16,699 research outputs found

    Theoretical study of the mechanisms of fatigue in photomultipliers, phase 2 Final report

    Get PDF
    Fatigue testing of photomultipliers with gallium phosphide dynode

    Boys\u27 and Girls\u27 Club Work

    Get PDF
    What is Club Work? It is an organized effort to awaken the interest of boys and girls in agriculture and industrial problems, to induce them to increase the wealth of the community by the production and conservation of grain and meats and vegetables through club activities and to train their hands and minds by practice and instruction in various field and home projects

    Fracture clinic redesign reduces the cost of outpatient orthopaedic trauma care

    Get PDF
    Objectives: “Virtual fracture clinics” have been reported as a safe and effective alternative to the traditional fracture clinic. Robust protocols are used to identify cases that do not require further review, with the remainder triaged to the most appropriate subspecialist at the optimum time for review. The objective of this study was to perform a “top-down” analysis of the cost effectiveness of this virtual fracture clinic pathway. Methods: National Health Service financial returns relating to our institution were examined for the time period 2009 to 2014 which spanned the service redesign. Results: The total staffing costs rose by 4% over the time period (from £1 744 933 to £1 811 301) compared with a national increase of 16%. The total outpatient department rate of attendance fell by 15% compared with a national fall of 5%. Had our local costs increased in line with the national average, an excess expenditure of £212 705 would have been required for staffing costs. Conclusions: The virtual fracture clinic system was associated with less overall use of staff resources in comparison to national cost data. Adoption of this system nationally may have the potential to achieve significant cost savings

    Obstetrician-assessed maternal health at pregnancy predicts offspring future health

    Get PDF
    Background: We aimed to examine the association between obstetrician assessment of maternal physical health at the time of pregnancy and offspring cardiovascular disease risk.<p></p> Methods and Principal Findings: We examined this association in a birth cohort of 11,106 individuals, with 245,000 person years of follow-up. We were concerned that any associations might be explained by residual confounding, particularly by family socioeconomic position. In order to explore this we used multivariable regression models in which we adjusted for a range of indicators of socioeconomic position and we explored the specificity of the association. Specificity of association was explored by examining associations with other health related outcomes. Maternal physical health was associated with cardiovascular disease: adjusted (socioeconomic position, complications of pregnancy, birthweight and childhood growth at mean age 5) hazard ratio comparing those described as having poor or very poor health at the time of pregnancy to those with good or very good health was 1.55 (95%CI: 1.05, 2.28) for coronary heart disease, 1.91 (95%CI: 0.99, 3.67) for stroke and 1.57 (95%CI: 1.13, 2.18) for either coronary heart disease or stroke. However, this association was not specific. There were strong associations for other outcomes that are known to be related to socioeconomic position (3.61 (95%CI: 1.04, 12.55) for lung cancer and 1.28 (95%CI:1.03, 1.58) for unintentional injury), but not for breast cancer (1.10 (95%CI:0.48, 2.53)).<p></p> Conclusions and Significance: These findings demonstrate that a simple assessment of physical health (based on the appearance of eyes, skin, hair and teeth) of mothers at the time of pregnancy is a strong indicator of the future health risk of their offspring for common conditions that are associated with poor socioeconomic position and unhealthy behaviours. They do not support a specific biological link between maternal health across her life course and future risk of cardiovascular disease in her offspring.<p></p&gt

    Coherence of Spin Qubits in Silicon

    Full text link
    Given the effectiveness of semiconductor devices for classical computation one is naturally led to consider semiconductor systems for solid state quantum information processing. Semiconductors are particularly suitable where local control of electric fields and charge transport are required. Conventional semiconductor electronics is built upon these capabilities and has demonstrated scaling to large complicated arrays of interconnected devices. However, the requirements for a quantum computer are very different from those for classical computation, and it is not immediately obvious how best to build one in a semiconductor. One possible approach is to use spins as qubits: of nuclei, of electrons, or both in combination. Long qubit coherence times are a prerequisite for quantum computing, and in this paper we will discuss measurements of spin coherence in silicon. The results are encouraging - both electrons bound to donors and the donor nuclei exhibit low decoherence under the right circumstances. Doped silicon thus appears to pass the first test on the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200

    Quantum computing with an electron spin ensemble

    Get PDF
    We propose to encode a register of quantum bits in different collective electron spin wave excitations in a solid medium. Coupling to spins is enabled by locating them in the vicinity of a superconducting transmission line cavity, and making use of their strong collective coupling to the quantized radiation field. The transformation between different spin waves is achieved by applying gradient magnetic fields across the sample, while a Cooper Pair Box, resonant with the cavity field, may be used to carry out one- and two-qubit gate operations.Comment: Several small corrections and modifications. This version is identical to the version published in Phys. Rev. Let

    Global Optical Control of a Quantum Spin Chain

    Full text link
    Quantum processors which combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary single- and entangling two-qubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that universal quantum computing is possible even if these pulses are applied {\it globally} to a chain; by employing a repeating pattern of four distinct qubit units the need for individual qubit addressing is removed. Some current experimental qubit systems would lend themselves to implementing this idea.Comment: 5 pages, 3 figure

    High Fidelity Single Qubit Operations using Pulsed EPR

    Get PDF
    Systematic errors in spin rotation operations using simple RF pulses place severe limitations on the usefulness of the pulsed magnetic resonance methods in quantum computing applications. In particular, the fidelity of quantum logic operations performed on electron spin qubits falls well below the threshold for the application of quantum algorithms. Using three independent techniques, we demonstrate the use of composite pulses to improve this fidelity by several orders of magnitude. The observed high-fidelity operations are limited by pulse phase errors, but nevertheless fall within the limits required for the application of quantum error correction.Comment: 4 pages, 3 figures To appear in Phys. Rev. Let
    corecore