327 research outputs found
Electrophoretic mobility of a charged colloidal particle: A computer simulation study
We study the mobility of a charged colloidal particle in a constant
homogeneous electric field by means of computer simulations. The simulation
method combines a lattice Boltzmann scheme for the fluid with standard Langevin
dynamics for the colloidal particle, which is built up from a net of bonded
particles forming the surface of the colloid. The coupling between the two
subsystems is introduced via friction forces. In addition explicit counterions,
also coupled to the fluid, are present. We observe a non-monotonous dependence
of the electrophoretic mobility on the bare colloidal charge. At low surface
charge density we observe a linear increase of the mobility with bare charge,
whereas at higher charges, where more than half of the ions are co-moving with
the colloid, the mobility decreases with increasing bare charge.Comment: 15 pages, 8 figure
Electronic interactions in fullerene spheres
The electron-phonon and Coulomb interactions inC, and larger fullerene
spheres are analyzed. The coupling between electrons and intramolecular
vibrations give corrections meV to the electronic energies for
C, and scales as in larger molecules. The energies associated
with electrostatic interactions are of order eV, in C and
scale as . Charged fullerenes show enhanced electron-phonon coupling,
meV, which scales as . Finally, it is argued that non only
C, but also C are highly polarizable molecules. The
polarizabilities scale as and , respectively. The role of this large
polarizability in mediating intermolecular interactions is also discussed.Comment: 12 pages. No figure
Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results
We consider electrophoresis of a single charged colloidal particle in a
finite box with periodic boundary conditions, where added counterions and salt
ions ensure charge neutrality. A systematic rescaling of the electrokinetic
equations allows us to identify a minimum set of suitable dimensionless
parameters, which, within this theoretical framework, determine the reduced
electrophoretic mobility. It turns out that the salt-free case can, on the Mean
Field level, be described in terms of just three parameters. A fourth
parameter, which had previously been identified on the basis of straightforward
dimensional analysis, can only be important beyond Mean Field. More complicated
behavior is expected to arise when further ionic species are added. However,
for a certain parameter regime, we can demonstrate that the salt-free case can
be mapped onto a corresponding system containing additional salt. The
Green-Kubo formula for the electrophoretic mobility is derived, and its
usefulness demonstrated by simulation data. Finally, we report on
finite-element solutions of the electrokinetic equations, using the commercial
software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on
occasion of the CODEF 2008 conferenc
Numerical electrokinetics
A new lattice method is presented in order to efficiently solve the
electrokinetic equations, which describe the structure and dynamics of the
charge cloud and the flow field surrounding a single charged colloidal sphere,
or a fixed array of such objects. We focus on calculating the electrophoretic
mobility in the limit of small driving field, and systematically linearise the
equations with respect to the latter. This gives rise to several subproblems,
each of which is solved by a specialised numerical algorithm. For the total
problem we combine these solvers in an iterative procedure. Applying this
method, we study the effect of the screening mechanism (salt screening vs.
counterion screening) on the electrophoretic mobility, and find a weak
non-trivial dependence, as expected from scaling theory. Furthermore, we find
that the orientation of the charge cloud (i. e. its dipole moment) depends on
the value of the colloid charge, as a result of a competition between
electrostatic and hydrodynamic effects.Comment: accepted for publication in Journal of Physics Condensed Matter
(proceedings of the 2012 CODEF conference
Structural and Electronic Instabilities in Polyacenes: Density Matrix Renormalization Group Study of a Long--Range Interacting Model
We have carried out Density Matrix Renormalization Group (DMRG) calculations
on the ground state of long polyacene oligomers within a Pariser-Parr-Pople
(PPP) Hamiltonian. The PPP model includes long-range electron correlations
which are required for physically realistic modeling of conjugated polymers. We
have obtained the ground state energy as a function of the dimerization
and various correlation functions and structure factors for
. From energetics, we find that while the nature of the Peierls'
instabilityin polyacene is conditional and strong electron correlations enhance
the dimerization. The {\it cis} form of the distortion is favoured over the
{\it trans} form. However, from the analysis of correlation functions and
associated structure factors, we find that polyacene is not susceptible to the
formation of a bond order wave (BOW), spin density wave (SDW) or a charge
density wave (CDW) in the ground state.Comment: 31 pages, latex, 13 figure
Selective trapping of DNA using glass microcapillaries
We show experimentally that a cheap glass microcapillary can accumulate
{\lambda}-phage DNA at its tip and deliver the DNA into the capillary using a
combination of electro-osmotic flow, pressure-driven flow, and electrophoresis.
