2,049 research outputs found

    Gravitational quantum states of neutrons in a rough waveguide

    Get PDF
    A theory of gravitational quantum states of ultracold neutrons in waveguides with absorbing/scattering walls is presented. The theory covers recent experiments in which the ultracold neutrons were beamed between a mirror and a rough scatterer/absorber. The analysis is based on a recently developed theory of quantum transport along random rough walls which is modified in order to include leaky (absorbing) interfaces and, more importantly, the low-amplitude high-aperture roughness. The calculations are focused on a regime when the direct transitions into the continuous spectrum above the absorption threshold dominate the depletion of neutrons from the gravitational states and are more efficient than the processes involving the intermediate states. The theoretical results for the neutron count are sensitive to the correlation radius (lateral size) of surface inhomogeneities and to the ratio of the particle energy to the absorption threshold in a weak roughness limit. The main impediment for observation of the higher gravitational states is the "overhang" of the particle wave functions which can be overcome only by use scatterers with strong roughness. In general, the strong roughness with high amplitude is preferable if one wants just to detect the individual gravitational states, while the strong roughness experiments with small amplitude and high aperture are preferable for the quantitative analysis of the data. We also discuss the ways to further improve the accuracy of calculations and to optimize the experimental regime.Comment: 48 pages, 14 figure

    Mode Coupling in Quantized High Quality Films

    Get PDF
    The effect of coupling of quantized modes on transport and localization in ultrathin films with quantum size effect (QSE) is discussed. The emphasis is on comparison of films with Gaussian, exponential, and power-law long-range behavior of the correlation function of surface, thickness, or bulk fluctuations. For small-size inhomogeneities, the mode coupling is the same for inhomogeneities of all types and the transport coefficients behave in the same way. The mode coupling becomes extremely sensitive to the correlators for large-size inhomogeneities leading to the drastically distinct behavior of the transport coefficients. In high-quality films there is a noticeable difference between the QSE patterns for films with bulk and surface inhomogeneities which explains why the recently predicted new type of QSE with large oscillations of the transport coefficients can be observed mostly in films with surface-driven relaxation. In such films with surface-dominated scattering the higher modes contribute to the transport only as a result of opening of the corresponding mode coupling channels and appear one by one. Mode coupling also explains a much higher transport contribution from the higher modes than it is commonly believed. Possible correlations between the inhomogeneities from the opposite walls provide, because of their oscillating response to the mode quantum numbers, a unique insight into the mode coupling. The presence of inhomogeneities of several sizes leads not to a mechanical mixture of QSE patterns, but to the overall shifting and smoothing of the oscillations. The results can lead to new, non-destructive ways of analysis of the buried interfaces and to study of inhomogeneities on the scales which are inaccessible for scanning techniques

    Predicting the movements of permanently installed electrodes on an active landslide using time-lapse geoelectrical resistivity data only

    Get PDF
    If electrodes move during geoelectrical resistivity monitoring and their new positions are not incorporated in the inversion, then the resulting tomographic images exhibit artefacts that can obscure genuine time-lapse resistivity changes in the subsurface. The effects of electrode movements on time-lapse resistivity tomography are investigated using a simple analytical model and real data. The correspondence between the model and the data is sufficiently good to be able to predict the effects of electrode movements with reasonable accuracy. For the linear electrode arrays and 2D inversions under consideration, the data are much more sensitive to longitudinal than transverse or vertical movements. Consequently the model can be used to invert the longitudinal offsets of the electrodes from their known baseline positions using only the time-lapse ratios of the apparent resistivity data. The example datasets are taken from a permanently installed electrode array on an active lobe of a landslide. Using two sets with different levels of noise and subsurface resistivity changes, it is found that the electrode positions can be recovered to an accuracy of 4 % of the baseline electrode spacing. This is sufficient to correct the artefacts in the resistivity images, and provides for the possibility of monitoring the movement of the landslide and its internal hydraulic processes simultaneously using electrical resistivity tomography only

    The Effect of Random Surface Inhomogeneities on Microresonator Spectral Properties: Theory and Modeling at Millimeter Wave Range

    Full text link
    The influence of random surface inhomogeneities on spectral properties of open microresonators is studied both theoretically and experimentally. To solve the equations governing the dynamics of electromagnetic fields the method of eigen-mode separation is applied previously developed with reference to inhomogeneous systems subject to arbitrary external static potential. We prove theoretically that it is the gradient mechanism of wave-surface scattering which is the highly responsible for non-dissipative loss in the resonator. The influence of side-boundary inhomogeneities on the resonator spectrum is shown to be described in terms of effective renormalization of mode wave numbers jointly with azimuth indices in the characteristic equation. To study experimentally the effect of inhomogeneities on the resonator spectrum, the method of modeling in the millimeter wave range is applied. As a model object we use dielectric disc resonator (DDR) fitted with external inhomogeneities randomly arranged at its side boundary. Experimental results show good agreement with theoretical predictions as regards the predominance of the gradient scattering mechanism. It is shown theoretically and confirmed in the experiment that TM oscillations in the DDR are less affected by surface inhomogeneities than TE oscillations with the same azimuth indices. The DDR model chosen for our study as well as characteristic equations obtained thereupon enable one to calculate both the eigen-frequencies and the Q-factors of resonance spectral lines to fairly good accuracy. The results of calculations agree well with obtained experimental data.Comment: 17+ pages, 5 figure

    Characterising sand and gravel deposits using electrical resistivity tomography (ERT) : case histories from England and Wales

