2,174 research outputs found

    The Case for a 700+ GeV WIMP: Cosmic Ray Spectra from PAMELA, Fermi and ATIC

    Full text link
    Multiple lines of evidence indicate an anomalous injection of high-energy e+- in the Galactic halo. The recent e+e^+ fraction spectrum from the Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA) shows a sharp rise up to 100 GeV. The Fermi Gamma-ray Space Telescope has found a significant hardening of the e+e- cosmic ray spectrum above 100 GeV, with a break, confirmed by HESS at around 1 TeV. The Advanced Thin Ionization Calorimeter (ATIC) has also detected detected a similar excess, falling back to the expected spectrum at 1 TeV and above. Excess microwaves towards the galactic center in the WMAP data are consistent with hard synchrotron radiation from a population of 10-100 GeV e+- (the WMAP ``Haze''). We argue that dark matter annihilations can provide a consistent explanation of all of these data, focusing on dominantly leptonic modes, either directly or through a new light boson. Normalizing the signal to the highest energy evidence (Fermi and HESS), we find that similar cross sections provide good fits to PAMELA and the Haze, and that both the required cross section and annihilation modes are achievable in models with Sommerfeld-enhanced annihilation. These models naturally predict significant production of gamma rays in the galactic center via a variety of mechanisms. Most notably, there is a robust inverse-Compton scattered (ICS) gamma-ray signal arising from the energetic electrons and positrons, detectable at Fermi/GLAST energies, which should provide smoking gun evidence for this production.Comment: 28 pages; v2 plots corrected, references added; v3 included Fermi electron data at reviewer request, references adde

    New insights into foreground analysis of the WMAP five-year data using FASTICA

    Full text link
    In this paper, we present a foreground analysis of the WMAP 5-year data using the FASTICA algorithm, improving on the treatment of the WMAP 3-year data in Bottino et al 2008. We revisit the nature of the free-free spectrum with the emphasis on attempting to confirm or otherwise the spectral feature claimed in Dobbler et al 2008b and explained in terms of spinning dust emission in the warm ionised medium. With the application of different Galactic cuts, the index is always flatter than the canonical value of 2.14 except for the Kp0 mask which is steeper. Irrespective of this, we can not confirm the presence of any feature in the free-free spectrum. We experiment with a more extensive approach to the cleaning of the data, introduced in connection with the iterative application of FASTICA. We confirm the presence of a residual foreground whose spatial distribution is concentrated along the Galactic plane, with pronounced emission near the Galactic center. This is consistent with the WMAP haze detected in Finkbeiner 2004. Finally, we attempted to perform the same analysis on full-sky maps. The code returns good results even for those regions where the cross-talk among the components is high. However, slightly better results in terms of the possibility of reconstructing a full-sky CMB map, are achieved with a simultaneous analysis of both the five WMAP maps and foreground templates. Nonetheless, some residuals are still present and detected in terms of an excess in the CMB power spectrum, on small angular scales. Therefore, a minimal mask for the brightest regions of the plane is necessary, and has been defined.Comment: Accepted for publication in MNRAS, 25 pages, 17 figures, 4 tables. Version with full resolution figures available at: http://www.mpa-garching.mpg.de/~bottino/downloads/bottino_etal.pd

    Measuring the redshift dependence of the CMB monopole temperature with PLANCK data

    Full text link
    We study the power of PLANCK data to constrain deviations of the Cosmic Microwave Background black body temperature from adiabatic evolution using the thermal Sunyaev-Zeldovich anisotropy induced by clusters of galaxies. We consider two types of data sets: the cosmological signal is removed in the Time Ordered Information or is removed from the final maps; and two different statistical estimators, based on the ratio of temperature anisotropies at two different frequencies and on a fit to the spectral variation of the cluster signal with frequency. To test for systematics, we construct a template from clusters drawn from a hydro-simulation included in the pre-launch Planck Sky Model. We demonstrate that, using a proprietary catalog of X-ray selected clusters with measured redshifts, electron densities and X-ray temperatures, we can constrain deviations of adiabatic evolution, measured by the parameter α\alpha in the redshift scaling T(z)=T0(1+z)1αT(z)=T_0(1+z)^{1-\alpha}, with an accuracy of σα=0.011\sigma_\alpha=0.011 in the most optimal case and with σα=0.016\sigma_\alpha=0.016 for a less optimal case. These results represent a factor 2-3 improvement over similar measurements carried out using quasar spectral lines and a factor 6-20 with respect to earlier results using smaller cluster samples.Comment: 12 pages in ApJ styl

