy in increments of $\Delta E$ until $E_{c}$ is reached. The last value of Eq. (A.39) is stored for possible use in evaluating the cruise distance.

The above climb optimization procedure is repeated with $\psi=1.5 \psi c$, $1.0 \psi_{c}$, and perhaps other values until the total range of filght converges to the appropriate value. This is discussed in further detail later.

## Descent Optimization

The descent optimization is vary similar to the climb optimization with regard to the equations which are evaluated. The optimization process requiins estimated values of $E_{c}$ and $W_{c}$ at the beginning of descent, and an estimate of mass $W_{f}$ at the end of descent. The method used to obtain these estimates is discussed in the next section.

If there is a cruise portion of flight, fuel will be burned during cruise. Thus, t'he value of $E_{c f}, \psi$, and $W_{c f}$ at the beginning of descent will usually be different than at the beginning of cruise. If there is no cruise portion, then these values will be identical.

The descent profile is obtained by starting at the final energy state and then going backwards in time. The energy rate is constrained to be negative with respect to forward time.

Similar descent profile constraints exist on true airspeed as for those of the climb profile. The thrust leyel is on or near the idle value during descent.

## Cruise Fuel Burn

To estimate the final mass during cruise ( $W_{c f}$ ) and landing ( $W_{f}$ ), the following steps are taken:
1). Determine $\psi_{c}$, the initial cruise cost based on the initial cruise mass $W_{c i}$ obtained from the climb optimization.
2) Use the initial cruise mass and $\psi_{c}$ to compute the fuel flow $\dot{w}\left(\psi_{c}\right)$
3). Estimate the cruise range $d_{c}$ by the empirical equations,

$$
\begin{align*}
& P=\psi_{c} / \psi_{c o p t}=1.5  \tag{A.42}\\
& d_{c}=b_{1} P^{4}+b_{2} P^{3}+b_{3} \bar{F}^{2}+b_{4} P+b_{5}
\end{align*}
$$

4). Compute the cruise fuel as

$$
\begin{equation*}
F_{c}=\dot{w}\left(\psi_{c}\right) d_{c} /\left(v_{c}+v_{w}\left(h_{c}\right)\right) \tag{A.43}
\end{equation*}
$$

5). Estimate the average cruise mass as

$$
\begin{equation*}
\bar{W}_{c}=W_{c}-0.5 F_{c} \tag{A.44}
\end{equation*}
$$

6). Use the cruise table to obtain the corresponding cruise cost $\bar{\psi}_{c}$, altitude $\bar{h}_{c}$, fuel flow $\dot{\bar{w}}\left(\bar{\psi}_{c}\right)$, true airspeed $\bar{v}_{c}$, and wind speed $\bar{V}_{w}(\bar{h})$.
7). Recompute Eq. (A.43), and then find the final cruise mass,

$$
\begin{equation*}
W_{c f}=W_{c i}-F_{c} \tag{A.45}
\end{equation*}
$$

8). Use the value $W_{c f}$ in the cruise tables to obtain $\psi\left(W_{c f}\right)$. As with the climb, set $\psi=1.5 \psi\left(W_{c f}\right)$.
9). Use this value of $\psi$ to obtain $h_{c f}$ and $E_{c f}$ from the cruise tables. These are the end conditions for the descent trajectory obtained backwards in time.
10). Rstimate the landing mass from the empirical formula

$$
\begin{align*}
& P=1.5,  \tag{A,46}\\
& W_{f}=W_{c f}-\left(c_{1} P^{2}+c_{2} p+c_{3}\right) .
\end{align*}
$$

The values of $\psi, E_{c f}$ and $W_{f}$ obtained by the above procedure are used for obtaining the optimum descent tri.jec ory. The descent portion of the Hamiltonian is of the form

$$
\begin{equation*}
H_{d n}(E)=\frac{c_{f} \dot{w}+c_{t}-\psi\left(E_{c f}\right)\left(V_{a}+V_{w}\right)}{|E|} \tag{A.47}
\end{equation*}
$$

this function is also minimized at each of the given values of energy.

After the first descent profile is completed, a new estimate of cruise distance is obtained by using Eq. (A.35), or

$$
\begin{equation*}
d_{c}=-\left(H_{u p}+H_{d n}\right) /(\partial \psi / \partial E) \tag{A.48}
\end{equation*}
$$

Then, step (4) above is repeated to obtain an improved cruise fucl burn. Then, the improved landing mass estimate is

$$
\begin{equation*}
W_{f}=W_{i}-\left(F_{u p}+F_{c}+F_{d n}\right) \tag{A.49}
\end{equation*}
$$

The landing trajectory is reoptimized with this new value of landing mass. Then, improved values of total range traveled, time required, and fuel burned during climb, cruise, and descent are made.

