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This work concerns modeling of very high frequency ��100 kHz� sonar images obtained from a
sandy seabed. The seabed is divided into a discrete number of 1D height profiles. For each height
profile the backscattered pressure is computed by an integral equation method for interface
scattering between two homogeneous media as formulated by Chan �IEEE Trans. Antennas Propag.
46, 142–149 �1998��. However, the seabed is inhomogeneous, and volume scattering is a major
contributor to backscattering. The SAX99 experiments revealed that the density in the
unconsolidated sediment within the first 5 mm exhibits a high spatial variation. For that reason,
additional roughness is introduced: For each surface point a stochastic realization of the density
along the vertical is generated, and the sediment depth at which the density has its maximum value
will constitute the new height field value. The matrix of the full integral equation is reduced to a
band matrix as the interaction between the point sources on the seabed is neglected from a certain
range; this allows computations on long height profiles with lengths up to approximately 25 m �at
300 kHz�. The equivalent roughness approach, combined with the band-matrix approach, agrees
with SAX99 data at 300 kHz. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2427127�

PACS number�s�: 43.30.Gv, 43.30.Hw, 43.30.Ft �SLB� Pages: 814–823

I. INTRODUCTION

Very high frequency ��100 kHz� sonar plays a key role
for naval mine detection and identification. This work is re-
lated to mines lying on the seabed, i.e., proud mines, and the
goal is modeling of high frequency sonar images. Sonar im-
ages of a sandy seabed are contaminated with clutter, a term
that refers to the noisy, or unwanted, component of the re-
ceived sonar signal; its strength governs the detection perfor-
mance of the backscattered pressure from an object, or, say,
the signal-to-reverberation ratio. Hence, clutter has a key role
in manually controlled as well as automated mine detection/
identification systems since it can affect the false alarm
rates.1 Clutter is the result of an oscillating pressure signal
scattered back from the seabed, where a complex wave in-
terference on the water/sediment interface and in the sedi-
ment volume occur.

Wave scattering from random rough surfaces can be
modeled by a field average over an ensemble of random
surfaces where the scattered acoustic power is derived ana-
lytically �see, e.g., Ref. 2 and Ref. 3, Chap. 9.3�. Alterna-
tively, the scattered pressure can be computed numerically
from a stochastic realization of the rough surface, that is, a

Monte Carlo approach �see e.g., Ref. 4�. A combination of
the average field method and the Monte Carlo approach has
been applied in some sonar simulation models.5,6 However,
such models generate energy-based reflectograms that do not
represent the rapid phase variations obtained from real sig-
nals. The field scattered from a rough interface can be com-
puted by the classical composite model,2,3 a combination of
the Kirchhoff approximation and the small perturbation ap-
proximation, but the small slope approximation, a relatively
new model, is valid for a broader range of surfaces �see, e.g.,
Ref. 3, Chap. 9.14 and Refs. 7 and 8�. The full integral equa-
tion solution and approximate integral equation methods
have been applied on 1D surfaces, see, e.g., Refs. 9–11.
Meanwhile, models for interface scattering are not sufficient
for acoustic field interaction with the seabed; acoustic waves
penetrate into the sediment and inhomogeneities induce a
scattered field. Jackson12–16 applied the small perturbation
approximation for frequencies below 100 kHz, that is, for
wavelengths greater than approximately 1.5 cm; for smaller
wavelengths the model can fail.17 At 140 kHz, volume scat-
tering from strongly inhomogeneous sediments can be the
dominating scattering mechanism,18 a conclusion that also
may be valid for the backscattering experiment at 300 kHz
conducted at the Sediment Acoustic Experiment in 1999
�SAX99�.19 Small scale measurements of the density and
sound speed variability conducted at SAX99 tend to confirm
that;20 within the first centimeter the sediment is unconsoli-
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dated and the geoacoustical parameters exhibit a significantly
higher spatial variability than in the deeper parts of the sedi-
ment.

In the model presented here the rapid phase variations
are required, and a stochastic seabed realization that covers
all roughness scales, i.e., a full Monte Carlo approach, will
be applied. The sandy seabed is approximated by a discrete
number of 1D height profiles in planes similar to the sonar
beams. The height profiles are synthesized by application of
seabed roughness parameters acquired from stereo-
photogrammetric measurements at SAX99. The scattering
problem is solved by using the formulation by Chan,11 where
a rough interface divides two homogeneous fluids. Volume
scattering is taken into account by introducing the equivalent
roughness approximation: For each surface point a stochastic
realization of the density along the vertical is generated and
the sediment depth at which the density has its maximum
value will constitute the new height profile value. The new
height profile is subsequently filtered by an AR�1�-filter in
order to generate correlation along the horizontal direction.
The scattering matrix is reduced to a band matrix as interac-
tions between point sources on the seabed are neglected from
a certain range, and the reduction will allow computations of
long height profiles. The number of nonzero diagonals are
evaluated in terms of a tradeoff between accuracy and re-
quired height profile lengths. The equivalent roughness ap-
proach combined with the band-matrix approximation is
compared with SAX99 data at 300 kHz �see Ref. 21�.

