51 research outputs found

    Optically Active Defects Induced by 10 MeV Electron Beam in Transparent MgAl2O4 Ceramics

    Get PDF
    In the synthesized MgAl2O4 ceramics, Raman scattering modes were detected due to the presence of random distribution of cations over structural positions (structural reversal effects). Irradiation by 10 MeV electron beam caused intensity redistribution of the fundamental bands in Raman spectrum. New optical absorption bands were registered. Observed features were attributed to the effect of radiation-induced ‘ionic mixing’ in cation sublattice. This effect is the formation of additional [Al

    Charm production nearby threshold in pA-interactions at 70 GeV

    Full text link
    The results of the SERP-E-184 experiment at the U-70 accelerator (IHEP, Protvino) are presented. Interactions of the 70 GeV proton beam with C, Si and Pb targets were studied to detect decays of charmed D0D^0, D0\overline D^0, D+D^+, DD^- mesons and Λc+\Lambda _c^+ baryon near their production threshold. Measurements of lifetimes and masses are shown a good agreement with PDG data. The inclusive cross sections of charm production and their A-dependencies were obtained. The yields of these particles are compared with the theoretical predictions and the data of other experiments. The measured cross section of the total open charm production (σtot(cc)\sigma _{\mathrm {tot}}(c\overline c) = 7.1 ±\pm 2.3(stat) ±\pm 1.4(syst) μ\mu b/nucleon) at the collision c.m. energy s\sqrt {s} = 11.8 GeV is well above the QCD model predictions. The contributions of different species of charmed particles to the total cross section of the open charm production in proton-nucleus interactions vary with energy.Comment: 4 pages, 6 pages, 38th International Conference on High Energy Physics 3-10 August 2016, Chicago, US

    Observation of narrow baryon resonance decaying into pKs0pK^0_s in pA-interactions at 70GeV/c70 GeV/c with SVD-2 setup

    Full text link
    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the Θ+\Theta^+-baryon, in a pKs0pK^0_s decay mode at 70GeV/c70 GeV/c on IHEP accelerator. The reaction pApKs0+XpA \to pK^0_s+X with a limited multiplicity was used in the analysis. The pKs0pK^0_s invariant mass spectrum shows a resonant structure with M=1526±3(stat.)±3(syst.)MeV/c2M=1526\pm3(stat.)\pm 3(syst.) MeV/c^2 and Γ<24MeV/c2\Gamma < 24 MeV/c^2. The statistical significance of this peak was estimated to be of 5.6σ5.6 \sigma. The mass and width of the resonance is compatible with the recently reported Θ+\Theta^+- baryon with positive strangeness which was predicted as an exotic pentaquark (uuddsˉuudd\bar{s}) baryon state. The total cross section for Θ+\Theta^+ production in pN-interactions for XF0X_F\ge 0 was estimated to be (30÷120)μb(30\div120) \mu b and no essential deviation from A-dependence for inelastic events (A0.7)(\sim A^{0.7}) was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some references added, minor typos correcte

    Unveiling the Atomic and Electronic Structure of Stacked-Cup Carbon Nanofibers

    Full text link
    We report results of comprehensive experimental exploration (X-ray photoemission, Raman and optical spectroscopy) of carbon nanofibers (CNFs) in combination with first-principles modeling. Core-level spectra demonstrate prevalence of sp2 hybridization of carbon atoms in CNF with a trace amount of carbon–oxygen bonds. The density functional theory (DFT)-based calculations demonstrated no visible difference between mono- and bilayers because σ-orbitals are related to in-plane covalent bonds. The influence of the distortions on π-peak is found to be significant only for bilayers as a result of π–π interlayer bonds formation. These results are supported by both experimental Raman and XPS valence band spectra. The combination of optical measurements with a theoretical modeling indicates the formation of optically active graphene quantum dots (GQDs) in the CNF matrix, with a radiative relaxation of the excited π* state. The calculated electronic structure of these GQDs is in quantitative agreement with the measured optical transitions and provides an explanation of the absence of visible contribution from these GQDs to the measured valence bands spectra. © 2021, The Author(s).XPS measurements calculations are supported by Ministry of Science and Education of Russian Federation: Theme “Electron” № AAAA-A18-118020190098-5 and Project FEUZ-2020-0059. Optical measurements were additionally supported by RFBR project № 20-42-660012 and RSF project № 21-12-00392. DWB acknowledges the support from Jiangsu innovative and Entrepreneurial Talents Project

    Challenges in QCD matter physics - The Compressed Baryonic Matter experiment at FAIR

    Full text link
    Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 (sqrt(s_NN) = 2.7 - 4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials (mu_B > 500 MeV), effects of chiral symmetry, and the equation-of-state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2022, in the context of the worldwide efforts to explore high-density QCD matter.Comment: 15 pages, 11 figures. Published in European Physical Journal
    corecore