78 research outputs found

    Benthic oxygen exchange over a heterogeneous Zostera noltei meadow in a temperate coastal ecosystem

    Get PDF
    Seagrass meadows support intense but highly variable benthic metabolic rates that still need to be better evaluated to determine an accurate trophic status. The present study assessed how seagrasses and associated benthic macrofauna control spatiotemporal changes in benthic oxygen exchanges within a temperate bay. Based on seasonal sampling over a complete year cycle, the diffusive oxygen uptake (DOU), community respiration (CR) and gross primary production (GPP) were measured in a Zostera noltei meadow within Arcachon Bay, taking into account its spatial heterogeneity. Oxygen fluxes were assessed in sediment cores, within which benthic macrofauna and seagrass abundances and biomasses were quantified. The presence of Z. noltei did not significantly affect the DOU. Seasonal changes in CR and GPP correlated strongly with temperature in the presence of Z. noltei. The characteristics of benthic macrofauna associated with Z. noltei only weakly affected seasonal changes in CR. High spatial changes in both GPP and CR were mainly driven by the aboveground biomass of Z. noltei. When extrapolated to the whole intertidal area of the bay, in spite of limitations, our results suggest (1) overall higher contributions to CR and GPP from the seagrass meadow than from bare sediments, even though alternative primary producers in bare sediments (likely microphytobenthos) contributed significantly during winter; (2) an annual decrease in CR and GPP of 35 and 41%, respectively, resulting from the decline in Z. noltei of 25% between 2005 and 2007; and (3) a strong seasonality in the magnitude of this decrease, which was high during autumn and low during winter.

    Biodiversity and bio-evaluation methods in transitional waters: a theoretical challenge

    Get PDF
    1 - This paper addresses the question of the weaknesses of the methodologies developed based on the analysis of the composition of benthic invertebrate communities in transitional waters.2 - Benthic communities are an important element of the bio-evaluation methodologies suggested for the Ecological Quality status of the European transitional and coastal waters in the context of the Water Framework Directive. It is argued that the assessment of Ecological Quality status requires both fundamental and applied science.3 - The lack of performance of many biotic indices under varying and highly fluctuating environmental conditions may well be related to weakness in theory supporting marine biodiversity.4 - We propose some possible approaches for future development in the field of biotic indices and marine biodiversity theory

    Strengthening Europe's Capability in Biological Ocean Observations

    Get PDF
    This publication is primarily aimed at stakeholders involved in ocean observing, spanning diverse roles from commissioning, managing, funding and coordinating, to developing, implementing, or advising on, ocean observation programmes. Such programmes will have strategic and policy drivers but their main purpose may vary from predominantly researchdriven scientific purposes to environmental monitoring for providing data and reporting to legally-binding regulations or directives. The main focus is on European capabilities but set in a global context with the various actors spanning a variety of geographical scales from national to regional and European. Key stakeholder organizations include environmental or other agencies; marine research institutions, their researchers and operators; international and regional ocean observing initiatives and programmes; national, regional and European policy makers and their advisors; national stations for observations; etc.). It will also be of interest to the wider marine and maritime research and policy community. The main aim of the publication is to increase the relevance of current (and future) European biological ocean observation capacity to strengthen global efforts towards our understanding of the ocean and enhance marine biodiversity conservation, for maintaining a healthy ocean for healthy societies. This document explains why biological ocean observations are needed to assess progress against national and international conservation targets, the Sustainable Development Goals (SDGs), the Blue Growth agenda and to contribute to key EU directives including the Marine Strategy Framework Directive (MSFD). To achieve this, the publication highlights the need of biological ocean observations to reflect clearly defined hypotheses about potential causes of change, including the combined impacts of local and global drivers, and to support the management of our impacts on the ocean. Additionally, it calls for flexible biological ocean observing programmes to capture the relevant drivers operating at multiple spatial scales, by networking and integration of ongoing monitoring programmes, methodological standardization and appropriate policies of data integration and dissemination. It then presents key variables, elements and information products to inform on the status and trends of marine biodiversity