All simulations are carried out with a 300-kHz sinusoid
and the speed of sound in water is assumed to be c1

=1500 m/s, thus the acoustic wavelength in water is �
=0.5 cm.

II. SEABED MODELING

In this section modeling of the rough water-sediment
interface as well as modeling of the density variations in the
upper sediment are described. The seabed is considered as a
height field; hence, the height, h, is a function of the ground
plane coordinates, x and y, i.e., h=h�x ,y�. In this work, the
sandy seabed is approximated by a discrete number of 1D
height profiles in planes similar to the sonar beams. Thus,
each height profile is given as

h = h�x� , �1�

where x is the ground range coordinate along the height pro-
file. Simulations by George22 indicate that the backscattering
characteristics are independent of sonar beam width, a result
that supports the height profiles approximation.

A. Interface roughness

The seabed roughness is characterized in terms of its
power spectrum, which according to, e.g., Briggs et al.,23 is
given by

P�fs� =
�

fs
� , �2�

where fs is the spatial frequency measured in cycles/cm, � is
the spectral intercept measured in cm3, and � is the spectral

exponent, which is dimensionless. Taking the logarithm on
each side of Eq. �2� yields

log10 P�fs� = log10��� − � log10�fs� , �3�

where the spectral intercept is found at fs=1, i.e., at one
cycle per centimeter. The power spectrum parameters are
estimated by in situ experiments with stereo-
photogrammetric equipment.1,23–25 The seabed may contain
several power laws distributed over the different spatial fre-
quencies. Here, a two-power-law spectrum is used,

P�fs� =�
�1fs

−�1, fs
�min� � fs � fs

�tr�,

�2fs
−�2, fs

�tr� � fs � fs
�max�,

0, elsewhere,
� �4�

where �1, �1, and �2, �2 are the spectral intercept and spec-
tral exponent for the the first and second power laws, respec-
tively. The minimum spatial frequency, fs

�min�, is governed
by the size of the experimental area; fs

�tr� is the transition
frequency between the two power laws; and the maximum
spatial frequency, fs

�max�, is related to the resolution of the
stereo-photogrammetric system.

Throughout this work �1, �1, �2, and �2 are based on
data presented in Ref. 23 �BAMS, 5 Oct. N, Table II, p. 511�.
The parameters are listed in Table I. Note, the maximum
spatial frequency is chosen to be fs

�max�=4 cycles/cm, al-
though the value is 5 cycles/cm in Ref. 23. This choice will
become clear in the following.

The height profiles are synthesized in the frequency do-
main. Equation �4� is realized by suppressing frequencies
below fs

�min� by application of a tapered cosine window,

W1�fs� = �1

2
�1 − cos��fs/fs

�min��� , �fs� � fs
�min�,

1, elsewhere,
� �5�

and, additionally, by suppressing frequencies above fs
�max� by

application of the following tapered cosine window,

W2�fs� = �1

2
�1 − cos	�

fg − fs

fg − fs
�max�
� , �fs� � fs

�max�,

1, elsewhere,
�

�6�

where fg is the Nyquist frequency. The Fourier transform of
the synthetic height profile, h�x�, is

H�fs� = N�fs�W1�fs�W2�fs��P�fs� , �7�

where N�fs� is the Fourier transform of a random Gaussian
variable with unit variance. The first and second order de-

TABLE I. Applied interface roughness parameters.

Two-power law
fs

�cm−1� �
�

�cm3�

Large scale 0.02–2.0 3.00 0.000 75
Small scale 2.0–4.0 3.81 0.001 31
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rivatives of the height profile are required in the scattering
formulation presented in Sec. III. Since

h�x� ↔ H�fs� , �8�

the surface derivatives are given by

dh

dx
↔ 2�ifsH�fs� , �9�

d2h

dx2 ↔ − 4�2fs
2H�fs� . �10�

If the equidistant step range along the ground range axis �the
x axis� is equal to

�x = 0.2� = 0.1 cm, �11�

the spatial Nyquist frequency is

fs
�Nyquist� = 5 cycles/cm. �12�

The Bragg spatial frequency �or wave number� for back-
scattering at zero grazing angle is

fs
�Bragg� = 4 cycles/cm �13�

�see the Appendix�; it is the maximum spatial frequency of
the rough surface where reinforcement of the backscattered
signal can occur. For a sonar model the grazing angle may
vary between, say, �=10° and �=75°, and consequently,
the Bragg wave numbers will approximately lie between
1 to 3.9 cycle/cm.

