In this paper, we discuss the transition to the semiclassical regime in
excited hadrons, and consequently, the restoration of chiral symmetry for these
states. We use a generalised Nambu-Jona-Lasinio model with the interaction
between quarks in the form of the instantaneous Lorentz-vector confining
potential. This model is known to provide spontaneous breaking of chiral
symmetry in the vacuum via the standard selfenergy loops for valence quarks. It
has been shown recently that the effective single-quark potential is of the
Lorentz-scalar nature, for the low-lying hadrons, while, for the high-lying
states, it becomes a pure Lorentz vector and hence the model exhibits the
restoration of chiral symmetry. We demonstrate explicitly the quantum nature of
chiral symmetry breaking, the absence of chiral symmetry breaking in the
classical limit as well as the transition to the semiclassical regime for
excited states, where the effect of chiral symmetry breaking becomes only a
small correction to the classical contributions.Comment: RevTeX4, 20 pages, 4 Postscript figures, uses epsfig.sty, typos
correcte