For short range flight, the above steps assumed that a Type 1 trajectory is generated because thrust is constrained to maximum value during climb and idle value during descent. If thrust is free, then a Type 2 trajectory will result, with no cruise portion. For this case, the steps required to estimate cruise distance $d_{c}$ and final cruise cost, mass, and energy can be eliminated.

The first climb and descent profiles are generated with $\psi_{c}=1.5 \psi$ ( $\mathrm{E}_{\text {copt }}$ ). The next act is generated with $\psi_{\mathrm{c}}=1.0 \psi$ ( $\mathrm{E}_{\text {copt }}$ ). Each of these values of cruise cost have an associated range on the curve shown in Fig. A.9. If the total range desired is greater than $\mathbb{R}_{\text {max }}$ (the value obtained using $1.0 \psi$ ( $E_{\text {copt }}$ )), then it is assumed that the optimum cruise altitude and energy are reached. Then a third set of climb and descent profiles is generated using $\psi\left(\mathrm{E}_{\text {copt }}\right)$. In this case, the cruise distance is computed so that the desired overall range is exactly achieved.

If the desired range is between $R_{\text {min }}$ and $R_{\text {max }}$ in Fig. A.9, then an iterative process is used to obtain $\psi\left(\mathbb{E}_{c}\right)$ and the associated desired range. Iterations are stopped when the total range traveled is within some small distance $\varepsilon$ of the desired range. (In OPTIM, $\varepsilon$ is set at 5 n.mi.)


Figure A.9. Relationship between the Cruise Cost tarameter $\psi$ and the Associated Range of Flight

## APPESDIX B

ENGINE MODEL DEVELOPMENT

The modeling of the turbofan engine for the twin-jet aircraft in program OPTIM required changes to subroutines FCLIMB, ENGEPR, and ENGIDL [22]. Idle thrust and idle fuel flow are computed in ENGIDL and FCLIMB, and thrust and fuel flow at all other power settings are computed with a call to subroutine ENGEPR. The actual computations are done in subroutine ENGEP3. All engine data is stored in tables in the BLOCK DATA subprogram.

## Idle Performance

Fifure B. 1 shows idle performance (net thrust and fuel flow) for the engine taken from the engine installation handbook. Note that surge bleeds can be either ofen or closed depending upon altitude and flight Mach number. To model this phenomena, two sets of tables were developed one for bleeds closed and one for bleeds open (see Figs. B. 2 and B.3). Then, an additional table was developed to determine the altitude for surge bleed closure as a function of flight Mach number (see Fig. B.4). Figures B. 5 and B. 6 show idle performance for cold and hot days. It is assumed that the fuel flow varies in inverse proportion to the square root of the $\mathrm{T}_{\mathrm{T} 2}$ ratio. This is expressed as

$$
\begin{equation*}
\frac{\dot{w}_{\text {fuel }} \text { non } S T D}{\dot{w}_{\text {fuel }} S T D}=\sqrt{\frac{T_{T 2} \text { non } S T D}{T_{T 2} S T D}} . \tag{B.1}
\end{equation*}
$$

Tr2, in degrees absolute, is the stagnation temperature at the compressor inlet. There is essentially no change in idle thrust due to temperature variation.



Figure B. Estimated Engine Performance at Flight Ide as a Function of Altitude


ICAO Standard Atmosphere
Surge Bleeds Closed


Figure B. 2 Engine Idle Performance - Surge Bleeds Closed


ICAO Standard Atmosphere Surge Bleeds Open


Figure B. 3 Engine Idle Performance - Surge Bleeds Open

## ICAO standard Day



Figure is.it Altitude for Surge Open/Closed

Mo Service Bleed
standard Atmospheric Conditions
$-40^{\circ} \mathrm{F}$ ICAO 8 tandard Atmosphere

Wo Power Extraction 100\% Ram Recovery



Figure B.5. Estimated Engine Performance at Flight Idle on a Cold

ICAO standard Atmosphere



Figure B.6. Estimated Engine Performance at Flight Idle on a Hot $\left(+22^{\circ} \mathrm{K}\right)$ Day

## Maximum Engine Prassure Ratio

Hinximum engine pressure ratio (EPR) is determined at each flight condition to insure that the engine is not set beyond its operational limitn. As shown in Fig. B.7, the maximum EPR for climb is a function of the compressor inlet tomperature ( $\mathrm{T}_{\mathrm{T} 2}$ ) only (which is computed from Mach number and altitide). Likewise, maximum EPR at cruise is a function of $\mathrm{T}_{\mathrm{T} 2}$ only. Two different curver are used: one for altitude $\leq 9.164 \mathrm{~km}$ ( 30000 ft ) and one for altitude $\geq 10.668 \mathrm{~km}(35000 \mathrm{ft})$. Ber seen 9.144 and 10.668 km ( 30000 and 35000 ft ), and the maximum EPR is assumed to vary linearly.