Figures 1–3 show W2�fs�, 2�ifsW2�fs�, and
−4�2fs

2W2�fs�, respectively. The tapered cosine window,
W2�fs�, suppresses undesired high frequency content in h�xn�
and its the first and second order derivative. The ground
range resolution, specified in Eq. �11�, has been selected such
that W2�fs� tapers off between the maximum Bragg wave
number and the Nyquist frequency, and that explains why the
implementation uses fs

�max�= fs
�Bragg�=4 cycles/cm and not

5 cycles/cm as in Ref. 23.
In the literature �x may vary from 0.2� down to 0.05�

�see, e.g., Ref. 4 �Appendix 1, Table 1�. Here, an analysis of
convergence has shown that a resolution of 0.2� yields back-

scattering strengths that nearly coincide with backscattering
strengths obtained at a resolution of 0.1�. Thus, a resolution
of �x=0.2� is applied. The distance between adjacent points
on the rough surface, i.e., the arc-length of the nth height
profile sample, �s�xn�, depends on the magnitude of the sur-
face derivative, ��xn�, by9

�s�xn� = ��xn��x , �14�

where xn is nth ground range sample, and where the mag-
nitude of the surface derivative is given by

�2�xn� = 1 + 	dh

dx

2

x=xn

. �15�

For very steep height variations in the profile the arc lengths
become large. The simplest way to decrease �s is by reduc-
ing �x, but that will increase the computational workload
drastically and include a large number of redundant or un-
necessary surface points. Instead, extra points are inserted
between points in the height profile when �s�� /4 �see,
e.g., Ref. 26�. The extra points are found by cubic spline
interpolations and, consequently, �x is no longer constant
and Eq. �14� yields

FIG. 1. The tapered cosine, frequency domain window, W2�fs�, see Eq. �6�.
It is applied on the surface, h, its derivative, dh /dx, and the second order
derivative, d2h /dx2.

FIG. 2. Frequency domain window applied to obtain the surface first order
derivative, dh /dx.

FIG. 3. Frequency domain window applied to obtain the surface second
order derivative, d2h /dx2.
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�s�xn� = ��xn��x�xn� . �16�

The number of extra points required depends inversely on
minimum spatial frequency. If fs

�min� decreases, the height
profile will contain larger height values and arc lengths
will increase. However, the minimum spatial frequency
applied here only results in a few percent extra surface
points. Equation �16� is applied in the implementation de-
scribed in Sec. III.

Figure 4 shows the roughness power spectrum of the
modeled interface; the spectrum shows an average of 5
roughness power spectra, and the maximum Bragg-
wavenumber for backscattering at 300 kHz �=4 cycles/cm�
is indicated by the solid vertical line.

B. Sediment density variations

The seabed may typically consist of sand, mud, stones,
plants, and different animal species, but in this work only a
sandy seabed sediment is considered. Experiments of the
vertical and horizontal density variations have been carried
out at the SAX99, and this section is solely based on results
obtained by Tang et al.20 The experiments showed that the
density variations are strongest within the first 5 mm of the
sediment, that is, the transition layer or unconsolidated sedi-
ment. For frequencies below 100 kHz, i.e., wavelengths
above approximately 1.5 cm, the density inhomogeneities do
not contribute to the scattering as the wavelength is greater
than the thickness of the transition layer. At frequencies
above 100 kHz inhomogeneities are believed to affect scat-
tering significantly.

The 3D spatial variations in the upper sediment layer,
that is, 0 to 6 cm, have been measured with an in situ mea-
surement of porosity �IMP� system that measures the vari-
ability of the electrical conductivity within the sediment. The
vertical density variations are considered in the following;
Eqs. �17�–�21� are taken from Ref. 20 �Eqs. �11�–�15��. For a
sandy sediment the mean density as a function of depth is

	m�z� = 1.98 − 0.4e−3.5z0.6
, �17�

where 	 is measured in g/cm3 and the depth z in cm. The
relative density variability,


 =
	�x,y,z� − 	m�z�

	m�z�
, �18�

is spatially nonstationary and follows the trend


m = 0.0152 − 0.096e−3.7z0.82
. �19�

The relative density variation is normalized by its trend pro-
file, Eq. �19�,

� =

�x,y,z�


m�z�
, �20�

where � is assumed to be a spatial stationary process. In the
vertical direction the power law spectrum yields

Pz�fs� =
w

fs
�	

, �21�

where w=6.76�10−2 cm1−�	 and �	=2.17. The power law
has been verified up to a spatial frequency of approxi-
mately fs=20 cycles/cm, which corresponds to a spatial
resolution of 0.5 mm �see Ref. 20 �Fig. 14��; above this
frequency the noise floor of the IMP is reached. From
these relations stochastic realizations of the sediment den-
sity are generated as a function of depth �see Fig. 5�.

