10,868 research outputs found

    Finite element models of wire rope for vibration analysis

    Get PDF
    The usefulness of wire rope in shock and vibration isolation is briefly reviewed and its modeling for the purpose of vibration analysis is addressed. A model of a nominally straight segment of wire rope is described in which the rope structure is represented by a maiden, or central, strand of wire with one (or more) strand(s) wrapped around it in a helix (helices). The individual strands are modeled using finite elements and MSC NASTRAN. Small linear segments of each wire are modeled mathematically by dividing them lengthwise into triangular prisms representing each prism by a solid NASTRAN element. To model pretensioning and allow for extraction of internal force information from the NASTRAN model, the wound strands are connected to the maiden strand and each other using spring (scalar elastic) elements. Mode shapes for a length of wire rope with one and fixed to a moving base and the other attached to a point mass, are presented. The use of the NASTRAN derived mode shapes to approximate internal normal forces in equations of motion for vibration analyses is considered

    Spitzer observations of the Hyades: Circumstellar debris disks at 625 Myr of age

    Full text link
    We use the Spitzer Space Telescope to search for infrared excess at 24, 70, and 160 micron due to debris disks around a sample of 45 FGK-type members of the Hyades cluster. We supplement our observations with archival 24 and 70 micron Spitzer data of an additional 22 FGK-type and 11 A-type Hyades members in order to provide robust statistics on the incidence of debris disks at 625 Myr of age an era corresponding to the late heavy bombardment in the Solar System. We find that none of the 67 FGK-type stars in our sample show evidence for a debris disk, while 2 out of the 11 A-type stars do so. This difference in debris disk detection rate is likely to be due to a sensitivity bias in favor of early-type stars. The fractional disk luminosity, L_dust/L*, of the disks around the two A-type stars is ~4.0E-5, a level that is below the sensitivity of our observations toward the FGK-type stars. However, our sensitivity limits for FGK-type stars are able to exclude, at the 2-sigma level, frequencies higher than 12% and 5% of disks with L_dust/L* > 1.0E-4 and L_dust/L* > 5.0E-4, respectively. We also use our sensitivity limits and debris disk models to constrain the maximum mass of dust, as a function of distance from the stars, that could remain undetected around our targets.Comment: 33 pages, 11 figures, accepted by Ap

    Failure mechanisms of graphene under tension

    Full text link
    Recent experiments established pure graphene as the strongest material known to mankind, further invigorating the question of how graphene fails. Using density functional theory, we reveal the mechanisms of mechanical failure of pure graphene under a generic state of tension. One failure mechanism is a novel soft-mode phonon instability of the K1K_1-mode, whereby the graphene sheet undergoes a phase transition and is driven towards isolated benzene rings resulting in a reduction of strength. The other is the usual elastic instability corresponding to a maximum in the stress-strain curve. Our results indicate that finite wave vector soft modes can be the key factor in limiting the strength of monolayer materials

    A Dedicated M-Dwarf Planet Search Using The Hobby-Eberly Telescope

    Full text link
    We present first results of our planet search program using the 9.2 meter Hobby-Eberly Telescope (HET) at McDonald Observatory to detect planets around M-type dwarf stars via high-precision radial velocity (RV) measurements. Although more than 100 extrasolar planets have been found around solar-type stars of spectral type F to K, there is only a single M-dwarf (GJ 876, Delfosse et al. 1998; Marcy et al. 1998; Marcy et al. 2001) known to harbor a planetary system. With the current incompleteness of Doppler surveys with respect to M-dwarfs, it is not yet possible to decide whether this is due to a fundamental difference in the formation history and overall frequency of planetary systems in the low-mass regime of the Hertzsprung-Russell diagram, or simply an observational bias. Our HET M-dwarf survey plans to survey 100 M-dwarfs in the next 3 to 4 years with the primary goal to answer this question. Here we present the results from the first year of the survey which show that our routine RV-precision for M-dwarfs is 6 m/s. We found that GJ 864 and GJ 913 are binary systems with yet undetermined periods, while 5 out of 39 M-dwarfs reveal a high RV-scatter and represent candidates for having short-periodic planetary companions. For one of them, GJ 436 (rms = 20.6 m/s), we have already obtained follow-up observations but no periodic signal is present in the RV-data.Comment: 12 pages, 14 figures, accepted for publication in the Astronomical Journa

    Forward and Inverse Processing in Electromagnetic NDE Using Squid

    Get PDF
    Electromagnetic NDE has been successfully applied to the detection of surface cracks and is routinely used to locate flaws in airframes, pipelines and in steel offshore oil platforms. However, there are still many problems to be solved, particularly in the aviation industry, which require the detection of deeper flaws such as corrosion in multi-layered structures and cracks around rivet holes which are obscured by the head of the rivet. Most systems use coils as detectors (though Hall probes are occasionally used), which have low sensitivity at low frequencies due to the fact that the induced voltage is proportional to the rate of change of magnetic flux through the coil. Unfortunately it is necessary to use low frequencies to detect deep subsurface flaws on account of the skin-depth effect, otherwise the electromagnetic field cannot propagate down to the depth of the flaw. SQUID (Superconducting Quantum Interference Device) sensors are ideally suited to overcome the deficiencies of coils, because they are primarily detectors of magnetic flux which, together with their high sensitivity, makes the detection of deep flaws more likely. SQUIDs have been successfully used for measuring very low magnetic fields, particularly in the field of biomagnetism, and it is hoped to exploit this sensitivity to detect flaws at large stand-off distances for example in pipelines which are surrounded by thick layers of cladding