## Engine Thrust

Figure B. 8 gives corrected thrust (thrust/ambient pressure ratio) as a function of flight Mach number and the angine pressure ratio for the twin-jet aircraft. Figure B. 9 is a repeat of Fig. B. 8 with additional dat. which represents the same engine performance in the tri-jet aircraft. It can be seen that with one exception the tri-jet data lies below the twin-jet data.* It was found that the tri-jet engine data represented installed thrust with the values being an average of the three engines on the aircraft. Because the middle engine on the tri-jet aircraft suffers greater ingtalled losses because of the " S " shaped inlet duct, it is not surprising that the thrust shown in less. The program selects the appropriate engine data for each aircraft.

## Engine Fuel Flow

Engine corrected fuel flow is shown in Fig. B. 10 as a function of the engine pressure ratio and fititude. Note that the corrected fuel flow is also a function of flight Mach number for EPR less than 1.6. The correction

[^0]

Figure B.7. Maximum Engine Pressure Ratio as a Function of Temperature.


Figure B. 8 Engine Thrust at Different Power Settings


Figure B. 9 Comparison of Engine Thrust Data


Figure B.10. Corrected Fuel Flow of Engine
factor for fuel flow, $K_{c}$, is a simple linear equation developed from the straight line shown on the inset in Fig, B. 10. That is,

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}}=.0022\left(\mathrm{~T}_{\mathrm{T} 2}\right)+0.97 \tag{B.2}
\end{equation*}
$$

with $\mathrm{T}_{\mathrm{T} 2}$ in degrees centigrade.

## APPEMDIX C

## MODELLIMG OF THE TWIN-JET AIRCRAFT AERODYKAMICB

Program OPTIM computes the dynamic forces in flight for the complete trajectory - climb, cruise and descent. Thus, aerodynamic models are required to compute lift and drag forces over the complete range of altitude and Mach number in the flight envelope of the aircraft. The following sections outline the twin-jet aerodynamic models now used in OPTIM.

## Drag Force

The dimensionless aerodynamic drag force coefficient is separated into its important contributing elements. At a given angle of attack, $\alpha$,

$$
\begin{equation*}
C_{D}=C_{D B A S I C}+\Delta C_{D G E A R} \tag{C.1}
\end{equation*}
$$

where $C_{\text {DBASIC }}$ is the basic drag coefficient for the airplane in free air, with the landing gear retracted, no spoilers deflected and not in ground effect. The curves include trim data for level flight.

The low speed drag coefficient is shown in Fig. C. 1 as a function of angle-of-attack and flap position. The flaps-up data on this plot are for stall only, where $C_{L}$ is a function of angle-of-attack. The flaps-up data are shown only for angles-of-attack larger than 8 degrees.

The high speed drag coefficient, showing Mach effects for the flaps-up configuration, is plotted in Fig. C. 2 as a function of Mach number and lift coefficient $C_{L}{ }^{*}\left(C_{L}{ }^{*}\right.$ is defined later) with gear retracted, no spoilers deflected and out of ground effect. The $M \leq .6$ curve is only to be used for lift coefficients smaller than . 757 , which agrees with angle-of-attack of 8 degrees or less for a trimmed airplane.


Figure C. 1 Basic Low-Speed Drag with Flap Setting

Mach Mo.


Figure C. 2 High-Speed Drag with No Flap Setting

In Eq. (C.1) the coefficient $\Delta C_{D G E A R}$ in the increment in basic drag coafficient due to the main and nome landing gear extension given by the following:

$$
\begin{equation*}
\Delta C_{D G E A R}=\left(\Delta C_{D G E A R}\right)_{M=0} \frac{\left(C_{D G R A R}\right)_{M}}{\left(C_{D G E A R}\right)_{M=0}} \tag{c,2}
\end{equation*}
$$

The low-speed drag increment, $\left(\Delta C_{\text {DGRAR }}\right)_{\text {m=0 }}$ is plotted in Fig. C. 3 za tunction of angle-of-attack and flap setting. The flaps-up Mach number factor, $\frac{\left(C_{D G E A R}\right)_{M}}{\left(C_{D G E A R}\right)_{M-0}}$ is plotted in Fig. C.4.