    Get PDF
    Electrical Resistivity Tomography (ERT) is a rapidly developing geophysical imaging technique that is now widely used to visualise subsurface geological structure, groundwater and lithological variations. It is being increasingly used in environmental and engineering site investigations, but despite its suitability and potential benefits, ERT has yet to be routinely applied by the minerals industry to sand and gravel deposit assessment and quarry planning. The principal advantages of ERT for this application are that it is a cost-effective non-invasive method, which can provide 2D or 3D spatial models of the subsurface throughout the full region of interest. This complements intrusive sampling methods, which typically provide information only at discrete locations. Provided that suitable resistivity contrasts are present, ERT has the potential to reveal mineral and overburden thickness and quality variations within the body of the deposit. Here we present a number of case studies from the UK illustrating the use of 2D and 3D ERT for sand and gravel deposit investigation in a variety of geological settings. We use these case studies to evaluate the performance of ERT, and to illustrate good practice in the application of ERT to deposit investigation. We propose an integrated approach to site investigation and quarry planning incorporating both conventional intrusive methods and ERT

    Brittleness index of machinable dental materials and its relation to the marginal chipping factor

    Get PDF
    OBJECTIVES: The machinability of a material can be measured with the calculation of its brittleness index (BI). It is possible that different materials with different BI could produce restorations with varied marginal integrity. The degree of marginal chipping of a milled restoration can be estimated by the calculation of the marginal chipping factor (CF). The aim of this study is to investigate any possible correlation between the BI of machinable dental materials and the CF of the final restorations. METHODS: The CERECTM system was used to mill a wide range of materials used with that system; namely the Paradigm MZ100TM (3M/ESPE), Vita Mark II (VITA), ProCAD (Ivoclar-Vivadent) and IPS e.max CAD (Ivoclar-Vivadent). A Vickers hardness Tester was used for the calculation of BI, while for the calculation of CF the percentage of marginal chipping of crowns prepared with bevelled marginal angulations was estimated. RESULTS: The results of this study showed that Paradigm MZ100 had the lowest BI and CF, while IPS e.max CAD demonstrated the highest BI and CF. Vita Mark II and ProCAD had similar BI and CF and were lying between the above materials. Statistical analysis of the results showed that there is a perfect positive correlation between BI and CF for all the materials. CONCLUSIONS: The BI and CF could be both regarded as indicators of a material’s machinability. Within the limitations of this study it was shown that as the BI increases so does the potential for marginal chipping, indicating that the BI of a material can be used as a predictor of the CF

    Surfaces roughness effects on the transmission of Gaussian beams by anisotropic parallel plates

    Full text link
    Influence of the plate surfaces roughness in precise ellipsometry experiments is studied. The realistic case of a Gaussian laser beam crossing a uniaxial platelet is considered. Expression for the transmittance is determined using the first order perturbation theory. In this frame, it is shown that interference takes place between the specular transmitted beam and the scattered field. This effect is due to the angular distribution of the Gaussian beam and is of first order in the roughness over wavelength ratio. As an application, a numerical simulation of the effects of quartz roughness surfaces at normal incidence is provided. The interference term is found to be strongly connected to the random nature of the surface roughness.Comment: 18 pages, Journal of Physics D: Applied Physics, volume 36, issue 21, pages 2697 - 270

    Wave scattering from self-affine surfaces

    Full text link
    Electromagnetic wave scattering from a perfectly reflecting self-affine surface is considered. Within the framework of the Kirchhoff approximation, we show that the scattering cross section can be exactly written as a function of the scattering angle via a centered symmetric Levy distribution for general roughness amplitude, Hurst exponent and wavelength of the incident wave. The amplitude of the specular peak, its width and its position are discussed as well as the power law decrease (with scattering angle) of the scattering cross section.Comment: RevTeX, 4 pages including 2 figures. Submitted Phys. Rev. Let

    Overexpression of Mcl-1 exacerbates lymphocyte accumulation and autoimmune kidney disease in lpr mice

    Get PDF
    Cell death by apoptosis has a critical role during embryonic development and in maintaining tissue homeostasis. In mammals, there are two converging apoptosis pathways: the ‘extrinsic’ pathway, which is triggered by engagement of cell surface ‘death receptors’ such as Fas/APO-1; and the ‘intrinsic’ pathway, which is triggered by diverse cellular stresses, and is regulated by prosurvival and pro-apoptotic members of the Bcl-2 family of proteins. Pro-survival Mcl-1, which can block activation of the proapoptotic proteins, Bax and Bak, appears critical for the survival and maintenance of multiple haemopoietic cell types. To investigate the impact on haemopoiesis of simultaneously inhibiting both apoptosis pathways, we introduced the vavP-Mcl-1 transgene, which causes overexpression of Mcl-1 protein in all haemopoietic lineages, into Faslpr/lpr mice, which lack functional Fas and are prone to autoimmunity. The combined mutations had a modest impact on myelopoiesis, primarily an increase in the macrophage/monocyte population in Mcl-1tg/lpr mice compared with lpr or Mcl-1tg mice. The impact on lymphopoiesis was striking, with a marked elevation in all major lymphoid subsets, including the non-conventional double-negative (DN) T cells (TCRÎČ+ CD4– CD8– B220+ ) characteristic of Faslpr/lpr mice. Of note, the onset of autoimmunity was markedly accelerated in Mcl-1tg/lpr mice compared with lpr mice, and this was preceded by an increase in immunoglobulin (Ig)-producing cells and circulating autoantibodies. This degree of impact was surprising, given the relatively mild phenotype conferred by the vavP-Mcl-1 transgene by itself: a two- to threefold elevation of peripheral B and T cells, no significant increase in the non-conventional DN T-cell population and no autoimmune disease. Comparison of the phenotype with that of other susceptible mice suggests that the development of autoimmune disease in Mcl-1tg/lpr mice may be influenced not only by Ig-producing cells but also other haemopoietic cell types
    • 

    corecore