    A determination of the Spectra of Galactic components observed by WMAP

    Get PDF
    WMAP data when combined with ancillary data on free-free, synchrotron and dust allow an improved understanding of the spectrum of emission from each of these components. Here we examine the sky variation at intermediate latitudes using a cross-correlation technique. In particular, we compare the observed emission in 15 selected sky regions to three ``standard'' templates. The free-free emission of the diffuse ionised gas is fitted by a well-known spectrum at K and Ka band, but the derived emissivity corresponds to a mean electron temperature of ~4000-5000K. This is inconsistent with estimates from galactic HII regions. The origin of the discrepancy is unclear. The anomalous emission associated with dust is clearly detected in most of the 15 fields studied; it correlates well with the Finkbeiner et al. model 8 predictions (FDS8) at 94 GHz, with an effective spectral index between 20 and 60GHz of -2.85. Furthermore, the emissivity varies by a factor of ~2 from cloud to cloud. A modestly improved fit to the anomalous dust at K-band is provided by modulating the template by an estimate of the dust colour temperature, specifically FDS8*T^n. We find a preferred value n~1.6. The synchrotron emission steepens between GHz frequencies and the WMAP bands. There are indications of spectral index variations across the sky but the current data are not precise enough to accurately quantify this from region to region. Our analysis of the WMAP data indicates strongly that the dust-correlated emission at the low WMAP frequencies has a spectrum which is compatible with spinning dust; we find no evidence for a synchrotron component correlated with dust (abridged).Comment: 18 pages, 6 figures, revised version uses cross-correlation method rather than T-T method. Paper re-organised and sent back to refere

    Searching for Dark Matter in the CMB: A Compact Parameterization of Energy Injection from New Physics

    Full text link
    High-precision measurements of the temperature and polarization anisotropies of the cosmic microwave background radiation have been previously employed to set robust constraints on dark matter annihilation during recombination. In this work we improve and generalize these constraints to apply to energy deposition during the recombination era with arbitrary redshift dependence. Our approach also provides more rigorous and model-independent bounds on dark matter annihilation and decay scenarios. We employ principal component analysis to identify a basis of weighting functions for the energy deposition. The coefficients of these weighting functions parameterize any energy deposition model and can be constrained directly by experiment. For generic energy deposition histories that are currently allowed by WMAP7 data, up to 3 principal component coefficients are measurable by Planck and up to 5 coefficients are measurable by an ideal cosmic variance limited experiment. For WIMP dark matter, our analysis demonstrates that the effect on the CMB is described well by a single (normalization) parameter and a "universal" redshift dependence for the energy deposition history. We give WMAP 7 constraints on both generic energy deposition histories and the universal WIMP case.Comment: 30 pages, 24 figure