    Strengthening Europe’s capability in biological ocean observations

    Get PDF
    This publication is primarily aimed at stakeholders involved in ocean observing, spanning diverse roles from commissioning, managing, funding and coordinating, to developing, implementing, or advising on, ocean observation programmes. Such programmes will have strategic and policy drivers but their main purpose may vary from predominantly researchdriven scientific purposes to environmental monitoring for providing data and reporting to legally-binding regulations or directives. The main focus is on European capabilities but set in a global context with the various actors spanning a variety of geographical scales from national to regional and European. Key stakeholder organizations include environmental or other agencies; marine research institutions, their researchers and operators; international and regional ocean observing initiatives and programmes; national, regional and European policy makers and their advisors; national stations for observations; etc.). It will also be of interest to the wider marine and maritime research and policy community. The main aim of the publication is to increase the relevance of current (and future) European biological ocean observation capacity to strengthen global efforts towards our understanding of the ocean and enhance marine biodiversity conservation, for maintaining a healthy ocean for healthy societies. This document explains why biological ocean observations are needed to assess progress against national and international conservation targets, the Sustainable Development Goals (SDGs), the Blue Growth agenda and to contribute to key EU directives including the Marine Strategy Framework Directive (MSFD). To achieve this, the publication highlights the need of biological ocean observations to reflect clearly defined hypotheses about potential causes of change, including the combined impacts of local and global drivers, and to support the management of our impacts on the ocean. Additionally, it calls for flexible biological ocean observing programmes to capture the relevant drivers operating at multiple spatial scales, by networking and integration of ongoing monitoring programmes, methodological standardization and appropriate policies of data integration and dissemination. It then presents key variables, elements and information products to inform on the status and trends of marine biodiversity. The Future Science Brief finishes by recommending priorities for enhancing relevant and integrated current biological ocean observing capacity in Europe

    Drilling Predation on Serpulid Polychaetes (Ditrupa arietina) from the Pliocene of the Cope Basin, Murcia Region, Southeastern Spain

    Get PDF
    We report quantitative analyses of drilling predation on the free-living, tube-dwelling serpulid polychaete Ditrupa arietina from the Cope Cabo marine succession (Pliocene, Spain). Tubes of D. arietina are abundant in the sampled units: 9 bulk samples from 5 horizons yielded ∼5925 specimens of D. arietina. Except for fragmentation, tubes were well preserved. Complete specimens ranged from 3.1 to 13.4 mm in length and displayed allometric growth patterns, with larger specimens being relatively slimmer. Drilled Ditrupa tubes were observed in all samples. Drillholes, identified as Oichnus paraboloides, were characterized by circular to elliptical outline (drillhole eccentricity increased with its diameter), parabolic vertical profile, outer diameter larger than inner diameter, penetration of one tube wall only, narrow range of drill-hole sizes, and non-random (anterior) distribution of drillholes. A total of 233 drilled specimens were identified, with drilling frequencies varying across horizons from 2.7% to 21% (3.9% for pooled data). Many tube fragments were broken across a drillhole suggesting that the reported frequencies are conservative and that biologically-facilitated (drill-hole induced) fragmentation hampers fossil preservation of complete serpulid tubes. No failed or repaired holes were observed. Multiple complete drillholes were present (3.9%). Drilled specimens were significantly smaller than undrilled specimens and tube length and drill-hole diameter were weakly correlated. The results suggest that drillholes were produced by a size-selective, site-stereotypic predatory organism of unknown affinity. The qualitative and quantitative patterns reported here are mostly consistent with previous reports on recent and fossil Ditrupa and reveal parallels with drilling patterns documented for scaphopod mollusks, a group that is ecologically and morphologically similar to Ditrupa. Consistent with previous studies, the results suggest that free-dwelling serpulid polychaetes are preyed upon by drilling predators and may provide a viable source of data on biotic interactions in the fossil record
    corecore