357 research outputs found

    A simple toy model for effective restoration of chiral symmetry in excited hadrons

    Full text link
    A simple solvable toy model exhibiting effective restoration of chiral symmetry in excited hadrons is constructed. A salient feature is that while physics of the low-lying states is crucially determined by the spontaneous breaking of chiral symmetry, in the high-lying states the effects of chiral symmetry breaking represent only a small correction. Asymptotically the states approach the regime where their properties are determined by the underlying unbroken chiral symmetry.Comment: This is the published version of this paper. Note that the title has changed from earlier versions as has the abstract. The emphasis is slightly different from previous versions but the essential physical content is the sam

    A New Application of the Gursey and Radicati Mass Formula

    Full text link
    We study the spin- and flavour- dependent SU(6) violations in the baryon spectrum by means of a G\"ursey Radicati mass formula. The average energy of each SU(6)-multiplet is described using the SU(6) invariant interaction given by a hypercentral potential containing a linear and a hypercoulomb term. We show that the non strange and strange baryon masses are in general fairly well reproduced and moreover that the G\"ursey Radicati formula holds in a satisfactory way also for the excited states up to 2 GeV. The coefficients of the G\"ursey Radicati SU(6) breaking part obtained by the fit of the three-quark spectrum can be used to evaluate in first approximation the splitting within multiplets also for exotic baryon systems.Comment: 9 pages, 2 figures, 2 table, submitted to Eur. Phys. J.

    Chiral symmetry restoration in excited hadrons, quantum fluctuations, and quasiclassics

    Full text link
    In this paper, we discuss the transition to the semiclassical regime in excited hadrons, and consequently, the restoration of chiral symmetry for these states. We use a generalised Nambu-Jona-Lasinio model with the interaction between quarks in the form of the instantaneous Lorentz-vector confining potential. This model is known to provide spontaneous breaking of chiral symmetry in the vacuum via the standard selfenergy loops for valence quarks. It has been shown recently that the effective single-quark potential is of the Lorentz-scalar nature, for the low-lying hadrons, while, for the high-lying states, it becomes a pure Lorentz vector and hence the model exhibits the restoration of chiral symmetry. We demonstrate explicitly the quantum nature of chiral symmetry breaking, the absence of chiral symmetry breaking in the classical limit as well as the transition to the semiclassical regime for excited states, where the effect of chiral symmetry breaking becomes only a small correction to the classical contributions.Comment: RevTeX4, 20 pages, 4 Postscript figures, uses epsfig.sty, typos correcte

    Faddeev approach to confined three-quark problems

    Get PDF
    We propose a method that allows for the efficient solution of the three-body Faddeev equations in the presence of infinitely rising confinement interactions. Such a method is useful in calculations of nonrelativistic and especially semirelativistic constituent quark models. The convergence of the partial wave series is accelerated and possible spurious contributions in the Faddeev components are avoided. We demonstrate how the method works with the example of the Goldstone-boson-exchange chiral quark model for baryons.Comment: 6 page

    Chiral symmetry and excited baryons

    Full text link
    An approach to baryons in the framework of the microscopic Generalized Nambu-Jona-Lasinio chiral potential quark model is considered and quite general arguments are given in favor of effective restoration of chiral symmetry in excited baryons.Comment: LaTeX2e, 5 pages, uses jetpl.cls (included), to appear in JETP Let

    Axial-vector mesons in a relativistic point-form approach

    Full text link
    The Poincare invariant coupled-channel formalism for two-particle systems interacting via one-particle exchange, which has been developed and applied to vector mesons in Ref. [1] is applied to axial vector mesons. We thereby extend the previous study of a dynamical treatment of the Goldstone-boson exchange by comparison with the commonly used instantaneous approximation to the case of orbital angular momentum l=1. Effects in the mass shifts show more variations than for the vector-meson case. Results for the decay widths are sizable, but comparison with sparse experimental data is inconclusive.Comment: 4 pages, 1 figur

    Parity Doubling Among the Baryons

    Full text link
    We study the evidence for and possible origins of parity doubling among the baryons. First we explore the experimental evidence, finding a significant signal for parity doubling in the non-strange baryons, but little evidence among strange baryons. Next we discuss potential explanations for this phenomenon. Possibilities include suppression of the violation of the flavor singlet axial symmetry (U(1)AU(1)_{A}) of QCD, which is broken by the triangle anomaly and by quark masses. A conventional Wigner-Weyl realization of the SU(2)LĂ—SU(2)RSU(2)_{L}\times SU(2)_{R} chiral symmetry would also result in parity doubling. However this requires the suppression of families of \emph{chirally invariant} operators by some other dynamical mechanism. In this scenario the parity doubled states should decouple from pions. We discuss other explanations including connections to chiral invariant short distance physics motivated by large NcN_{c} arguments as suggested by Shifman and others, and intrinsic deformation of relatively rigid highly excited hadrons, leading to parity doubling on the leading Regge trajectory. Finally we review the spectroscopic consequences of chiral symmetry using a formalism introduced by Weinberg, and use it to describe two baryons of opposite parity.Comment: 32 pages, 8 figures; v2 revised and expanded; submitted to Phys. Re

    Photoproduction of Baryons Decaying into N pi and N eta

    Full text link
    A combined analysis of photoproduction data on \gamma p to \pi N, eta N was performed including the data on K Lambda and K Sigma. The data are interpreted in an isobar model with s--channel baryon resonances and pi, rho,(omega), K, and K^* exchange in the t--channel. Three baryon resonances have a substantial coupling to eta N, the well known N(1535)S_{11}, N(1720)P_{13}, and N(2070)D_{15}. The inclusion of data with open strangeness reveals the presence of further new resonances, N(1840)P_{11}, N(1875)D_{13} and N(2170)D_{13}.Comment: 13 pages, 14 figure
    • …
    corecore