C. The equivalent roughness profile

The high density variations in the first millimeters below
the water-sediment interface, i.e., the unconsolidated sedi-
ment, are believed to contribute significantly to the backscat-
tered field. In order to include density variations in a model
that only accounts for interface roughness scattering, an
equivalent roughness approach is presented here. Considered
from an acoustic point of view, there are numerous inter-
faces, or spatially distributed impedance contrasts, within the
first 5 mm that contribute to the wave interaction. Here, the
interface is redefined in terms of the density variations: For

FIG. 4. Power spectrum of the interface roughness between the water and
sediment; the spectrum has been acquired by optical means, i.e., stereo-
photogrammetric equipment. The dotted line represents the two-power law
power spectrum according to Eq. �4� with the parameters listed in Table I.
The solid, noisy, line is an average of five realizations.

FIG. 5. A total of 32 synthetic density profiles based on density parameters
listed in Table II and adopted from Ref. 20. The white dotted line represents
the mean density profile, 	m�z�, given in Eq. �17�.
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each point along the height profile a Monte Carlo realization
like the ones shown in Fig. 5 is carried out, and the depth
where the maximum density is found, z�xn ,	max�, forms the
new height profile value. At the present stage the equivalent
roughness is defined as

heq�xn� = h�xn� − z�xn,	max� . �22�

Along the horizontal direction the density variations also fol-
low a power spectrum �see Ref. 20 �Fig. 15��, but experimen-
tal data are only provided in the frequency range
0.06 to 2 cycles/cm, and at a minimum depth of 1 cm.
Here, we are interested in wave numbers up to
4 cycles/cm at sediment depths from 0 to 1 cm. Because
z�xn ,	max� tends to be white noise along the horizontal
direction, heq�xn� is filtered with an AR�1� low-pass filter
�see, e.g., Ref. 27� with coefficient , that is,

heqft�xn� = heqft�xn−1� + � − 1�heq�xn� . �23�

A single part of the results presented in Sec. IV is given in
advance by anticipating that =0.45; this value gives an
equivalent roughness profile, heqft�xn�, that results in mod-
eled backscattering strengths that approach experimental
data. The parameters applied for the generation of equiva-
lent roughness profiles are listed in Table II.

Figure 6 shows the spatial power spectra of the equiva-
lent roughness profile together with the equivalent roughness
interface in the case where the interface acquired by optical
means is perfectly flat, that is, h�xn��x0. The optically ac-
quired two-power law, i.e., Eq. �4�, is also shown. The power

spectra of the equivalent roughness profiles exhibit higher
levels for large wave numbers, i.e., from 0.4 to 4 cycles/cm,
than the optically acquired two-power law. Hence, an in-
crease in the backscattering level is expected there.

Figure 7 is an example of a 1.5-m-long height profile
based on optical data only, together with the corresponding
equivalent roughness profile. Figure 8 is Fig. 7 zoomed to
the range between 10 and 30 cm.

In the next section the field equations and the method
applied to calculate the scattered field from the interface are
presented.

III. FIELD EQUATIONS

In this work wave field propagation and scattering is
considered in two dimensions, a consequence of the height-
field to height-profiles approximation presented in beginning
of Sec. II. The e−i�t time dependence is assumed. Hence, a
two-dimensional diverging outgoing wave is described in
terms of the Hankel function of the first kind, H0

�1��z�. A
plane wave incident on the water-sediment interface on the

TABLE II. Applied sediment density parameters.

Direction Type Parameters

Vertical Power law �	=2.17
w=0.0676 cm1−�	

�fs=0.3–30 cm−1�
Horzontal AR�1� =0.45

FIG. 6. Spatial power spectra obtained as an average of five equivalent
roughness realizations based on spatial density parameters given in Table II.
The solid line �———� is the equivalent roughness according to Eq. �23�.
The thin dotted line �:� is the roughness solely estimated from the density
variations. The dashed line �– –� is the two-power law, see Eq. �4�, based on
parameters listed in Table I.

