526 research outputs found

    A catalogue of the bryophytes of the Guianas : 2., Musci

    Get PDF
    This catalogue provides an annotated listing of the mosses (MUSCI) reported from the Guianas (Guyana, Surinam, French Guiana), based on work on the Moss Flora of Suriname, which is now nearing completion. In total 238 species in 90 genera are listed. A list of synonyms (including 10 new ones) and a systematic arrangement of the genera and families are also provided. The following new combinations are proposed: Callicostella guatemalensis (Bartr.), Sematophyllum lonchophyllum (Mont.), Sematophyllum pacimoniense (Mitt.) and Trichosteleum intricatum (Thér.)

    Electrical-hydraulic relationships observed for unconsolidated sediments in the presence of a cobble framework

    Get PDF
    Mechanistic models now exist to predict hydraulic conductivity (K) from the spectral induced polarization (SIP) response of granular media. We examined the predictions of such a model on unconsolidated coarse fluvial sediments and compared them to those obtained with a modified Kozeny Carman (KC) model. Samples were retrieved from the Boise Hydrogeophysical Research Site (BHRS), located on a gravel bar adjacent to the Boise River, Idaho. A sample holder (0.102 m diameter and 0.12 m in length) was designed to include the cobble framework in reconstituted samples representing the primary stratigraphic units defined based on porosity variation at this site. SIP (0.001-1000 Hz) and K (from Darcy tests) measurements were recorded for twelve samples, with SIP measurements made as a function of pore fluid conductivity (3-300 mS/m); grain, grain size distribution (GSD) and total porosity. K prediction with the KC model was improved after discounting of the cobble framework and multiplying by the tortuosity resulting from matrix “capillaries” around the cobbles, resulting in estimates within 0.5 orders of magnitude of the measurements. K prediction with a mechanistic SIP model based on Stern layer polarization (SLP model) that requires an estimate of the GSD alsoalso required discounting for the cobble framework to obtain estimates within 0.5 orders of magnitude of the measurements. Similarly, the SLP model over predicts the measured imaginary conductivity (σ") unless the cobble framework is discounted, which then results in estimates of σ” within 0.1 orders of magnitude of the measurements. This can be explained by the fact that the cobbles polarize at frequencies well below the minimum measurement frequency (0.001 Hz). The SLP model for K prediction parameterized in terms of the formation factor and imaginary conductivity performed well for the ten samples with a cobble framework without modification as the imaginary conductivity directly senses the matrix grain size characteristics, whereas the formation factor captures the porosity reduction and tortuosity resulting from the presence of the cobble framework (capillary tortuosity). Our findings suggest that the estimation of contrasts in hydraulic conductivityK in coarse sediments may be achievable through measurements of electrical properties after appropriate consideration of the cobble fractio

    Relating the permeability of quartz sands to their grain size and spectral induced polarization characteristics

    Get PDF
    Recently, Revil & Florsch proposed a novel mechanistic model based on the polarization of the Stern layer relating the permeability of granular media to their spectral induced polarization (SIP) characteristics based on the formation of polarized cells around individual grains. To explore the practical validity of this model, we compare it to pertinent laboratory measurements on samples of quartz sands with a wide range of granulometric characteristics. In particular, we measure the hydraulic and SIP characteristics of all samples both in their loose, non-compacted and compacted states, which might allow for the detection of polarization processes that are independent of the grain size. We first verify the underlying grain size/permeability relationship upon which the model of Revil & Florsch is based and then proceed to compare the observed and predicted permeability values for our samples by substituting the grain size characteristics by corresponding SIP parameters, notably the so-called Cole-Cole time constant. In doing so, we also asses the quantitative impact of an observed shift in the Cole-Cole time constant related to textural variations in the samples and observe that changes related to the compaction of the samples are not relevant for the corresponding permeability predictions. We find that the proposed model does indeed provide an adequate prediction of the overall trend of the observed permeability values, but underestimates their actual values by approximately one order-of-magnitude. This discrepancy in turn points to the potential importance of phenomena, which are currently not accounted for in the model and which tend to reduce the characteristic size of the prevailing polarization cells compared to the considered model, such as, for example, membrane polarization, contacts of double-layers of neighbouring grains, and incorrect estimation of the size of the polarized cells because of the irregularity of natural sand grain

    A simple method to retrieve the complex eigenfrequency of the Earth's nearly diurnal-free wobble; application to the Strasbourg superconducting gravimeter data

    No full text
    International audienceWe have analysed more than four years of data from the Strasbourg superconducting gravimeter to retrieve the period and damping of the nearly diurnal-free wobble (NDFW). The removal of noise spikes is found to be crucial for an accurate determination of tidal-wave amplitudes and phases. A new simple algorithm is derived which allows an analytical solution for the NDFW pertod and damping using the complex gravimetric factors of three resonant diurnal waves. The results show a huge reduction of the confidence intervals when compared with a previous investigation from a Lacoste Romberg spring meter operated at the same station. Our results are in close agreement with values obtained from two other European superconducting gravimeters. The results are also compared with respect to values inferred from very long baseline interferometry (VLBI) measurements

    Physical modelling to remove hydrological effects at local and regional scale: application to the 100-m hydrostatic inclinometer in Sainte-Croix-aux-Mines (France)