Specific data points are identified $\mathfrak{i n}$ each of Figs. C. 1 - C. 4 described above. These points are tabulated in subroutine CDRAG3 in Program OPTIM.

## Lif: Force

The dimensionless aerodynamic lift force coefficient of the airplane is separated into its important contributing elements as

$$
\begin{align*}
c_{L}^{*} & =c_{L_{B A S I C}}+\left[\left(c_{L_{0}}\right)_{M}-\left(c_{L_{0}}\right)_{M=0}\right]  \tag{c.3}\\
& +\left[\left(\frac{d C_{L}}{d \alpha}\right)_{M}-\left(\frac{d C_{L}}{d \alpha}\right)_{M=0}\right] \alpha .
\end{align*}
$$

Also,

$$
\begin{equation*}
c_{L}=c_{L}^{*}+\Delta c_{L_{G E A R}} \tag{C.4}
\end{equation*}
$$

Here, $C_{L}{ }^{*}$ is used in the calculation of the basic drag coefficient. $C^{L_{\text {BASIC }}}$ is the basic lift coefficient for the rigid airplane at low speed in free air, and with landing gear retracted. The coefficient is plotted as a function of angle-of-attack $\alpha$, and flap setting in Fig. C.5. Also, the $\operatorname{term}\left[\left(C_{L_{0}}\right)-\left(C_{L_{0}}\right){ }_{M=0}\right]$ is the deviation of the basic airplane flaps-up

Plaps (degrees)


Figure C. 3 Increment Diag of the Landinr, Gear


Figure C. 4 Landing Gear Drag Correction Factor for a Given Mach Number.


Figure C. 5 Lift as a Function of Flap Setting and Angle-of-Attack
lift coofficient at $\alpha=0^{\circ}$ with Mach number. The term $\left[\left(C_{L_{0}}\right)_{M}-\left(C_{L_{0}}\right)_{M-0}\right]$ is plotted on Fis, C.6.

The term, $\left[\left(\frac{d C_{L}}{d \alpha}\right)_{M}-\left(\frac{d C_{L}}{d \alpha}\right)_{h m 0}\right] a$ is the deviation from the basic lift conficient due to the variation of the lift curve slope at $\alpha=0^{\circ}$ with Mach number and altitude. The term $\left[\left(\frac{d C_{L}}{d \alpha}\right)_{M}-\left(\frac{d C_{L}}{d \alpha}\right)_{M+0}\right]$ is plotted in Fig. C.7, and the $M=0$ value is the slope of the flaps up $C_{L_{\text {BABIC }}}$ at $\alpha=0^{\circ}$.

As with the drag data in the previous section, specific data prints are identified in Fig. C.5-C.7. These points are tabulated in subroutine CLIFT3 in Program OPTIM.


Figure C. 6 Incremental Lffe Coefficient as a Function of Mach Number and Altitule


Figure C. 7 Incremental Changes in Lift Curve Slope as a Function of
Mach Number and Altitude

## APPRMDIX D

## CLIMB FUEL ESTIMATE

Fuel burned during ciimb is estimated in subroutine FULEsT [22] so that the aircraft mase at the beginning of cruise can be determinad befora actually computing the climb portion of the flight. A new correlation of the climb fuel flow was established using data from OPTIM runs.

Figure D. 1 is a plot of the correlation which shows that the fuel fraction of initial mass used in climb is a function of the change in energy state $\left(E_{c i}-E_{c o}\right)$ and the initial groms mass.

The correlation is as follows:

$$
\begin{align*}
& \mathrm{w}_{\mathrm{fCL}} / \mathrm{W}_{\mathrm{tO}}=\operatorname{SLOPE}\left(\mathrm{E}_{\mathrm{ci}}-\mathrm{E}_{\mathrm{tO}}\right)  \tag{D.1}\\
& \mathrm{SLOPE}=2.9 \times 10^{-12}\left(\mathrm{~W}_{\mathrm{tO}}\right)+.3625 \times 10^{-6}, \tag{D,2}
\end{align*}
$$

where

$$
\begin{equation*}
E=\frac{v_{a}^{2}}{2 g}+h \tag{D.3}
\end{equation*}
$$

Here, for these numerical values, the OPTIM program uses

$$
\begin{aligned}
\mathrm{w}_{\mathrm{fCL}} & =\text { fuel burned in climb, } 1 \mathrm{~b} \\
\mathrm{~W}_{\mathrm{to}} & =\text { initial climb mass, } 1 \mathrm{~b} \\
\mathrm{~V}_{\mathrm{a}} & =\text { true airspeed, ft/sec } \\
\mathrm{h} & =\text { altitude, } \mathrm{ft}, \\
\mathrm{~g} & =32.2 \mathrm{ft} / \mathrm{sec}^{2}
\end{aligned}
$$



Figure D.1. Correlation for Climi Fuel Fraction Estimate

## APPENDIX E

## AIRCRAFT EQUATIONS OF MOTION AND AUTOPILOT MODET.S

The objective of the TRAGEN prosram is to simulate transport aircraft being steered to fly along either an input or computed reference trajectory. This trajectory may either be a climb or descent profile. The simulation must be accurate enough such that the performance of the aircraft (in terms of fuel burned and time required to reach the destination point) is adequately determined, as measured from the output. Adequate accuracy is obtained with a fivemstate variable longitudinal aircraft model.