FIG. 7. Stochastic realizations of height profiles. The solid line �———�
represents the interface roughness and the dotted line �:� the equivalent
roughness.

FIG. 8. The height profile realization from Fig. 7 zoomed. The solid line
�———� represents the interface roughness and the dotted line �:� the
equivalent roughness. Note, the equivalent roughness exhibits higher small
scale variations.

818 J. Acoust. Soc. Am., Vol. 121, No. 2, February 2007 Wendelboe, Jacobsen, and Bell: An equivalent roughness model



seabed is considered. The sediment is modeled as a fluid, i.e.,
the acoustic properties are fully described in terms of the
mass density and sound speed. The backscattered pressure
from the interface is the subject here. In Fig. 9 V1 represents
the water medium, with density 	1 and sound speed c1, and
V2 represents the sediment with density 	2 and sound speed
c2. Within V1 a source at infinity generates a plane wave
incident on the interface between the water and sediment; the
plane wave is tapered, i.e., it is of finite extent and excites
only a limited part of the seabed.

The field on the surface, S�, at infinity obeys Sommer-
feld’s radiation condition, i.e., the field vanishes here. The
pressure p at an observation point r within or on the bound-
ary of V1 can be expressed in terms of the Kirchhoff Helm-
holtz integral equation �see, e.g., Ref. 28�:

�1p�r� = pi�r� +
1

4i
�

−�

� 	p�r��
�H0

�1��k1�r − r���
�n�

− H0
�1��k1�r − r���

�p�r��
�n�


 ds�, �24�

where the integral represents the field scattered from the in-
terface s�, pi is the incoming field, r� is a point on s� and
serves as an integration variable, k1=� /c1 is the acoustic
wave number in the water, and � /�n�=� · n̂� is the gradient
projected onto the surface normal vector n̂� of unit length on
s�. Finally, the constant �1 on the left hand side of Eq. �24�
is, for j=1, given by

� j = �1, if r is inside Vj ,
1
2 , if r is on the boundary of Vj ,

0, if r is outside Vj .
� �25�

In the sediment, i.e., in V2, the integral equation becomes

− �2p�r� =
1

4i
�

−�

� 	p�r��
�H0

�1��k2�r − r���
�n�

− H0
�1��k2�r − r���

�p�r��
�n�


 ds�, �26�

where there is no incoming field from within V2, �2 is de-
fined in Eq. �25� with j=2, and the sign of the integral has
been reversed due to a 180° reversal of the normal vector, n̂�
�see Fig. 9�. The two integral equations, Eqs. �24� and �26�,
are coupled through the boundary conditions at the water-
sediment interface as

p1�r�� = p2�r�� , �27�

�p1�r��
�n�

=
1

�

�p2�r��
�n�

, �28�

where �=	2 /	1.
The gradient of the Hankel function projected onto the

surface normal �the left term inside the integral of Eq. �24�
and Eq. �26�� is considered next. The surface derivative of
the zeroth-order Hankel function of the first kind projected
onto the surface normal is

H0
�1��k�r − r���

�n�
= kH1

�1��k�r − r����r̂� · n̂�� , �29�

where r̂�= �r−r�� / �r−r��.
In the following, the position variables are written in

terms of a discrete surface and, thus, the observation point
vector r is given by �xm ,h�xm��, where m=1,2 , . . . ,N; the
integration variable r� is given by �xn ,h�xn��, where n
=1,2 , . . . ,N. The distance between the observation point m
and integration point n is

rmn = ��xm − xn�2 + �h�xm� − h�xn��2, �30�

and the unit vector pointing from n to m is

r̂mn =
1

rmn
� xm − xn

h�xm� − h�xn� � . �31�

The unit surface normal vector is given by

n̂�xn� =
1

��xn��� − �dh/dx��x=xn

1
� , �32�

where ��xn� is defined in Eq. �15�. The nth line segment that
points towards the mth observation point has an effective
length of

mn = �s�n�n̂�xn� · r̂mn, �33�

and combining Eqs. �14�, �31�, and �32� in Eq. �33� yields

mn = �x�n�
− �xm − xn���dh/dx��x=xn

+ �h�xm� − h�xn��

rmn
,

�34�

a factor applied in the discretization of the first integrand in
Eq. �26�. In order to find the scattered pressure the pressure
and pressure gradient on rough interface must be determined.
The establishment of the matrix equations for the coupled