    No full text
    International audienceNew inclinometers devoted to hydrological studies were set up in the Vosges Mountains (France). Two orthogonal 100-meter base hydrostatic inclinometers were installed in December 2004 as well as a hydrometeorological monitoring system for the 100-kmÂČ hydrological unit around the inclinometer. As inclinometers are very sensitive to environmental influences, this observatory is a test site to confront hydrological modelling and geodetic observations. Physical modelling to remove hydrological effects without calibrating on geodetic data is tested on these instruments. Specifically, two deformation processes are most important: fluid pressure variations in nearby hydraulically active fractures and surface loading at regional scale

    Time-lapse monitoring of an electrokinetic soil remediation process through frequency-domain electrical measurements

    Get PDF
    The electrokinetic (EK) method is an emerging technique for soil remediation, even though a monitoring system of the contaminant removal through geophysical methods has not been developed yet. In this paper, frequency-domain time-lapse measurements are used on heavy-metal contaminated sediments for monitoring an EK remediation process in a small-scale measuring cell. Our goal is to monitor the development of the electrokinetic process within the sediment and to evaluate the total time needed for the treatment. In fact, frequency-domain electrical monitoring provides complex resistivity spectra at different time steps that can be correlated to changes in the physical properties of the sediments. We perform laboratory spectral induced polarization (SIP) measurements on different samples before, during and after the EK treatment, using different electrolyte solutions (acids and tap water), commonly employed in EK remediation. Direct-current measurements (resistivity and chargeability) were also acquired on one sample for testing the reliability of the system by a comparison with a widespread commercial instrumentation for field measurements. Results indicate that resistivity is a diagnostic parameter as long as it is linked to changes in water saturation, pH and ionic concentration and not to the percentage of metal extraction. The resistivity exhibited well-defined signatures as a function of time that changes depending on the conditioning agent and the grain size distribution. These peculiarities were used to understand the physical processes occurring within the cell and consequently to assess the effectiveness of the electrokinetic treatment. Conversely, the polarization effect was negligible using acids as conditioning agents at the electrolyte chambers. Therefore, the SIP method is not effective under these conditions, being the polarization effect significant only when tap water was used at both ends of the measuring cell. In this case, we were able to correlate changes in water saturation with the time-shift observed on relaxation time distributions (RTDs) after inversion of SIP data and to observe, using normalized chargeability, that polarization is stronger at high pH values. On these basis, resistivity is suitable to monitor the development of the remediation, to optimise the energy levels required for treatment and to assess the end time of the EK process (time when metal mobilization ends). In fact, the end time of treatment can be associated with the time at which resistivity becomes stable. This time is highly dependent on the particular working conditions and sediment grain size as demonstrated by our experiments

    The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-infrared Observations of Cepheids

    Full text link
    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the SMC to be 18.96±0.01stat±0.03sys18.96 \pm 0.01_{stat} \pm 0.03_{sys} mag (corresponding to 62±0.362 \pm 0.3 kpc), which is 0.48±0.010.48 \pm 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid--infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to 20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.Comment: Accepted for publication in ApJ. 38 Pages, 11 figures. Figure 9 is interactive. Spitzer photometry for all Cepheids available as online tabl

    Modeling the evolution of spectral induced polarization during calcite precipitation on glass beads

    Get PDF
    International audienceWhen pH and alkalinity increase, calcite frequently precipitates and hence modifies the petrophysical properties of porous media. The complex conductivity method can be used to directly monitor calcite precipitation in porous media because it is very sensitive to the evolution of the pore structure and its connectivity. We have developed a mechanistic grain polarization model considering the electrochemical polarization of the Stern layer surrounding calcite particles. This model depends on the surface charge density and mobility of the counter-ions in the Stern layer. Our induced polarization model predicts the evolution of the size of calcite particles, of the pore structure and connectivity during spectral induced polarization experiments of calcite precipitation on glass beads pack. Model predictions are in very good agreement with the complex conductivity measurements. During the first phase of calcite precipitation experiment, calcite crystals growth, and the inverted particle size distribution moves towards larger calcite particles. When calcite continues to precipitate and during pore clogging, inverted particle size distribution moves towards smaller particles because large particles do not polarize sufficiently. The pore clogging is also responsible for the decrease of the connectivity of the pores, which is observed through the increasing electrical formation factor of the porous medium

    Inclinometry and geodesy: an hydrological perspective

    Get PDF
    International audienceTwo orthogonal, precise and low drift tiltmeters have been installed in the Vosges mountains in order to study environmental surface loading. The first results show the great sensitivity (10ÂĄ10 radians), stability (negligible drift) of the instrument, and its ability to be used as a tool to study hydrological loading. This work focuses on local and regional hydrological physical modelling, with a stepwise refinement of mass balance calculations on a geodetic purpose. We show that meteorological forcing mainly drives stock variations inside a hydrological unit, it is therefore necessary to take great care of precipitation and evapotranspiration. Uncertainty assessment on stock variations is also raised, and shows that hydrological models bring good estimation of short term water stock variations, but that long term geodetic variations provide complementary information for stored water modelling
    • 

    corecore