The purpose of this appendix is to present the analytical expressions upon which the simulation was developed; this is done in two parts. The first section below defines the overall system and prasents the differential equations of motion and fuel burn. The second section describes different methods for generating typical guidance commands and autopilot equations.

Equations of Motion and Fuel Burn

To examine the vertical piofile of the aircraft (i.e., altitude and airspeed vs range), the longitudinal equations of motion are of primary importance. The short period equations of motion and the throttle dynamics are ignored. Thus, the control variables in this longitudinal plane are the angle-of-attack $\alpha$ and the magnitude of the thrust vector T. These quantities are shown with respect to aircraft true airspeed $V_{a}$, lift $L$, drag $D$, mass $W$, and flight path angle $\gamma$ in Fig. E. 1.

The kinematic equations of motion of the aircraft in the longitidinal plane are

$$
\begin{align*}
\dot{x} & =v_{a} \cos Y+v_{w}  \tag{E.1}\\
\dot{h} & =v_{a} \sin Y,
\end{align*}
$$



## Figure E. 1 Vector Diagram of Longitudinal Forces

## where

$x \quad$ - distance, or range, measured on the ground,
$h \quad$ - altitude,
$V_{w}$ - wind speed.

The inertial speed along the true airspeed vector $V_{a}$ is

$$
\begin{equation*}
V_{I}=V_{a}+V_{w} \cos \psi \tag{E.2}
\end{equation*}
$$

From Fig. E.l, the time rate of change of this vector for constant $Y$ is

$$
\begin{equation*}
\dot{V}_{I}=\dot{V}_{a}+\dot{V}_{W} \cos \gamma=\frac{1}{m}(T \cos \alpha-D-W \sin \gamma) \tag{E.3}
\end{equation*}
$$

The time rate of change of the wind speed is

$$
\begin{align*}
\dot{V}_{w} & =\frac{\partial V_{w}}{\partial h} \dot{h}^{\prime} \\
& =\frac{\partial V}{\partial h} V_{a} \sin \gamma . \tag{E.4}
\end{align*}
$$

Substituting Eq. (E.4) into Eq. (E.3) and solving for $\dot{V}_{a}$ leaves

$$
\begin{equation*}
\dot{V}_{a}=\frac{1}{m}(T \cos \alpha-D-W \sin \gamma)-\frac{\partial V_{w}}{\partial h} v_{a} \sin \gamma \cos \gamma \tag{E.5}
\end{equation*}
$$

Also, from Fig. E.I, one can write

$$
\begin{equation*}
\hat{h}=\frac{1}{m}(L \cos \gamma-W+T \sin (\gamma+\alpha)-D \sin \gamma) \tag{E.6}
\end{equation*}
$$

Equations (E.5) and (E.6) represent the kinetic equations of motion of the aircraft.

The remaining term that must be accounted for is the time-varying mass of the aircraft. Specifying the thrust also spacifies the fuel flow $\dot{\text { W }}$. Thus, the mass changes at the rate

$$
\begin{equation*}
\dot{\mathbf{W}}=-\dot{W} . \tag{E.7}
\end{equation*}
$$

Equations (E.1), (E.5), (E.6), and (E.7) are the five basic equations used to represent the longitudinal dynamics of the aircraft. Lift and drag ( $L$ and $D$ ) are computed as functions of $V_{a}, h$, and $\alpha$. Fuel flow $\dot{w}$ is a function of $V_{a}, h$, and thrust $T$.

Further refinement could be added to these equations to include the effects of the following:
1). throttle dynamics (including transient fuel flow);
2). relationship between throtile position, EPR setting, and thrust;
3). short period dynamics relating time rate of change of angle-of-attack, pitch rate, and pitch angle to elevator deflection;
4). required turning (lateral) motion for flying over fixed waypoints; and
5). lateral wind and gust effects.

However, these effects are considered to be of second order, and not required for the intent of this simulation. For a more exact autopilot simulation, they would be required.