FIG. 9. The geometry applied for the fluid-fluid model represented by the
coupled integral equations, Eqs. �24�–�26�. In the water, i.e., medium 1, a
tapered plane wave is incident from the infinity. Medium 2 represents the
homogeneous sediment.
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problem follows Chan,11 who used the collocation method to
obtain the following set of equations,

p�inc��xm� = �
n=1

N

amnF1�xn� + �
n=1

N

bmnF2�xn� , �35�

0 = �
n=1

N

cmnF1�xn� + �
n=1

N

dmnF2�xn� , �36�

where F1�x�= p�x� and F2�x�=��xn��p�x� /�n. For m�n,

amn = −
ik1

4
mnH1

�1��k1rmn� , �37�

bmn = �x�n�
i

4
H0

�1��k1rmn� , �38�

cmn =
ik1

4
mnH1

�1��k2rmn� , �39�

dmn = − ��x�n�
i

4
H0

�1��k2rmn� , �40�

where mn is defined by Eq. �34�. For m=n the coefficients
become

amm =
1

2
−

h��x��x�m�
4��m

2 , �41�

bmm = �x
i

4
H0

�1��k1�x�m��m/�2e�� , �42�

cmm =
1

2
+

h��x��x�m�
4��m

2 , �43�

dmm = − ��x�m�
i

4
H0

�1��k1�x�m��m/�2e�� . �44�

In matrix form the following is obtained,

�
a11 b11 a12 . . . a1N b1N

c11 d11 c12 . . . c1N d1N

] ] � � b2N b2N

] ] . . . . . . . . . . . .

aN1 bN1 aN2 . . . aNN bNN

cN1 dN1 cN2 . . . cNN dNN

��
F1�x1�
F2�x1�
]

]

F1�xN�
F2�xN�

� = �
pi�x1�

0

]

]

pi�xN�
0

� .

�45�

When the pressure and the pressure gradient on the interface
have been determined the resulting field at any observation
point in the water column can be determined. The far field
expression for the scattered field is

psc�r� =
1

4i
�
n=1

N � 2

�k1rn
eikrne−i�/4�ip�xn� −

�p

�n
�xn��

� �x�n� , �46�

where rn= �r−rn�.

IV. APPROXIMATIVE SOLUTION FOR LARGE
SURFACES

For very long height profiles the matrix in Eq. �45� be-
comes extremely large since a sonar’s field of view may
cover several square meters. Suppose a height profile of
length 20 m is required for modeling the sonar beam; a scat-
tering computation of a 300-kHz wave requires a height field
resolution equal to 1 mm, which yields a matrix of size
20 0002 or 2.3 Gigabytes. Iterative solutions to Eq. �45� can
be applied such as the conjugant gradient method �see Ref.
11� or the forward-backward method, similar to the Gauss-
Seidel procedure �see Ref. 10�. Here the direct method is
maintained, but the matrix is reduced to a sparse band matrix
by the insertion of zeros outside a certain number of diago-
nals,

�
a11 b11 . . . b1M a1,M+1 0 . . . 0

c11 d11 � ]

] �

cK1 0

aM+1,1 0

0 �

0 ]

] �

] � bNN

0 0 0 0 0 � . . . cNN dNN

� ,

�47�

with M diagonals below and M diagonals above the main
diagonal. This choice is based on the fact that the Hankel
function decays with range or, expressed in physical terms,
the pressure at a given observation point on the surface
mainly depends on the nearest neighbor points due to the
geometrical spreading of the scattered waves.

V. RESULTS

The incoming field is formed as a tapered plane wave
according to Ref. 9 �Eq. �11��, where the tapering parameter,
g, of the incoming plane wave is equal to L /4, and L is the
height profile length. Results are presented in terms of the
scattering strength,

SS = 10 log10 ���,�s� , �48�

where ��� ,�s� is the dimensionless scattering cross section.
For 2D wave propagation it is given by �see, e.g., Ref. 9, Eq.
�13��

���,�s� = �Is��s��r/IincL , �49�

where Iinc is the incident intensity and �Is��s�� is the scat-
tered intensity in the far field range r and averaged over
numerous surface realizations in the direction �s. Finally,
L is the profile length. Thus, � is the ratio of the acoustic
power scattered in direction �s to the power of the incoming
field with grazing angle �, and, hence, it is comparable with
the scattering cross section applied for 3D scattering prob-
lems.
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The equivalent roughness profiles applied in the follow-
ing correspond to the type of realizations shown in Figs. 7
and 8; the seabed parameters are depicted in Tables I and II.
The AR�1�-parameter value, =0.45 �see Eq. �23�� is found
to be an acceptable choice since the modeled backscattering
strengths match the experimental data reasonably well �see
below�. The spatial ground range resolution of a height pro-
file is � /5=1 mm, and the acoustic parameters used in the
simulations are, unless anything else is specified, as follows:
the speed of sound in water c1=1500 m/s, the sound speed
ratio �=c2 /c1=1.165, the water density 	1=1 g/cm3, and the
homogeneous sediment density 	1=1.8 g/cm3.