    Initial investigations into the damping characteristics of wire rope vibration isolators

    Get PDF
    Passive dampers composed of coils of multi-strand wire rope are investigated. Analytical results range from those produced by complex NASTRAN models to those of a Coulomb damping model with variable friction force. The latter agrees well with experiment. The Coulomb model is also utilized to generate hysteresis loops. Various other models related to early experimental investigations are described. Significant closed-form static solutions for physical properties of single-and multi-strand wire ropes are developed for certain specific geometries and loading conditions. NASTRAN models concentrate on model generation and mode shapes of 2-strand and 7-strand straight wire ropes with interfacial forces

    High-pressure study of X-ray diffuse scattering in ferroelectric perovskites

    Full text link
    We present a high-pressure x-ray diffuse scattering study of the ABO3_3 ferroelectric perovskites BaTiO_3 and KNbO_3. The well-known diffuse lines are observed in all the phases studied. In KNbO_3, we show that the lines are present up to 21.8 GPa, with constant width and a slightly decreasing intensity. At variance, the intensity of the diffuse lines observed in the cubic phase of BaTiO_3 linearly decreases to zero at 11\sim 11 GPa. These results are discussed with respect to x-ray absorption measurements, which leads to the conclusion that the diffuse lines are only observed when the B atom is off the center of the oxygen tetrahedron. The role of such disorder on the ferroelectric instability of perovskites is discussed.Comment: 4 pages, Accepted in PR

    The planet search programme at the ESO CES and HARPS. IV. The search for Jupiter analogues around solar-like stars

    Full text link
    In 1992 we began a precision radial velocity (RV) survey for planets around solar-like stars with the Coude Echelle Spectrograph and the Long Camera (CES LC) at the 1.4 m telescope in La Silla (Chile). We have continued the survey with the upgraded CES Very Long Camera (VLC) and HARPS, both at the 3.6 m telescope, until 2007. The observations for 31 stars cover a time span of up to 15 years and the RV precision permit a search for Jupiter analogues. We perform a joint analysis for variability, trends, periodicities, and Keplerian orbits and compute detection limits. Moreover, the HARPS RVs are analysed for correlations with activity indicators (CaII H&K and CCF shape). We achieve a long-term RV precision of 15 m/s (CES+LC, 1992-1998), 9 m/s (CES+VLC, 1999-2006), and 2.8 m/s (HARPS, 2003-2009, including archive data), resp. This enables us to confirm the known planets around Iota Hor, HR 506, and HR 3259. A steady RV trend for Eps Ind A can be explained by a planetary companion. On the other hand, we find previously reported trends to be smaller for Beta Hyi and not present for Alp Men. The candidate planet Eps Eri b was not detected despite our better precision. Also the planet announced for HR 4523 cannot be confirmed. Long-term trends in several of our stars are compatible with known stellar companions. We provide a spectroscopic orbital solution for the binary HR 2400 and refined solutions for the planets around HR 506 and Iota Hor. For some other stars the variations could be attributed to stellar activity. The occurrence of two Jupiter-mass planets in our sample is in line with the estimate of 10% for the frequency of giant planets with periods smaller than 10 yr around solar-like stars. We have not detected a Jupiter analogue, while the detections limits for circular orbits indicate at 5 AU a sensitivity for minimum mass of at least 1 M_Jup (2 M_Jup) for 13% (61%) of the stars.Comment: 63 pages, 24 figures (+33 online figures), 13 Tables, accepted for publication in A&A (2012-11-13

    Observing Strategies for the Detection of Jupiter Analogs

    Get PDF
    To understand the frequency, and thus the formation and evolution, of planetary systems like our own solar system, it is critical to detect Jupiter-like planets in Jupiter-like orbits. For long-term radial-velocity monitoring, it is useful to estimate the observational effort required to reliably detect such objects, particularly in light of severe competition for limited telescope time. We perform detailed simulations of observational campaigns, maximizing the realism of the sampling of a set of simulated observations. We then compute the detection limits for each campaign to quantify the effect of increasing the number of observational epochs and varying their time coverage. We show that once there is sufficient time baseline to detect a given orbital period, it becomes less effective to add further time coverage-rather, the detectability of a planet scales roughly as the square root of the number of observations, independently of the number of orbital cycles included in the data string. We also show that no noise floor is reached, with a continuing improvement in detectability at the maximum number of observations N = 500 tested here.Peer reviewe
    corecore