    Prospects For Detecting Dark Matter With GLAST In Light Of The WMAP Haze

    Full text link
    Observations by the WMAP experiment have identified an excess of microwave emission from the center of the Milky Way. It has previously been shown that this "WMAP Haze" could be synchrotron emission from relativistic electrons and positrons produced in the annihilations of dark matter particles. In particular, the intensity, spectrum and angular distribution of the WMAP Haze is consistent with an electroweak scale dark matter particle (such as a supersymmetric neutralino or Kaluza-Klein dark matter in models with universal extra dimensions) annihilating with a cross section on the order of sigma v~3x10^-26 cm^3/s and distributed with a cusped halo profile. No further exotic astrophysical or annihilation boost factors are required. If dark matter annihilations are in fact responsible for the observed Haze, then other annihilation products will also be produced, including gamma rays. In this article, we study the prospects for the GLAST satellite to detect gamma rays from dark matter annihilations in the Galactic Center region in this scenario. We find that by studying only the inner 0.1 degrees around the Galactic Center, GLAST will be able to detect dark matter annihilating to heavy quarks or gauge bosons over astrophysical backgrounds with 5sigma (3sigma) significance if they are lighter than approximately 320-500 GeV (500-750 GeV). If the angular window is broadened to study the dark matter halo profile's angular extension (while simultaneously reducing the astrophysical backgrounds), WIMPs as heavy as several TeV can be identified by GLAST with high significance. Only if the dark matter particles annihilate mostly to electrons or muons will GLAST be unable to identify the gamma ray spectrum associated with the WMAP Haze.Comment: 10 pages, 6 figure

    PAMELA, DAMA, INTEGRAL and Signatures of Metastable Excited WIMPs

    Full text link
    Models of dark matter with ~ GeV scale force mediators provide attractive explanations of many high energy anomalies, including PAMELA, ATIC, and the WMAP haze. At the same time, by exploiting the ~ MeV scale excited states that are automatically present in such theories, these models naturally explain the DAMA/LIBRA and INTEGRAL signals through the inelastic dark matter (iDM) and exciting dark matter (XDM) scenarios, respectively. Interestingly, with only weak kinetic mixing to hypercharge to mediate decays, the lifetime of excited states with delta < 2 m_e is longer than the age of the universe. The fractional relic abundance of these excited states depends on the temperature of kinetic decoupling, but can be appreciable. There could easily be other mechanisms for rapid decay, but the consequences of such long-lived states are intriguing. We find that CDMS constrains the fractional relic population of ~100 keV states to be <~ 10^-2, for a 1 TeV WIMP with sigma_n = 10^-40 cm^2. Upcoming searches at CDMS, as well as xenon, silicon, and argon targets, can push this limit significantly lower. We also consider the possibility that the DAMA excitation occurs from a metastable state into the XDM state, which decays via e+e- emission, which allows lighter states to explain the INTEGRAL signal due to the small kinetic energies required. Such models yield dramatic signals from down-scattering, with spectra peaking at high energies, sometimes as high as ~1 MeV, well outside the usual search windows. Such signals would be visible at future Ar and Si experiments, and may be visible at Ge and Xe experiments. We also consider other XDM models involving ~ 500 keV metastable states, and find they can allow lighter WIMPs to explain INTEGRAL as well.Comment: 22 pages, 7 figure

    ARCADE 2 Observations of Galactic Radio Emission

    Get PDF
    We use absolutely calibrated data from the ARCADE 2 flight in July 2006 to model Galactic emission at frequencies 3, 8, and 10 GHz. The spatial structure in the data is consistent with a superposition of free-free and synchrotron emission. Emission with spatial morphology traced by the Haslam 408 MHz survey has spectral index beta_synch = -2.5 +/- 0.1, with free-free emission contributing 0.10 +/- 0.01 of the total Galactic plane emission in the lowest ARCADE 2 band at 3.15 GHz. We estimate the total Galactic emission toward the polar caps using either a simple plane-parallel model with csc|b| dependence or a model of high-latitude radio emission traced by the COBE/FIRAS map of CII emission. Both methods are consistent with a single power-law over the frequency range 22 MHz to 10 GHz, with total Galactic emission towards the north polar cap T_Gal = 0.498 +/- 0.028 K and spectral index beta = -2.55 +/- 0.03 at reference frequency 1 GHz. The well calibrated ARCADE 2 maps provide a new test for spinning dust emission, based on the integrated intensity of emission from the Galactic plane instead of cross-correlations with the thermal dust spatial morphology. The Galactic plane intensity measured by ARCADE 2 is fainter than predicted by models without spinning dust, and is consistent with spinning dust contributing 0.4 +/- 0.1 of the Galactic plane emission at 22 GHz.Comment: 10 poges, 9 figures. Submitted to The Astrophysical Journa
    corecore