5,545 research outputs found
A review of current development in natural fiber composites for structural and infrastructure applications
Natural fiber composites (NFC) as the name implies is
made of natural resources thus possesses environmentally
beneficial properties such as biodegradability. With its natural characteristics, NFC is obtaining more attention in recent years in various application including automotive, merchandise, structural and infrastructure. Several studies have shown that NFC can be developed into a load-bearing structural member for applications in structural and infrastructure application. As an engineered material, similar with synthetic fiber composites, the properties of NFC can be tailored to meet certain requirements. The challenge in working with NFC is the large variation in properties and characteristics. The properties of NFC to a large extent influenced by the type of fibers, environmental condition where the plant fibers are sourced and the type of fiber treatments. However, with their unique and wide range of variability, natural fiber composites could emerge as a new alternative engineering material which can substitute the use of synthetic fiber composites
Vibrational and Thermal Properties of ZnX (X=Se, Te): Density Functional Theory (LDA and GGA) versus Experiment
We calculated the phonon dispersion relations of ZnX (X=Se, Te) employing ab
initio techniques. These relations have been used to evaluate the temperature
dependence of the respective specific heats of crystals with varied isotopic
compositions. These results have been compared with mea- surements performed on
crystals down to 2 K. The calculated and measured data are generally in
excellent agreement with each other. Trends in the phonon dispersion relations
and the correspond- ing densities of states for the zinc chalcogenide series of
zincblende-type materials are discussed.Comment: 10 pages, submitted to PR
Anharmonic Self-Energy of Phonons: Ab Initio Calculations and Neutron Spin Echo Measurements
We have calculated (ab initio) and measured (by spin-echo techniques) the
anharmonic self-energy of phonons at the X-point of the Brillouin zone for
isotopically pure germanium. The real part agrees with former, less accurate,
high temperature data obtained by inelastic neutron scattering on natural
germanium. For the imaginary part our results provide evidence that transverse
acoustic phonons at the X-point are very long lived at low temperatures, i.e.
their probability of decay approaches zero, as a consequence of an unusual
decay mechanism allowed by energy conservation.Comment: 8 pages, 2 figures, pdf fil
Electroreflectance spectroscopy in self-assembled quantum dots: lens symmetry
Modulated electroreflectance spectroscopy of semiconductor
self-assembled quantum dots is investigated. The structure is modeled as dots
with lens shape geometry and circular cross section. A microscopic description
of the electroreflectance spectrum and optical response in terms of an external
electric field () and lens geometry have been considered. The field
and lens symmetry dependence of all experimental parameters involved in the
spectrum have been considered. Using the effective mass formalism
the energies and the electronic states as a function of and dot
parameters are calculated. Also, in the framework of the strongly confined
regime general expressions for the excitonic binding energies are reported.
Optical selection rules are derived in the cases of the light wave vector
perpendicular and parallel to . Detailed calculation of the Seraphin
coefficients and electroreflectance spectrum are performed for the InAs and
CdSe nanostructures. Calculations show good agreement with measurements
recently performed on CdSe/ZnSe when statistical distribution on size is
considered, explaining the main observed characteristic in the
electroreflectance spectra
Electromagnetic response of a static vortex line in a type-II superconductor : a microscopic study
The electromagnetic response of a pinned Abrikosov fluxoid is examined in the
framework of the Bogoliubov-de Gennes formalism. The matrix elements and the
selection rules for both the single photon (emission - absorption) and two
photon (Raman scattering) processes are obtained. The results reveal striking
asymmetries: light absorption by quasiparticle pair creation or single
quasiparticle scattering can occur only if the handedness of the incident
radiation is opposite to that of the vortex core states. We show how these
effects will lead to nonreciprocal circular birefringence, and also predict
structure in the frequency dependence of conductivity and in the differential
cross section of the Raman scattering.Comment: 14 pages (RevTex
Electron-phonon renormalization of the absorption edge of the cuprous halides
Compared to most tetrahedral semiconductors, the temperature dependence of
the absorption edges of the cuprous halides (CuCl, CuBr, CuI) is very small.
CuCl and CuBr show a small increase of the gap with increasing
temperature, with a change in the slope of vs. at around 150 K: above
this temperature, the variation of with becomes even smaller. This
unusual behavior has been clarified for CuCl by measurements of the low
temperature gap vs. the isotopic masses of both constituents, yielding an
anomalous negative shift with increasing copper mass. Here we report the
isotope effects of Cu and Br on the gap of CuBr, and that of Cu on the gap of
CuI. The measured isotope effects allow us to understand the corresponding
temperature dependences, which we also report, to our knowledge for the first
time, in the case of CuI. These results enable us to develop a more
quantitative understanding of the phenomena mentioned for the three halides,
and to interpret other anomalies reported for the temperature dependence of the
absorption gap in copper and silver chalcogenides; similarities to the behavior
observed for the copper chalcopyrites are also pointed out.Comment: 14 pages, 5 figures, submitted to Phys. Rev.
A computer program for making tables of soil analytical data
3 páginas, 1 figura, 2 referencia.[ES]: Se describe brevemente un programa para elaborar, de forma automática, tablas
de datos analĂticos de suelos. El programa, implementado en el Centro de Cálculo,
Universidad de Sevilla, con el nombre «ALBARlZA», se escribió en FORTRAN IV
y procesĂł en un ordenador UNIVAC 1108.[EN]: This note describes briefly a computer program which was developed to produce
printed tables of soil analytical data in conventional form. The program, nominated
as «ALBARIZA», was written in FORTRAN IV and processed on an UNIVAC
1108 computer at Centro de Cálculo, Universidad de Sevilla.Peer reviewe
Superconductivity-Induced Transfer of In-Plane Spectral Weight in Bi2Sr2CaCu2O8: Resolving a Controversy
We present a detailed analysis of the superconductivity-induced
redistribution of optical spectral weight in Bi2Sr2CaCu2O8 near optimal doping.
It confirms the previous conclusion by Molegraaf et al. (Science 66, 2239
(2002)), that the integrated low-frequency spectral weight shows an extra
increase below Tc. Since the region, where the change of the integrated
spectral weight is not compensated, extends well above 2.5 eV, this transfer is
caused by the transfer of spectral weight from interband to intraband region
and only partially by the narrowing of the intraband peak. We show that the
opposite assertion by Boris et al. (Science 304, 708 (2004)) regarding this
compound, is unlikely the consequence of any obvious discrepancies between the
actual experimental data.Comment: ReVTeX, 9 pages, 8 encapsulated postscript figures, several typo's
correcte
- …