Figure 10 shows the bistatic scattering strength for an
incident field with a grazing angle, �i=25°, and a height
profile length of 120�. The interface has a pressure-release
boundary condition, which is established by setting 	2

=10−5 g /cm3. For the scattering problem on a pressure re-
lease surface the Kirchoff-Helmholtz integral equation re-
duces to

pi�r� =
1

4i
�

−�

�

H0
�1��k1�r − r���

�p�r��
�n�

ds�, �50�

and the solution, given by Eqs. �4�, �5�, and �8� in Ref. 9, is
applied as a first validation of the model presented here.

In Fig. 10 the full matrix solution based on Thorsos’s
solution is shown together with the solution provided by the
band-matrix method, with M =80, where M is the number of
nonzero diagonals to each side of the main diagonal. For the
scattering angles in the range from 0° to 10° the error de-
creases from 5 dB down to approximately 1 dB. From 10°
up to approximately 160° the solutions continue to coincide
within 1 dB.

Figure 11 shows the backscattering error between the
full matrix solution and the band matrix solution for different
values of M, i.e., M =20,40,80,160,320. The grazing angles
under consideration are �=1°, 5°, 10°, 20°, 30°,…, 90°, and
each point is an average of 20 surface realizations of length
200�=1 m. The errors increase dramatically for grazing

angles below 5°, where the most sparse matrix solution, i.e.,
M =20, has a maximum error of approximately 8 dB at �
=1°. The smallest error, at �=1°, is 1.8 dB for M =320. For
grazing angles above 5° the error for M =20 is within 1.5 dB,
1 dB for M =40, and for higher values of M below 0.5 dB.
Apart from computational accuracy, the computational effi-
ciency is another aspect that must be taken into account: The
capability of estimating the backscattered pressure from long
height profiles is needed. Therefore, a band matrix with M
=20 is chosen. It is unlikely that a sonar is directed toward
the seabed with a grazing angle of less than 5° and, therefore,
with M =20, an expected error of 1.5 dB is considered to be
acceptable.

The required CPU time as a function of height profile
length has been invested on a 3 GHz Pentium4™ processor
with 512 MB RAM, and computations have been made in
Matlab™ on a Windows-XP™ operating system. The maxi-
mum profile length that can be computed on the current plat-
form is N=25 000, which takes approximately 95 s; larger
matrices result in lack of workspace memory and cannot be
carried out. The applied incremental ground range resolution
is 1 mm, which yields a profile length of 25 m. The interpo-
lation that is carried out when the distances between adjacent
points on the height profile are larger that � /4 typically in-
creases the number of elements, N, by 3%, thus the actual
matrix length is N=25 750. Computation of a matrix of
length N=15 000, i.e., a profile length of 15 m, takes ap-
proximately 40 s, and a matrix with N=5000, i.e., a profile
length of 5 m, takes approximately 15 s.

Figure 12 shows different backscattering strengths com-
puted from equivalent roughness profiles; the grazing angle
resolution is 0.5°, and each curve represents an average of 50
surface realizations. All band matrix solutions use M =20,
i.e., 20 nonzero diagonals below and above the main diago-
nal of Eq. �47�. The backscattering strengths from the
equivalent roughness profiles of length Lx=200�, i.e., 1 m,
have been computed by the full matrix solution and the band
matrix solution. Additionally, backscattering strengths from
equivalent roughness profiles of length Lx=2000�, i.e.,

FIG. 10. Bistatic scattering strength for the equivalent roughness surface
subject to a pressure release boundary condition. The incoming wave has a
grazing angle of 25°. The solid line �———� is the full matrix solution and
the dash-dot line �–·–� is the band-matrix solution with M =80.

FIG. 11. Backscattering difference in dB between the full matrix solution
and the band matrix solution for different values of M as a function of
grazing angle. The curves are averages of 20 surface realizations of length
200�.
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10 m, have been computed with the band matrix solution.
The three solutions coincide within a few decibels with the
SAX99 data, i.e., XBAMS and BAMS presented in Ref. 21
�Fig. 5, p. 10� for grazing angles between 10° and 22°. The
backscattering strengths calculated from the interface found
by optical means, i.e., the stereo-photogrammetric equip-
ment, are for �=5° to 50°, approximately 15 dB weaker than
the strengths found from the equivalent roughness profiles.
For grazing angles between approximately 50° up to normal
incidence, i.e., 90°, this difference decreases gradually. The
model follows Lambert’s law for small grazing angles as
well as angles near normal incidence, i.e., for ��30° and
��80°, respectively.