The flight path angle is defined as

$$
\begin{equation*}
\gamma=\sin ^{-1}\left(\dot{h} / V_{a}\right) \tag{E.8}
\end{equation*}
$$

By differentating this expression and using Eqs. (E.5) and (E.6), one obtain.

$$
\begin{equation*}
\dot{\gamma}=\frac{1}{m V_{a}}\left(T \sin \alpha-W \cos \gamma+L+m \frac{\partial V_{W}}{\partial h} v_{a} \sin ^{2} \gamma\right) . \tag{E.9}
\end{equation*}
$$

Equation (E.9) can be used in place of Eq. (E.6).

## Steering Procedures

The reference trajectories which are given to be followed consist of a sequence of points containing values of time, range, altitude, airspeed, flight path angle, specific energy, mass, and other variables. Any of these quantities which is measurable and monotonically changing can serve as the independent variable. To minimize airborne computer memory requirements, it is important to make the stored data representing the reference trajectory as compact as possible.

In this study, a set of steering equations is used to take points from the reference trajectory, convert these points to reference trajectory commands, and then use these commands to set values of the control variables. This steering process represents a rudimentary form of an autopilot.

The steering process consiste of commanding the thrust $T$ and angle-of-attack $\alpha$ values so that the aircraft follows the reference as closely as possible. The system that includes this process is depicted by the block diagram in Fig. E.2. Note that flying along a reference trajectory consists of steering to connect a series of reference points. When a reference point is reached, new steering commands must be issued so that the aircraft will then be guided to the next reference point.


Figure E.2. Elements of the Longitudinal Aircraft Model

To fly along the reference path, an independent variable is first chosen. For this study, two different independent variables were chosen altitude for climb and range for descent. Then, the remaining variables primarily airspeed, flight path angle, and altitude (for range as the independent variable) - are stored as tabular functions of the chosen independent variable.

Also, it is possible to fly along a nominal path using two approaches:
1). An open-loop approach where the thrust vector is directed in such a way over the next period that by the end of that period the next reference point is reached.
2). A closed-loop approach where the aircraft is continually steered to a continuously commanded trajectory which connects the reference points.

Both of these approaches were examined for simulation of fiying the climb profile. However, good results were only obtained with the closed-loop approach.

A problem with open-loop steering is that it asumes that constant or linearly varying controls will cause the end points of a referance profile to be connacted. This assumption does nut account for perturbations due to wind, etc. along the wiy. Although the open-loop methods produce paths which have roughly correct values of airspesd and altitude at given range values, there were large excursions from theireference flight path angle for the climb profiles.

Another problem with the open-loop approsches was that both $\alpha$ and $T$ were varied to achieve fixed values of $V_{a}$ and $h$ for given range pointe. For optimum climb, thrust is usually set at the maximum value. Thus, usuall" only $\alpha$ remains as a valid control variabla.

Another consideration for implementing the climb profile is that there is no reason why a particular cruise condition (altitude, airspeed) has to be achieved when a certain range $x$ is reached. Thus, a more logical independent variable is altitude, with range allowed to be a free variable.

For these reasons, a closed-loop steering approach was devised where reference values of flight path angle (with respect to the air mass) and airspeed are obtained as functions of altitude. (This assumes that altitude is monotonically increasing during climb.) A perturbation control law was set up so that variations in $\alpha$ from a reference value $\alpha_{0}$ were proportional to variations in $\gamma$ and $V_{a}$ from their respective comand values.

Because $Y$ and $V_{a}$ tend to change linearly with time, they can be considered as ramp functions. Thus, the closed-loop controller should be considered to be at least a Type 1 system. From Eqs. (E.5) and (E.9), with no wind, the system perturbation equations are

$$
\begin{align*}
m \delta \dot{V}_{a} & =-T \sin \alpha \delta \alpha-\frac{\partial D}{\delta \alpha} \delta \alpha-\frac{\partial D}{\delta V_{a}} \delta V_{a}-W \cos \gamma \delta \gamma,  \tag{E.10}\\
m V_{a} \delta \dot{\gamma} & =T \cos \alpha \delta \alpha+\frac{\partial L}{\partial \alpha} \delta \alpha+\frac{\partial L}{\partial V_{a}} \delta V_{a}+W \sin \gamma \delta \gamma .
\end{align*}
$$

The resulting transfer functions between $\gamma, \nabla_{a}$, and $\alpha$ are of the form

$$
\begin{align*}
& \frac{\delta \gamma}{\delta \alpha}=\frac{G_{B}\left(r_{B}+1\right)}{(a / \omega)^{2}+2 \zeta(s / \omega)+1},  \tag{Ed1}\\
& \partial \nu_{a}=\frac{G_{c}\left(\tau_{c} s+1\right)}{(s / \omega)^{2}+2 \zeta(s / \omega)+1},
\end{align*}
$$

where the time constants and other parameters are functions of the paramaters in Bq. (E.10).