We develop an efficient simulation model for this phenomenon based on the
electrokinetic equations and the finite-element method. Using our model, we
explore the large parameter space of the trapping mechanism by varying the salt
concentration, the capillary surface charge, the applied voltage, the pressure
difference, and the mobility of the analyte molecules. Our simulation results
show that this system can be tuned to capture a wide range of analyte
molecules, such as DNA or proteins, based on their electrophoretic mobility.
Our method for separation and pre-concentration of analytes has implications
for the development of low-cost lab-on-a-chip devices.Comment: 9 pages, 4 figure
A Dissipative-Particle-Dynamics Model for Simulating Dynamics of Charged Colloid
A mesoscopic colloid model is developed in which a spherical colloid is
represented by many interacting sites on its surface. The hydrodynamic
interactions with thermal fluctuations are taken accounts in full using
Dissipative Particle Dynamics, and the electrostatic interactions are simulated
using Particle-Particle-Particle Mesh method. This new model is applied to
investigate the electrophoretic mobility of a charged colloid under an external
electric field, and the influence of salt concentration and colloid charge are
systematically studied. The simulation results show good agreement with
predictions from the electrokinetic theory.Comment: 17 pages, 8 figures, submitted to the proceedings of High Performance
Computing in Science & Engineering '1
Majorana: from atomic and molecular, to nuclear physics
In the centennial of Ettore Majorana's birth (1906-1938?), we re-examine some
aspects of his fundamental scientific production in atomic and molecular
physics, including a not well known short communication. There, Majorana
critically discusses Fermi's solution of the celebrated Thomas-Fermi equation
for electron screening in atoms and positive ions. We argue that some of
Majorana's seminal contributions in molecular physics already prelude to the
idea of exchange interactions (or Heisenberg-Majorana forces) in his later
workson theoretical nuclear physics. In all his papers, he tended to emphasize
the symmetries at the basis of a physical problem, as well as the limitations,
rather than the advantages, of the approximations of the method employed.Comment: to appear in Found. Phy
Self-Association of Organic Solutes in Solution: A NEXAFS Study of Aqueous Imidazole
N K-edge near-edge X-ray absorption fine-structure (NEXAFS) spectra of imidazole in concentrated aqueous solutions have been acquired. The NEXAFS spectra of the solution species differ significantly from those of imidazole monomers in the gas phase and in the solid state of imidazole, demonstrating the strong sensitivity of NEXAFS to the local chemical and structural environment. In a concentration range from 0.5 to 8.2 mol L−1 the NEXAFS spectrum of aqueous imidazole does not change strongly, confirming previous suggestions that imidazole self-associates are already present at concentrations more dilute than the range investigated here. We show that various types of electronic structure calculations (Gaussian, StoBe, CASTEP) provide a consistent and complete interpretation of all features in the gas phase and solid state spectra based on ground state electronic structure. This suggests that such computational modelling of experimental NEXAFS will permit an incisive analysis of the molecular interactions of organic solutes in solutions. It is confirmed that microhydrated clusters with a single imidazole molecule are poor models of imidazole in aqueous solution. Our analysis indicates that models including both a hydrogen-bonded network of hydrate molecules, and imidazole–imidazole interactions, are necessary to explain the electronic structure evident in the NEXAFS spectra
- …