VI. DISCUSSION

Apart from a strong spatial variability of the density,
experiments have also revealed a high spatial variability of
the sediment sound speed �see, for example, Refs. 20 and
25�, but sound speed variability is not included in the equiva-
lent roughness approximation.

The scattering model presented in Sec. III is adopted
from radar theory, where the interface between air and
ground has a significant impedance contrast, which conse-
quently yields a weak wave penetration into the ground.
Hence, interface scattering is the dominant scattering mecha-
nism, and the air and ground can be considered as homoge-
neous media. Prior to the development of the equivalent
roughness approach it was attempted to vary the sediment
density along each discrete surface point; that is, the density
ratio �, in Eqs. �40� and �44�, was replaced by �n, with n
=1,2 , . . . ,N, where N represents the total number of surface
points. The same principle was applied by varying k2, i.e.,
the sediment sound speed, along the height profile. However,
simulations did not show any change in the shape of the

backscattering curve, probably because the equations formu-
lated in Sec. III are formulated strictly for interface rough-
ness variations.

Another approach to compute the scattered field could
be a finite element model, also for 1D height profiles, of the
upper part of the sediment combined with a boundary value
formulation for the interface. However, the method would
probably become very computationally demanding and yet
suffer from the lack of precise information regarding small
scale density and sound speed variations in the upper part of
the sediment.

It has also been attempted to apply the method presented
by D. Kapp et al.,10 but it yields more inaccurate results for
the zeroth-order Born term than the band matrix approxima-
tion applied here, and it does not converge for higher order
iterations.

It is important to emphasize that the optically acquired
roughness parameters, shown in Table I, probably not are
measured at the same date and time as the acoustic data.
Except for the fact that BAMS is the correct site, it is not
quite clear which set of parameters in Ref. 23 must be ap-
plied. However, it does not change the fact that the equiva-
lent roughness approach lifts the backscattering level up to
the levels obtained from experiments.

VII. CONCLUSION

The equivalent roughness approximation yields, when
=0.45, backscattering strengths at 300 kHz that agree with
experimental data acquired at SAX99. The band-matrix ap-
proximation, with M =20, yields backscattering errors of
8 dB for �=1°; for grazing angles above 5° backscattering
errors are less that 1.5 dB. Sonar simulations are not ex-
pected to be carried out for grazing angles of less than 5°,
and, hence, the model is considered to have a sufficient ac-
curacy for M =20. Computations have been carried out in
Matlab6.5™ on a PC with a Windows XP™ operating sys-
tem, a 3 GHz �Pentium4™� processor, and 512 MB RAM.
The method allows computations of height profiles with
25 000 elements that correspond to 25 m when the resolution
is one-fifth of the wavelength and the wavelength is �
=0.5 cm. The equivalent roughness approach combined with
the band matrix method is well suited to model sandy seabed
backscattering for artificially very high frequency sonar im-
ages.
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FIG. 12. Backscattering strength as a function of � with ��=0.5°. All band
matrix solutions �BMS� use M =20. The solid line �———� is the full
matrix solution, the dash-dot line �–·–� is the BMS, and both curves are
based on the equivalent roughness profile �ERP�. The thin dotted line �:� is
the BMS from a height profile only based on stereo photogrammetry. The
ERPs explained so far have a length of 200�. The thick dotted line �:� is
BMS, with an ERP length of 2000�; the cross and circle marked lines, i.e.,

and represent the SAX99 data; finally, the thin dashed line �–––� is
Lamberts law.
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APPENDIX: THE BRAGG WAVELENGTH

The Bragg wavelength, �B, for a rough interface is de-
fined in terms of an incoming, monochromatic plane wave
with wavelength, �, and a grazing angle of incidence, �, that
is,

�B =
�

2 cos �
�A1�

�see Fig. 13�. Equation �A1� is equivalent to the reinforce-
ment criterion for backscattering described by Urick.29 The
Bragg frequency of the seabed roughness is

fB =
2 cos �

�
. �A2�

At 300 kHz the wavelength is �=0.5 cm when it is as-
sumed that the sound speed is c=1500 m/s; thus at zero
grazing angle, i.e., �=0, one has fB=4 cycles/cm, which
corresponds to the vertical lines indicated in Figs. 1–3.
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FIG. 13. Geometry applied to derive the Bragg wavelength.
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