The control problem can now be interpreted as shown in Fig. B.3. To obtain the Type 1 system, the control law has to be of the form

$$
\begin{equation*}
\delta \alpha=\left(k_{1}+\frac{k_{2}}{s}\right) \quad\left(v_{d_{c}}-v_{a}\right)+\left(k_{3}+\frac{k_{4}}{s}\right) \quad\left(\gamma_{c}-\gamma\right), \tag{E.12}
\end{equation*}
$$



Figure E. 3 Control Loops for Perturbation Control of Airspeed and Flight Path Angle.
where $V_{a_{c}}$ and $\gamma_{c}$ are the commanded values of $V_{a}$ and $Y$. This is the classical proportional-plus-integral controller. Gains are chosen to produce the desired response for removal of profile errors.

To generate the continuous commands $V_{a_{c}}$ and $\gamma_{c}$ during climb, the computelions made at each reference point are

$$
\begin{align*}
& \frac{\partial \gamma}{\partial h}=\frac{\gamma_{n+1}-\gamma_{n}}{h_{n+1}-h_{n}},  \tag{2.13}\\
& \frac{\partial V_{a}}{\partial h}=\frac{v_{a n+1}-v_{d n}}{h_{n+1}-h_{n}} .
\end{align*}
$$

Then

$$
\begin{align*}
& \gamma_{c}=\gamma_{n}+\left(h-h_{n}\right) \frac{\partial \gamma}{\partial h},  \tag{E.14}\\
& v_{\mathbf{a}_{c}}=v_{a_{n}}+\left(h-h_{n}\right) \frac{\partial v_{a}}{\partial h} .
\end{align*}
$$

When the flight path angle is very small (during the initial period of flight and when the aircraft levels off at 3048 m ( 10000 ft ) to gain speed before resuming climb), EqB. (E.14) do not work well. For these cases, it is more appropriate to set

$$
\begin{align*}
& y_{c}=0 .  \tag{E.15}\\
& v_{a_{c}}=v_{a_{n+1}}
\end{align*}
$$

and use the control law

$$
\begin{equation*}
\delta \alpha=\left(K_{3}+\frac{K_{4}}{s}\right)\left(\gamma_{c}-\gamma\right) . \tag{E.16}
\end{equation*}
$$

The above method worked quite well in causing tha simulated profile to closely follow the reference path. Daly one set of gain values was sufficient for the entire trajectory.

For decending flight, the thrust again is usually constrained (idle) for optimum performance. Also, for this case, the main concern is to reach - fixed altitude when rangemto-go to the destination point is a certain value. Thus, above $3048 \mathrm{~m}(10000 \mathrm{ft})$, the alrspeed can be allowed to be a free variable. For this case, only inertial flight path $\gamma_{\text {Ic }}$ ie required to be controlled.

To generate continuous command $Y_{I c}$, the computation made at each reference point is

$$
\begin{equation*}
\gamma_{I c}=\tan ^{-1}\left[\left(h_{n+1}-h_{n}\right) /\left(x_{n+1}-x_{n}\right)\right] \tag{E.17}
\end{equation*}
$$

Then, the control law is similar to Eq, (E,16), i.e.

$$
\begin{equation*}
\delta \alpha=\left(K_{3}+\frac{K_{4}}{B}\right)\left(\gamma_{I c}-\gamma_{I}\right) \tag{E.18}
\end{equation*}
$$

where inertial values of flight path angle are used rather than those with respect to the air mass. Equations (F.17) and (E.18) form the basis for closed-loop control of descending flight. Again, one set of gains is sufficient for the entire descent profile.

## HEFREACES

1. Covey, R.R., Mascetti, G.J., and Roessler, W.U., "Bxamination of Commercial Aviation Energy Conservation strategies, H Report Mo. ATR-79 (7761)-1, Aerospece Corp., L1 segundo, CA. October 1978.
2. Hanks, G.H., "Overview of Technology Advancements for Enargy Efficient Tranaporta," AIMA Atmospheric Flight Mechanice Conference, Paper Mo. 79-1651, Boulder, CO. August 1979.
3. 8tengel, R.F., and Marcus, F.J., "Energy Manngement Techniques for Fual Conservation in Military Traneport Aircraft," AFFDL-TR-75-156, Analytic Sciences Corp., Rending, MA, February 1976.
4. Aggarwal. R., et al., "An Analysis of Fuel Conserving Operational Procedures and Design Modifications for Bomber/Transport Aircraft," AFFDL-TR-78-96, Vol. II, Dynamics Research Corp, Wilmington, MA, July 1978.
5. Yarrington, A.L., and Burghart, J.T., "Tarminal Configured Vehicle Fuel Conservation Sensitivity Study," Boeing Commarcial Airplane Co., Doc. No. D6-42939, Seattle, WA, July 1976.
6. Collins, B.P., "Estimation of Fuel Consumption of Commercial Jet Aircraft from Path Profile Data," SAE International Air Transportation Meating, Cincinnati, $\mathrm{OH}, \mathrm{May} 1980$.
7. Smith, B.A., "Automated Fuel Management Set for Test," Aviation Week \& Space Technology, April 21, 1980. pp. 191-193.
8. Klass, P.J.. "Controller Numbers Keyed to Advances," Aviation Week \& Space Technology, April 28, 1980, pp. 61-63.
9. Sorensen, J.A. Morello, S.A., and Erzberger, H., "Application of Trajectory Optimization Principles to Minimize Aircraft Operating Costs," Procedings of the 18 th IEEE Conference on Decision and Control. Ft. Lauderdale, FL, December 1979, pp 415-421.
10. Sorensen, J.A., "Concepts for Generating Optimum Vertical Flight Profiles," NASA CR 159181, September 1979.
11. Schultz, R.I.. and Zagalsky, N.R., "Aircraft Performance Optimization," Journal of Aircraft, Vol. 9, No. 2, January 1972, pp. 108-114.
12. Erwin, R.L., Jr., et al., "Strategic Control Algorithm Levelopment," Boeing Commercial Airplane Co., Contract No. DOT-TSC-538, December 1973.
13. Knox, C.E., and Cennon, D.G., "Development and Flight Test Results of a Flight Management Algorithm for Fuel Conservative Descents in a Time Based Metering Traffic Environment," 18th IEEE Conference on Decision and Control, Ft. Lauderdale, FL, December 1979.
14. Tobian, L., O'Brion, P.J., and Palmer, E.A., MSimulation study of the Lffect of Fuel-Conservative Approaches on ATC Proceduras and Terminal Area Capacity," 8AE Air Tranmportation Meeting. Boston, MA, May 1978.
15. Rutowni, E.8., "mongy Approach to the Genaral Aircraft Parformance Problea," J. of Aeropautical 8ciences, Vol. 21 Mo. 3, March 1954 pp. 187-195.
16. Bryson, A.E., Desai, M.M., and Hoffman, W.C., "Energy-state Approximation of Supermonic Aircraft, " J. of Aircreft, Vol, 6, Mo. 6, NovDec 1969, Pp. 481-488.
17. Erzberger, H., and Lee, H.O., "Characteristics of Constrained Optimum Trajectories with specified Range," MABA TM 78519, septomber 1978.
18. Erzberger, H., McLean, J.D., and Barman, J.R., "Fixed-Range Optimum Trajectorles for Short Haul Aircraft," MA8A TM D-8115, December 1975.
19. Barman, J.E., and Erzberger, H., "Fixed-Range Optimum Trajectories for Short-Haul Aircraft," J. of Aircraft, Vol. 13, No. 10, October 1976, pp. 748-754.
20. Shoace, H., and Bryson, A.E. "Airplane Minimum Fuel Flight Pathe for Fixed Range," SUDAAR No. 499, 3tanford University, Btanford CA, March 1976.
21. Lee, H.Q., and Erzberger, H., "Algorithm for Fixed Range Optimal Trajectories," MASA Tachnical Paper 1565, 1979.
22. Anon., "OPTIM - Computer Program to Generate a Vertical Profile which Minimizes the Aircraft Direct Operating Costs," Revision No. 2, NAS115497, Analytical Mechanica Assoc., Inc., Mountain View, CA, October 1980.
23. Anon., "TRAGEN - Computer Program to Simulate an Aircraft Steered to Follow a Specified Vertical Profile," Revision No. 2, NAS1-15497, Analytical Mechanics Assoc., Inc., Mountain View, CA, October 1980.
24. Cuy:endall, R.E., Curry, J.K., Domke, A.E., and Madsen, S.E., "Study of Cost/Benefit Tradeoffs for Reducing the Energy Consumption of the Comercial Air Transportation System," NASA CR-137891, June 1976.
25. Bryson, A.E., and Ho, Y.C., "Applied Optimal Control," Blaisdell, Waltham, MA, 1969. m

[^0]:    * The one exception $i s$ at $M=0.7$ and $E P R=1.85$. This data point was presumed to be in error, and a smooth clive is assumed.

